Source code for mxnet.symbol

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=invalid-name, protected-access, too-many-arguments, too-many-lines
# pylint: disable=import-error, no-name-in-module
"""Symbolic configuration API of MXNet."""
from __future__ import absolute_import as _abs
try:
    from __builtin__ import slice as py_slice
except ImportError:
    from builtins import slice as py_slice

import ctypes
import warnings
from numbers import Number

import os as _os
import sys as _sys
import numpy as _numpy

from .base import _LIB, numeric_types
from .base import c_array, c_str, mx_uint, py_str, string_types
from .base import NDArrayHandle, ExecutorHandle, SymbolHandle, OpHandle
from .base import check_call, MXNetError, NotImplementedForSymbol, _Null  # pylint: disable=unused-import
from .context import Context
from .ndarray import NDArray, _DTYPE_NP_TO_MX, _DTYPE_MX_TO_NP, _GRAD_REQ_MAP
from .name import NameManager  # pylint: disable=unused-import
from .executor import Executor
from . import _symbol_internal as _internal
from .attribute import AttrScope
from .symbol_doc import _build_doc

# Use different version of SymbolBase
# When possible, use cython to speedup part of computation.
try:
    if int(_os.environ.get("MXNET_ENABLE_CYTHON", True)) == 0:
        from ._ctypes.symbol import SymbolBase, _set_symbol_class
        from ._ctypes.symbol import _symbol_creator  # pylint: disable=unused-import
    elif _sys.version_info >= (3, 0):
        from ._cy3.symbol import SymbolBase, _set_symbol_class
        from ._cy3.symbol import _symbol_creator  # pylint: disable=unused-import
    else:
        from ._cy2.symbol import SymbolBase, _set_symbol_class
        from ._cy2.symbol import _symbol_creator  # pylint: disable=unused-import
except ImportError:
    if int(_os.environ.get("MXNET_ENFORCE_CYTHON", False)) != 0:
        raise ImportError("Cython Module cannot be loaded but MXNET_ENFORCE_CYTHON=1")
    from ._ctypes.symbol import SymbolBase, _set_symbol_class
    from ._ctypes.symbol import _symbol_creator  # pylint: disable=unused-import


[docs]class Symbol(SymbolBase): """Symbol is symbolic graph of the mxnet.""" # disable dictionary storage, also do not have parent type. # pylint: disable=no-member __slots__ = [] def __repr__(self): """Gets a string representation of the symbol.""" name = self.name if name is None: name = ', '.join([i.name for i in self]) return '<%s group [%s]>' % (self.__class__.__name__, name) else: return '<%s %s>' % (self.__class__.__name__, name) def __iter__(self): """Returns a generator object of symbol. One can loop through the returned object list to get outputs. Example usage: ---------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a+b >>> d = mx.sym.Variable('d') >>> e = d+c >>> out = e.get_children() >>> out >>> for i in out: ... i ... """ return (self[i] for i in self.list_outputs()) def __add__(self, other): """x.__add__(y) <=> x+y Scalar input is supported. Broadcasting is not supported. Use `broadcast_add` instead. """ if isinstance(other, Symbol): return _internal._Plus(self, other) if isinstance(other, Number): return _internal._PlusScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __iadd__(self, other): raise NotImplementedForSymbol(self.__iadd__, '+=', other, 1) def __radd__(self, other): return self.__add__(other) def __sub__(self, other): """x.__sub__(y) <=> x-y Scalar input is supported. Broadcasting is not supported. Use `broadcast_sub` instead. """ if isinstance(other, Symbol): return _internal._Minus(self, other) if isinstance(other, Number): return _internal._MinusScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __isub__(self, other): raise NotImplementedForSymbol(self.__isub__, '-=', other) def __rsub__(self, other): """x.__rsub__(y) <=> y-x Only `NDArray` is supported for now. Example usage: ---------- >>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rsub__(y).asnumpy() array([[-2., -2., -2.], [-2., -2., -2.]], dtype=float32) """ if isinstance(other, Number): return _internal._RMinusScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __mul__(self, other): """x.__mul__(y) <=> x*y Scalar input is supported. Broadcasting is not supported. Use `broadcast_mul` instead. """ if isinstance(other, Symbol): return _internal._Mul(self, other) if isinstance(other, Number): return _internal._MulScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __imul__(self, other): raise NotImplementedForSymbol(self.__imul__, '*=', other) def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): """x.__div__(y) <=> x/y Scalar input is supported. Broadcasting is not supported. Use `broadcast_div` instead. """ if isinstance(other, Symbol): return _internal._Div(self, other) if isinstance(other, Number): return _internal._DivScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __rdiv__(self, other): """x.__rdiv__(y) <=> y/x Only `NDArray` is supported for now. Example usage: ---------- >>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rdiv__(y).asnumpy() array([[ 0.33333334, 0.33333334, 0.33333334], [ 0.33333334, 0.33333334, 0.33333334]], dtype=float32) """ if isinstance(other, Number): return _internal._RDivScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __mod__(self, other): """x.__mod__(y) <=> x%y Scalar input is supported. Broadcasting is not supported. Use `broadcast_mod` instead. """ if isinstance(other, Symbol): return _internal._Mod(self, other) if isinstance(other, Number): return _internal._ModScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __rmod__(self, other): """x.__rmod__(y) <=> y%x Only `NDArray` is supported for now. Example usage: ---------- >>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rmod__(y).asnumpy() array([[ 1., 1., 1., [ 1., 1., 1., dtype=float32) """ if isinstance(other, Number): return _internal._RModScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __idiv__(self, other): raise NotImplementedForSymbol(self.__idiv__, '/=', other) def __truediv__(self, other): return self.__div__(other) def __rtruediv__(self, other): return self.__rdiv__(other) def __itruediv__(self, other): raise NotImplementedForSymbol(self.__itruediv__, '/=', other) def __pow__(self, other): """x.__pow__(y) <=> x**y Scalar input is supported. Broadcasting is not supported. Use `broadcast_pow` instead. """ if isinstance(other, Symbol): return _internal._Power(self, other) if isinstance(other, Number): return _internal._PowerScalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __rpow__(self, other): raise NotImplementedForSymbol(self.__rpow__, 'y**x', other) def __neg__(self): """x.__neg__() <=> -x Numerical negative, element-wise. Example usage: ---------- >>> a = mx.sym.Variable('a') >>> a >>> -a >>> a_neg = a.__neg__() >>> c = a_neg*b >>> ex = c.eval(ctx=mx.cpu(), a=mx.nd.ones([2,3]), b=mx.nd.ones([2,3])) >>> ex[0].asnumpy() array([[-1., -1., -1.], [-1., -1., -1.]], dtype=float32) """ return self.__mul__(-1.0) def __copy__(self): return self.__deepcopy__(None) def __deepcopy__(self, _): """Returns a deep copy of the input object. This function returns a deep copy of the input object including the current state of all its parameters such as weights, biases, etc. Any changes made to the deep copy do not reflect in the original object. Example usage: ---------- >>> import copy >>> data = mx.sym.Variable('data') >>> data_1 = copy.deepcopy(data) >>> data_1 = 2*data >>> data_1.tojson() >>> data_1 is data # Data got modified False """ handle = SymbolHandle() check_call(_LIB.MXSymbolCopy(self.handle, ctypes.byref(handle))) return Symbol(handle) def __eq__(self, other): """x.__eq__(y) <=> x==y Scalar input is supported. Broadcasting is not supported. Use `broadcast_equal` instead. """ if isinstance(other, Symbol): return _internal._equal(self, other) if isinstance(other, numeric_types): return _internal._equal_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __ne__(self, other): """x.__ne__(y) <=> x!=y Scalar input is supported. Broadcasting is not supported. Use `broadcast_not_equal` instead. """ if isinstance(other, Symbol): return _internal._not_equal(self, other) if isinstance(other, numeric_types): return _internal._not_equal_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __gt__(self, other): """x.__gt__(y) <=> x>y Scalar input is supported. Broadcasting is not supported. Use `broadcast_greater` instead. """ if isinstance(other, Symbol): return _internal._greater(self, other) if isinstance(other, numeric_types): return _internal._greater_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __ge__(self, other): """x.__ge__(y) <=> x>=y Scalar input is supported. Broadcasting is not supported. Use `broadcast_greater_equal` instead. """ if isinstance(other, Symbol): return _internal._greater_equal(self, other) if isinstance(other, numeric_types): return _internal._greater_equal_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __lt__(self, other): """x.__lt__(y) <=> x Scalar input is supported. Broadcasting is not supported. Use `broadcast_lesser` instead. """ if isinstance(other, Symbol): return _internal._lesser(self, other) if isinstance(other, numeric_types): return _internal._lesser_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __le__(self, other): """x.__le__(y) <=> x<=y Scalar input is supported. Broadcasting is not supported. Use `broadcast_lesser_equal` instead. """ if isinstance(other, Symbol): return _internal._lesser_equal(self, other) if isinstance(other, numeric_types): return _internal._lesser_equal_scalar(self, scalar=other) else: raise TypeError('type %s not supported' % str(type(other))) def __getstate__(self): handle = self.handle if handle is not None: return {'handle': self.tojson()} else: return {'handle': None} def __setstate__(self, state): # pylint: disable=assigning-non-slot handle = state['handle'] if handle is not None: json_str = handle handle = SymbolHandle() check_call(_LIB.MXSymbolCreateFromJSON(c_str(json_str), ctypes.byref(handle))) self.handle = handle else: self.handle = None def __call__(self, *args, **kwargs): """Composes symbol using inputs. x.__call__(y, z) <=> x(y,z) This function internally calls `_compose` to compose the symbol and returns the composed symbol. Example usage: ---------- >>> data = mx.symbol.Variable('data') >>> net1 = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10) >>> net2 = mx.symbol.FullyConnected(name='fc3', num_hidden=10) >>> composed = net2(fc3_data=net1, name='composed') >>> composed >>> called = net2.__call__(fc3_data=net1, name='composed') >>> called Parameters ---------- args: Positional arguments. kwargs: Keyword arguments. Returns ------- The resulting symbol. """ s = self.__copy__() s._compose(*args, **kwargs) return s def _compose(self, *args, **kwargs): """Composes symbol using inputs. x._compose(y, z) <=> x(y,z) This function mutates the current symbol. Example usage: ---------- >>> data = mx.symbol.Variable('data') >>> net1 = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10) >>> net2 = mx.symbol.FullyConnected(name='fc3', num_hidden=10) >>> net2 >>> net2._compose(fc3_data=net1, name='composed') >>> net2 Parameters ---------- args: Positional arguments. kwargs: Keyword arguments. Returns ------- The resulting symbol. """ name = kwargs.pop('name', None) if name: name = c_str(name) if len(args) != 0 and len(kwargs) != 0: raise TypeError('compose only accept input Symbols \ either as positional or keyword arguments, not both') for arg in args: if not isinstance(arg, Symbol): raise TypeError('Compose expect `Symbol` as arguments') for val in kwargs.values(): if not isinstance(val, Symbol): raise TypeError('Compose expect `Symbol` as arguments') num_args = len(args) + len(kwargs) if len(kwargs) != 0: keys = c_array(ctypes.c_char_p, [c_str(key) for key in kwargs]) args = c_array(SymbolHandle, [s.handle for s in kwargs.values()]) else: keys = None args = c_array(SymbolHandle, [s.handle for s in args]) check_call(_LIB.MXSymbolCompose( self.handle, name, num_args, keys, args)) def __getitem__(self, index): """x.__getitem__(i) <=> x[i] Returns a sliced view of the input symbol. Example usage: ---------- >>> a = mx.sym.var('a') >>> a.__getitem__(0) >>> a[0] Parameters ---------- index : int or str Indexing key """ output_names = self.list_outputs() if isinstance(index, py_slice): start = 0 if index.start is None else index.start stop = len(output_names) if index.stop is None else index.stop step = 1 if index.step is None else index.step return Group([self[i] for i in range(start, stop, step)]) if isinstance(index, string_types): idx = None for i, name in enumerate(output_names): if name == index: if idx is not None: raise ValueError('There are multiple outputs with name \"%s\"' % index) idx = i if idx is None: raise ValueError('Cannot find output that matches name \"%s\"' % index) index = idx if not isinstance(index, int): raise TypeError('Symbol only support integer index to fetch i-th output') if index >= len(output_names): # Important, python determines the end by this exception raise IndexError handle = SymbolHandle() check_call(_LIB.MXSymbolGetOutput( self.handle, mx_uint(index), ctypes.byref(handle))) return Symbol(handle=handle) @property def name(self): """Gets name string from the symbol, this function only works for non-grouped symbol. Returns ------- value : str The name of this symbol, returns ``None`` for grouped symbol. """ ret = ctypes.c_char_p() success = ctypes.c_int() check_call(_LIB.MXSymbolGetName( self.handle, ctypes.byref(ret), ctypes.byref(success))) if success.value != 0: return py_str(ret.value) else: return None
[docs] def attr(self, key): """Returns the attribute string for corresponding input key from the symbol. This function only works for non-grouped symbols. Example usage: ---------- >>> data = mx.sym.Variable('data', attr={'mood': 'angry'}) >>> data.attr('mood') 'angry' Parameters ---------- key : str The key corresponding to the desired attribute. Returns ------- value : str The desired attribute value, returns ``None`` if the attribute does not exist. """ ret = ctypes.c_char_p() success = ctypes.c_int() check_call(_LIB.MXSymbolGetAttr( self.handle, c_str(key), ctypes.byref(ret), ctypes.byref(success))) if success.value != 0: return py_str(ret.value) else: return None
[docs] def list_attr(self, recursive=False): """Gets all attributes from the symbol. Example usage: ---------- >>> data = mx.sym.Variable('data', attr={'mood': 'angry'}) >>> data.list_attr() {'mood': 'angry'} Returns ------- ret : Dict of str to str A dictionary mapping attribute keys to values. """ if recursive: raise DeprecationWarning("Symbol.list_attr with recursive=True has been deprecated. " "Please use attr_dict instead.") size = mx_uint() pairs = ctypes.POINTER(ctypes.c_char_p)() f_handle = _LIB.MXSymbolListAttrShallow check_call(f_handle(self.handle, ctypes.byref(size), ctypes.byref(pairs))) return {py_str(pairs[i * 2]): py_str(pairs[i * 2 + 1]) for i in range(size.value)}
[docs] def attr_dict(self): """Recursively gets all attributes from the symbol and its children. Example usage: ---------- >>> a = mx.sym.Variable('a', attr={'a1':'a2'}) >>> b = mx.sym.Variable('b', attr={'b1':'b2'}) >>> c = a+b >>> c.attr_dict() {'a': {'a1': 'a2'}, 'b': {'b1': 'b2'}} Returns ------- ret : Dict of str to dict There is a key in the returned dict for every child with non-empty attribute set. For each symbol, the name of the symbol is its key in the dict and the correspond value is that symbol's attribute list (itself a dictionary). """ size = mx_uint() pairs = ctypes.POINTER(ctypes.c_char_p)() f_handle = _LIB.MXSymbolListAttr check_call(f_handle(self.handle, ctypes.byref(size), ctypes.byref(pairs))) ret = {} for i in range(size.value): name, key = py_str(pairs[i * 2]).split('$') val = py_str(pairs[i * 2 + 1]) if name not in ret: ret[name] = {} ret[name][key] = val return ret
def _set_attr(self, **kwargs): """Sets an attribute of the symbol. For example. A._set_attr(foo="bar") adds the mapping ``"{foo: bar}"`` to the symbol's attribute dictionary. Parameters ---------- **kwargs The attributes to set """ for key, value in kwargs.items(): if not isinstance(value, string_types): raise ValueError("Set Attr only accepts string values") check_call(_LIB.MXSymbolSetAttr( self.handle, c_str(key), c_str(str(value))))
[docs] def get_internals(self): """Gets a new grouped symbol `sgroup`. The output of `sgroup` is a list of outputs of all of the internal nodes. Consider the following code: Example usage: ---------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> d = c.get_internals() >>> d >>> d.list_outputs() ['a', 'b', '_plus4_output'] Returns ------- sgroup : Symbol A symbol group containing all internal and leaf nodes of the computation graph used to compute the symbol. """ handle = SymbolHandle() check_call(_LIB.MXSymbolGetInternals( self.handle, ctypes.byref(handle))) return Symbol(handle=handle)
[docs] def get_children(self): """Gets a new grouped symbol whose output contains inputs to output nodes of the original symbol. Example usage: ---------- >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.Variable('z') >>> a = y+z >>> b = x+a >>> b.get_children() >>> b.get_children().list_outputs() ['x', '_plus10_output'] >>> b.get_children().get_children().list_outputs() ['y', 'z'] Returns ------- sgroup : Symbol or None The children of the head node. If the symbol has no inputs then ``None`` will be returned. """ handle = SymbolHandle() check_call(_LIB.MXSymbolGetChildren( self.handle, ctypes.byref(handle))) ret = Symbol(handle=handle) if len(ret.list_outputs()) == 0: return None return ret
[docs] def list_arguments(self): """Lists all the arguments in the symbol. Example usage: ---------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_arguments ['a', 'b'] Returns ------- args : list of string List containing the names of all the arguments required to compute the symbol. """ size = ctypes.c_uint() sarr = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXSymbolListArguments( self.handle, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)]
[docs] def list_outputs(self): """Lists all the outputs in the symbol. Example usage: ---------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_outputs() ['_plus12_output'] Returns ------- list of str List of all the outputs. For most symbols, this list contains only the name of this symbol. For symbol groups, this is a list with the names of all symbols in the group. """ size = ctypes.c_uint() sarr = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXSymbolListOutputs( self.handle, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)]
[docs] def list_auxiliary_states(self): """Lists all the auxiliary states in the symbol. Example usage: ---------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_auxiliary_states() [] Example of auxiliary states in `BatchNorm`. >>> data = mx.symbol.Variable('data') >>> weight = mx.sym.Variable(name='fc1_weight') >>> fc1 = mx.symbol.FullyConnected(data = data, weight=weight, name='fc1', num_hidden=128) >>> fc2 = mx.symbol.BatchNorm(fc1, name='batchnorm0') >>> fc2.list_auxiliary_states() ['batchnorm0_moving_mean', 'batchnorm0_moving_var'] Returns ------- aux_states : list of str List of the auxiliary states in input symbol. Notes ----- Auxiliary states are special states of symbols that do not correspond to an argument, and are not updated by gradient descent. Common examples of auxiliary states include the `moving_mean` and `moving_variance` in `BatchNorm`. Most operators do not have auxiliary states. """ size = ctypes.c_uint() sarr = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXSymbolListAuxiliaryStates( self.handle, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)]
[docs] def list_inputs(self): """Lists all arguments and auxiliary states of this Symbol. Returns ------- inputs : list of str List of all inputs. Examples -------- >>> bn = mx.sym.BatchNorm(name='bn') >>> bn.list_arguments() ['bn_data', 'bn_gamma', 'bn_beta'] >>> bn.list_auxiliary_states() ['bn_moving_mean', 'bn_moving_var'] >>> bn.list_inputs() ['bn_data', 'bn_gamma', 'bn_beta', 'bn_moving_mean', 'bn_moving_var'] """ size = ctypes.c_uint() sarr = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.NNSymbolListInputNames( self.handle, 0, ctypes.byref(size), ctypes.byref(sarr))) return [py_str(sarr[i]) for i in range(size.value)]
[docs] def infer_type(self, *args, **kwargs): """Infers the type of all arguments and all outputs, given the known types for some arguments. This function takes the known types of some arguments in either positional way or keyword argument way as input. It returns a tuple of `None` values if there is not enough information to deduce the missing types. Inconsistencies in the known types will cause an error to be raised. Example usage: ---------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> arg_types, out_types, aux_types = c.infer_type(a='float32') >>> arg_types [, ] >>> out_types [] >>> aux_types [] Parameters ---------- *args : Type of known arguments in a positional way. Unknown type can be marked as None. **kwargs : Keyword arguments of known types. Returns ------- arg_types : list of numpy.dtype or None List of argument types. The order is same as the order of list_arguments(). out_types : list of numpy.dtype or None List of output types. The order is same as the order of list_outputs(). aux_types : list of numpy.dtype or None List of auxiliary state types. The order is same as the order of list_auxiliary_states(). """ # pylint: disable=too-many-locals if len(args) != 0 and len(kwargs) != 0: raise ValueError('Can only specify known argument \ types either by positional or kwargs way.') sdata = [] if len(args) != 0: keys = None for s in args: if s is not None: s = _numpy.dtype(s).type if s not in _DTYPE_NP_TO_MX: raise TypeError('Argument need to be one of ' + str(_DTYPE_NP_TO_MX)) sdata.append(_DTYPE_NP_TO_MX[s]) else: sdata.append(-1) else: keys = [] for k, v in kwargs.items(): v = _numpy.dtype(v).type if v in _DTYPE_NP_TO_MX: keys.append(c_str(k)) sdata.append(_DTYPE_NP_TO_MX[v]) arg_type_size = mx_uint() arg_type_data = ctypes.POINTER(ctypes.c_int)() out_type_size = mx_uint() out_type_data = ctypes.POINTER(ctypes.c_int)() aux_type_size = mx_uint() aux_type_data = ctypes.POINTER(ctypes.c_int)() complete = ctypes.c_int() check_call(_LIB.MXSymbolInferType( self.handle, mx_uint(len(sdata)), c_array(ctypes.c_char_p, keys), c_array(ctypes.c_int, sdata), ctypes.byref(arg_type_size), ctypes.byref(arg_type_data), ctypes.byref(out_type_size), ctypes.byref(out_type_data), ctypes.byref(aux_type_size), ctypes.byref(aux_type_data), ctypes.byref(complete))) if complete.value != 0: arg_types = [ _DTYPE_MX_TO_NP[arg_type_data[i]] for i in range(arg_type_size.value)] out_types = [ _DTYPE_MX_TO_NP[out_type_data[i]] for i in range(out_type_size.value)] aux_types = [ _DTYPE_MX_TO_NP[aux_type_data[i]] for i in range(aux_type_size.value)] return (arg_types, out_types, aux_types) else: return (None, None, None)
# pylint: enable=too-many-locals
[docs] def infer_shape(self, *args, **kwargs): """Infers the shapes of all arguments and all outputs given the known shapes of some arguments. This function takes the known shapes of some arguments in either positional way or keyword argument way as input. It returns a tuple of `None` values if there is not enough information to deduce the missing shapes. Example usage: ---------- >>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> arg_shapes, out_shapes, aux_shapes = c.infer_shape(a=(3,3)) >>> arg_shapes [(3L, 3L), (3L, 3L)] >>> out_shapes [(3L, 3L)] >>> aux_shapes [] >>> c.infer_shape(a=(0,3)) # 0s in shape means unknown dimensions. So, returns None. (None, None, None) Inconsistencies in the known shapes will cause an error to be raised. See the following example: >>> data = mx.sym.Variable('data') >>> out = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=1000) >>> out = mx.sym.Activation(data=out, act_type='relu') >>> out = mx.sym.FullyConnected(data=out, name='fc2', num_hidden=10) >>> weight_shape= (1, 100) >>> data_shape = (100, 100) >>> out.infer_shape(data=data_shape, fc1_weight=weight_shape) Error in operator fc1: Shape inconsistent, Provided=(1,100), inferred shape=(1000,100) Parameters ---------- *args : Shape of arguments in a positional way. Unknown shape can be marked as None. **kwargs : Keyword arguments of the known shapes. Returns ------- arg_shapes : list of tuple or None List of argument shapes. The order is same as the order of list_arguments(). out_shapes : list of tuple or None List of output shapes. The order is same as the order of list_outputs(). aux_shapes : list of tuple or None List of auxiliary state shapes. The order is same as the order of list_auxiliary_states(). """ try: res = self._infer_shape_impl(False, *args, **kwargs) if res[1] is None: arg_shapes, _, _ = self._infer_shape_impl(True, *args, **kwargs) arg_names = self.list_arguments() unknowns = [] for name, shape in zip(arg_names, arg_shapes): if not shape or not _numpy.prod(shape): if len(unknowns) >= 10: unknowns.append('...') break unknowns.append('%s: %s' % (name, str(shape))) warnings.warn( "Cannot decide shape for the following arguments " + "(0s in shape means unknown dimensions). " + "Consider providing them as input:\n\t" + "\n\t".join(unknowns), stacklevel=2) return res except MXNetError: print("infer_shape error. Arguments:") for i, arg in enumerate(args): print(" #%d: %s" % (i, arg)) for k, v in kwargs.items(): print(" %s: %s" % (k, v)) raise
[docs] def infer_shape_partial(self, *args, **kwargs): """Infers the shape partially. This functions works the same way as `infer_shape`, except that this function can return partial results. In the following example, information about fc2 is not available. So, `infer_shape` will return a tuple of `None` values but `infer_shape_partial` will return partial values. Example usage: ---------- >>> data = mx.sym.Variable('data') >>> prev = mx.sym.Variable('prev') >>> fc1 = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=128) >>> fc2 = mx.sym.FullyConnected(data=prev, name='fc2', num_hidden=128) >>> out = mx.sym.Activation(data=mx.sym.elemwise_add(fc1, fc2), act_type='relu') >>> out.list_arguments() ['data', 'fc1_weight', 'fc1_bias', 'prev', 'fc2_weight', 'fc2_bias'] >>> out.infer_shape(data=(10,64)) (None, None, None) >>> out.infer_shape_partial(data=(10,64)) ([(10L, 64L), (128L, 64L), (128L,), (), (), ()], [(10L, 128L)], []) >>> # infers shape if you give information about fc2 >>> out.infer_shape(data=(10,64), prev=(10,128)) ([(10L, 64L), (128L, 64L), (128L,), (10L, 128L), (128L, 128L), (128L,)], [(10L, 128L)], []) Parameters ---------- *args : Shape of arguments in a positional way. Unknown shape can be marked as None **kwargs : Keyword arguments of known shapes. Returns ------- arg_shapes : list of tuple or None List of argument shapes. The order is same as the order of list_arguments(). out_shapes : list of tuple or None List of output shapes. The order is same as the order of list_outputs(). aux_shapes : list of tuple or None List of auxiliary state shapes. The order is same as the order of list_auxiliary_states(). """ return self._infer_shape_impl(True, *args, **kwargs)
def _infer_shape_impl(self, partial, *args, **kwargs): """The actual implementation for calling shape inference API.""" # pylint: disable=too-many-locals if len(args) != 0 and len(kwargs) != 0: raise ValueError('Can only specify known argument \ shapes either by positional or kwargs way.') sdata = [] indptr = [0] if len(args) != 0: keys = None for i, s in enumerate(args): if s is not None: if not isinstance(s, tuple): raise TypeError("Arguments need to be shapes (tuple), " "but argument %d is %s." % (i, type(s))) sdata.extend(s) indptr.append(len(sdata)) else: keys = [] for k, v in kwargs.items(): if not isinstance(v, tuple): raise TypeError("Arguments need to be shapes (tuple), " "but '%s' is %s." % (k, type(v))) keys.append(c_str(k)) sdata.extend(v) indptr.append(len(sdata)) arg_shape_size = mx_uint() arg_shape_ndim = ctypes.POINTER(mx_uint)() arg_shape_data = ctypes.POINTER(ctypes.POINTER(mx_uint))() out_shape_size = mx_uint() out_shape_ndim = ctypes.POINTER(mx_uint)() out_shape_data = ctypes.POINTER(ctypes.POINTER(mx_uint))() aux_shape_size = mx_uint() aux_shape_ndim = ctypes.POINTER(mx_uint)() aux_shape_data = ctypes.POINTER(ctypes.POINTER(mx_uint))() complete = ctypes.c_int() if partial: infer_func = _LIB.MXSymbolInferShapePartial else: infer_func = _LIB.MXSymbolInferShape check_call(infer_func( self.handle, mx_uint(len(indptr) - 1), c_array(ctypes.c_char_p, keys), c_array(mx_uint, indptr), c_array(mx_uint, sdata), ctypes.byref(arg_shape_size), ctypes.byref(arg_shape_ndim), ctypes.byref(arg_shape_data), ctypes.byref(out_shape_size), ctypes.byref(out_shape_ndim), ctypes.byref(out_shape_data), ctypes.byref(aux_shape_size), ctypes.byref(aux_shape_ndim), ctypes.byref(aux_shape_data), ctypes.byref(complete))) if complete.value != 0: arg_shapes = [ tuple(arg_shape_data[i][:arg_shape_ndim[i]]) for i in range(arg_shape_size.value)] out_shapes = [ tuple(out_shape_data[i][:out_shape_ndim[i]]) for i in range(out_shape_size.value)] aux_shapes = [ tuple(aux_shape_data[i][:aux_shape_ndim[i]]) for i in range(aux_shape_size.value)] return (arg_shapes, out_shapes, aux_shapes) else: return (None, None, None) # pylint: enable=too-many-locals
[docs] def debug_str(self): """Gets a debug string of symbol. It contains Symbol output, variables and operators in the computation graph with their inputs, variables and attributes. Returns ------- string Debug string of the symbol. Examples -------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.sin(a) >>> c = 2 * a + b >>> d = mx.sym.FullyConnected(data=c, num_hidden=10) >>> d.debug_str() >>> print d.debug_str() Symbol Outputs: output[0]=fullyconnected0(0) Variable:a -------------------- Op:_mul_scalar, Name=_mulscalar0 Inputs: arg[0]=a(0) version=0 Attrs: scalar=2 -------------------- Op:sin, Name=sin0 Inputs: arg[0]=a(0) version=0 -------------------- Op:elemwise_add, Name=_plus0 Inputs: arg[0]=_mulscalar0(0) arg[1]=sin0(0) Variable:fullyconnected0_weight Variable:fullyconnected0_bias -------------------- Op:FullyConnected, Name=fullyconnected0 Inputs: arg[0]=_plus0(0) arg[1]=fullyconnected0_weight(0) version=0 arg[2]=fullyconnected0_bias(0) version=0 Attrs: num_hidden=10 """ debug_str = ctypes.c_char_p() check_call(_LIB.MXSymbolPrint( self.handle, ctypes.byref(debug_str))) return py_str(debug_str.value)
[docs] def save(self, fname): """Saves symbol to a file. You can also use pickle to do the job if you only work on python. The advantage of `load`/`save` functions is that the file contents are language agnostic. This means the model saved by one language binding can be loaded by a different language binding of `MXNet`. You also get the benefit of being able to directly load/save from cloud storage(S3, HDFS). Parameters ---------- fname : str The name of the file. - "s3://my-bucket/path/my-s3-symbol" - "hdfs://my-bucket/path/my-hdfs-symbol" - "/path-to/my-local-symbol" See Also -------- symbol.load : Used to load symbol from file. """ if not isinstance(fname, string_types): raise TypeError('fname need to be string') check_call(_LIB.MXSymbolSaveToFile(self.handle, c_str(fname)))
[docs] def tojson(self): """Saves symbol to a JSON string. See Also -------- symbol.load_json : Used to load symbol from JSON string. """ json_str = ctypes.c_char_p() check_call(_LIB.MXSymbolSaveToJSON(self.handle, ctypes.byref(json_str))) return py_str(json_str.value)
@staticmethod def _get_ndarray_inputs(arg_key, args, arg_names, allow_missing): """Helper function to get NDArray lists handles from various inputs. Parameters ---------- arg_key : str The name of argument, used for error message. args : list of NDArray or dict of str to NDArray Input arguments to the symbols. If type is list of NDArray, the position is in the same order of arg_names. If type is dict of str to NDArray, then it maps the name of arguments to the corresponding NDArray, args_names : list of string List of argument names. allow_missing : boolean Whether missing argument is allowed. When allowed, the missing handle will be set to None(null) Returns ------- handles : list of NDArrayHandle The positional list of NDArrayHandles generated from input. """ # setup args arg_handles = [] arg_arrays = [] if isinstance(args, list): if len(args) != len(arg_names): raise ValueError('Length of %s does not match the number of arguments' % arg_key) for narr in args: if not isinstance(narr, NDArray): raise TypeError('Only accept list of NDArrays or dict of str to NDArray') arg_handles.append(narr.handle) arg_arrays = args elif isinstance(args, dict): for name in arg_names: if name in args: narr = args[name] if not isinstance(narr, NDArray): raise TypeError('Only accept list of NDArrays or dict of str to NDArray') arg_handles.append(narr.handle) arg_arrays.append(narr) else: if allow_missing: arg_handles.append(None) arg_arrays.append(None) else: raise ValueError('key `%s` is missing in `%s`' % (name, arg_key)) else: raise TypeError('Only accept list of NDArrays or dict of str to NDArray') return c_array(NDArrayHandle, arg_handles), arg_arrays
[docs] def simple_bind(self, ctx, grad_req='write', type_dict=None, group2ctx=None, shared_arg_names=None, shared_exec=None, shared_buffer=None, **kwargs): """Bind current symbol to get an executor, allocate all the arguments needed. Allows specifying data types. This function simplifies the binding procedure. You need to specify only input data shapes. Before binding the executor, the function allocates arguments and auxiliary states that were not explicitly specified. Allows specifying data types. Example usage: ---------- >>> x = mx.sym.Variable('x') >>> y = mx.sym.FullyConnected(x, num_hidden=4) >>> exe = y.simple_bind(mx.cpu(), x=(5,4), grad_req='null') >>> exe.forward() [] >>> exe.outputs[0].asnumpy() array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]], dtype=float32) >>> exe.arg_arrays [, , ] >>> exe.grad_arrays [, , ] Parameters ---------- ctx : Context The device context the generated executor to run on. grad_req: string {'write', 'add', 'null'}, or list of str or dict of str to str, optional To specify how we should update the gradient to the `args_grad`. - 'write' means every time gradient is written to specified `args_grad` NDArray. - 'add' means every time gradient is added to the specified NDArray. - 'null' means no action is taken, the gradient may not be calculated. type_dict : Dict of str->numpy.dtype Input type dictionary, name->dtype group2ctx : Dict of string to mx.Context The dict mapping the `ctx_group` attribute to the context assignment. shared_arg_names : List of string The argument names whose `NDArray` of shared_exec can be reused for initializing the current executor. shared_exec : Executor The executor whose arg_arrays, arg_arrays, grad_arrays, and aux_arrays can be reused for initializing the current executor. shared_buffer : Dict of string to `NDArray` The dict mapping argument names to the `NDArray` that can be reused for initializing the current executor. This buffer will be checked for reuse if one argument name of the current executor is not found in `shared_arg_names`. kwargs : Dict of str->shape Input shape dictionary, name->shape Returns ------- executor : mxnet.Executor The generated executor """ num_provided_arg_types = 0 provided_arg_type_names = ctypes.POINTER(ctypes.c_char_p)() # provided type argument names provided_arg_type_data = ctypes.POINTER(mx_uint)() # provided types if type_dict is not None: provided_arg_type_names = [] provided_arg_type_data = [] for k, v in type_dict.items(): v = _numpy.dtype(v).type if v in _DTYPE_NP_TO_MX: provided_arg_type_names.append(c_str(k)) provided_arg_type_data.append(ctypes.c_int(_DTYPE_NP_TO_MX[v])) num_provided_arg_types = mx_uint(len(provided_arg_type_names)) provided_arg_type_names = c_array(ctypes.c_char_p, provided_arg_type_names) provided_arg_type_data = c_array(ctypes.c_int, provided_arg_type_data) provided_arg_shape_data = [] # shape data # argument shape index in sdata, # e.g. [sdata[indptr[0]], sdata[indptr[1]]) is the shape of the first arg provided_arg_shape_idx = [0] provided_arg_shape_names = [] # provided argument names for k, v in kwargs.items(): # if k not in listed_arguments and k not in listed_aux_states: # raise ValueError('arg name %s is not valid', k) if isinstance(v, tuple): provided_arg_shape_names.append(c_str(k)) provided_arg_shape_data.extend(v) provided_arg_shape_idx.append(len(provided_arg_shape_data)) provided_req_type_list_len = 0 provided_grad_req_types = ctypes.POINTER(ctypes.c_char_p)() provided_grad_req_names = ctypes.POINTER(ctypes.c_char_p)() if grad_req is not None: if isinstance(grad_req, string_types): # use provided_req_type_list_len = 0 to indicate this situation provided_req_type_list_len = 0 provided_grad_req_types = [c_str(grad_req)] elif isinstance(grad_req, list): if len(grad_req) == 0: raise RuntimeError('grad_req in simple_bind cannot be an empty list') provided_grad_req_types = [c_str(item) for item in grad_req] provided_req_type_list_len = len(provided_grad_req_types) elif isinstance(grad_req, dict): if len(grad_req) == 0: raise RuntimeError('grad_req in simple_bind cannot be an empty dict') provided_grad_req_names = [] provided_grad_req_types = [] for k, v in grad_req.items(): provided_grad_req_names.append(c_str(k)) provided_grad_req_types.append(c_str(v)) provided_grad_req_names = c_array(ctypes.c_char_p, provided_grad_req_names) provided_req_type_list_len = len(provided_grad_req_types) provided_grad_req_types = c_array(ctypes.c_char_p, provided_grad_req_types) num_ctx_map_keys = mx_uint(0) ctx_map_keys = ctypes.POINTER(ctypes.c_char_p)() ctx_map_dev_types = ctypes.POINTER(ctypes.c_int)() ctx_map_dev_ids = ctypes.POINTER(ctypes.c_int)() if group2ctx is not None: ctx_map_keys = [] ctx_map_dev_types = [] ctx_map_dev_ids = [] for key, val in group2ctx.items(): ctx_map_keys.append(c_str(key)) ctx_map_dev_types.append(ctypes.c_int(val.device_typeid)) ctx_map_dev_ids.append(ctypes.c_int(val.device_id)) num_ctx_map_keys = mx_uint(len(ctx_map_keys)) ctx_map_keys = c_array(ctypes.c_char_p, ctx_map_keys) ctx_map_dev_types = c_array(ctypes.c_int, ctx_map_dev_types) ctx_map_dev_ids = c_array(ctypes.c_int, ctx_map_dev_ids) # prepare param names shared_arg_name_list = [] if shared_arg_names is not None: if not isinstance(shared_arg_names, list): raise ValueError('shared_arg_names in simple_bind must be a list or None') shared_arg_name_list = [c_str(name) for name in shared_arg_names] # prepare shared_buffer if shared_buffer is None: shared_buffer_len = ctypes.c_int(-1) shared_buffer_names = ctypes.POINTER(ctypes.c_char_p)() shared_buffer_handles = ctypes.POINTER(NDArrayHandle)() else: if not isinstance(shared_buffer, dict): raise ValueError('shared_buffer in simple_bind must be dict or None') shared_buffer_names = [] shared_buffer_handles = [] for k, v in shared_buffer.items(): shared_buffer_names.append(c_str(k)) shared_buffer_handles.append(v.handle) shared_buffer_names = c_array(ctypes.c_char_p, shared_buffer_names) shared_buffer_len = ctypes.c_int(len(shared_buffer_handles)) shared_buffer_handles = c_array(NDArrayHandle, shared_buffer_handles) updated_shared_buffer_names = ctypes.POINTER(ctypes.c_char_p)() updated_shared_buffer_handles = ctypes.POINTER(NDArrayHandle)() # prepare shared_exec_handle shared_exec_handle = shared_exec.handle if shared_exec is not None else ExecutorHandle() # prepare current executor handle exe_handle = ExecutorHandle() # prepare current executor's in_args, arg_grads, and aux_states num_in_args = ctypes.c_uint() in_arg_handles = ctypes.POINTER(NDArrayHandle)() arg_grad_handles = ctypes.POINTER(NDArrayHandle)() num_aux_states = ctypes.c_uint() aux_state_handles = ctypes.POINTER(NDArrayHandle)() try: check_call(_LIB.MXExecutorSimpleBind(self.handle, ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), num_ctx_map_keys, ctx_map_keys, ctx_map_dev_types, ctx_map_dev_ids, mx_uint(provided_req_type_list_len), provided_grad_req_names, provided_grad_req_types, mx_uint(len(provided_arg_shape_names)), c_array(ctypes.c_char_p, provided_arg_shape_names), c_array(mx_uint, provided_arg_shape_data), c_array(mx_uint, provided_arg_shape_idx), num_provided_arg_types, provided_arg_type_names, provided_arg_type_data, mx_uint(len(shared_arg_name_list)), c_array(ctypes.c_char_p, shared_arg_name_list), ctypes.byref(shared_buffer_len), shared_buffer_names, shared_buffer_handles, ctypes.byref(updated_shared_buffer_names), ctypes.byref(updated_shared_buffer_handles), ctypes.byref(num_in_args), ctypes.byref(in_arg_handles), ctypes.byref(arg_grad_handles), ctypes.byref(num_aux_states), ctypes.byref(aux_state_handles), shared_exec_handle, ctypes.byref(exe_handle))) except MXNetError as e: error_msg = "simple_bind error. Arguments:\n" for k, v in kwargs.items(): error_msg += "%s: %s\n" % (k, v) error_msg += "%s" % e raise RuntimeError(error_msg) # update shared_buffer if shared_buffer is not None: for i in range(shared_buffer_len.value): k = py_str(updated_shared_buffer_names[i]) v = NDArray(NDArrayHandle(updated_shared_buffer_handles[i])) shared_buffer[k] = v # create in_args, arg_grads, and aux_states for the current executor arg_arrays = [NDArray(NDArrayHandle(in_arg_handles[i])) for i in range(num_in_args.value)] grad_arrays = [NDArray(NDArrayHandle(arg_grad_handles[i])) if arg_grad_handles[i] is not None else None for i in range(num_in_args.value)] aux_arrays = [NDArray(NDArrayHandle(aux_state_handles[i])) for i in range(num_aux_states.value)] executor = Executor(exe_handle, self, ctx, grad_req, group2ctx) executor.arg_arrays = arg_arrays executor.grad_arrays = grad_arrays executor.aux_arrays = aux_arrays return executor
[docs] def bind(self, ctx, args, args_grad=None, grad_req='write', aux_states=None, group2ctx=None, shared_exec=None): """Binds the current symbol to an executor and returns it. We first declare the computation and then bind to the data to run. This function returns an executor which provides method `forward()` method for evaluation and a `outputs()` method to get all the results. Example usage: ---------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a + b >>> ex = c.bind(ctx=mx.cpu(), args={'a' : mx.nd.ones([2,3]), 'b' : mx.nd.ones([2,3])}) >>> ex.forward() [] >>> ex.outputs[0].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]] Parameters ---------- ctx : Context The device context the generated executor to run on. args : list of NDArray or dict of str to NDArray Input arguments to the symbol. - If the input type is a list of `NDArray`, the order should be same as the order of `list_arguments()`. - If the input type is a dict of str to `NDArray`, then it maps the name of arguments to the corresponding `NDArray`. - In either case, all the arguments must be provided. args_grad : list of NDArray or dict of str to `NDArray`, optional When specified, `args_grad` provides NDArrays to hold the result of gradient value in backward. - If the input type is a list of `NDArray`, the order should be same as the order of `list_arguments()`. - If the input type is a dict of str to `NDArray`, then it maps the name of arguments to the corresponding NDArray. - When the type is a dict of str to `NDArray`, one only need to provide the dict for required argument gradient. Only the specified argument gradient will be calculated. grad_req : {'write', 'add', 'null'}, or list of str or dict of str to str, optional To specify how we should update the gradient to the `args_grad`. - 'write' means everytime gradient is write to specified `args_grad` `NDArray`. - 'add' means everytime gradient is add to the specified NDArray. - 'null' means no action is taken, the gradient may not be calculated. aux_states : list of `NDArray`, or dict of str to `NDArray`, optional Input auxiliary states to the symbol, only needed when the output of `list_auxiliary_states()` is not empty. - If the input type is a list of `NDArray`, the order should be same as the order of `list_auxiliary_states()`. - If the input type is a dict of str to `NDArray`, then it maps the name of `auxiliary_states` to the corresponding `NDArray`, - In either case, all the auxiliary states need to be provided. group2ctx : Dict of string to mx.Context The dict mapping the `ctx_group` attribute to the context assignment. shared_exec : mx.executor.Executor Executor to share memory with. This is intended for runtime reshaping, variable length sequences, etc. The returned executor shares state with `shared_exec`, and should not be used in parallel with it. Returns ------- executor : Executor The generated executor Notes ----- Auxiliary states are the special states of symbols that do not correspond to an argument, and do not have gradient but are still useful for the specific operations. Common examples of auxiliary states include the `moving_mean` and `moving_variance` states in `BatchNorm`. Most operators do not have auxiliary states and in those cases, this parameter can be safely ignored. One can give up gradient by using a dict in `args_grad` and only specify gradient they interested in. """ # pylint: disable=too-many-locals, too-many-branches if not isinstance(ctx, Context): raise TypeError("Context type error") listed_arguments = self.list_arguments() args_handle, args = self._get_ndarray_inputs('args', args, listed_arguments, False) # setup args gradient if args_grad is None: args_grad_handle = c_array(NDArrayHandle, [None] * len(args)) else: args_grad_handle, args_grad = self._get_ndarray_inputs( 'args_grad', args_grad, listed_arguments, True) if aux_states is None: aux_states = [] aux_args_handle, aux_states = self._get_ndarray_inputs( 'aux_states', aux_states, self.list_auxiliary_states(), False) # setup requirements if isinstance(grad_req, string_types): if grad_req not in _GRAD_REQ_MAP: raise ValueError('grad_req must be in %s' % str(_GRAD_REQ_MAP)) reqs_array = c_array( mx_uint, [mx_uint(_GRAD_REQ_MAP[grad_req])] * len(listed_arguments)) elif isinstance(grad_req, list): reqs_array = c_array(mx_uint, [mx_uint(_GRAD_REQ_MAP[item]) for item in grad_req]) elif isinstance(grad_req, dict): req_array = [] for name in listed_arguments: if name in grad_req: req_array.append(mx_uint(_GRAD_REQ_MAP[grad_req[name]])) else: req_array.append(mx_uint(0)) reqs_array = c_array(mx_uint, req_array) ctx_map_keys = [] ctx_map_dev_types = [] ctx_map_dev_ids = [] if group2ctx: for key, val in group2ctx.items(): ctx_map_keys.append(c_str(key)) ctx_map_dev_types.append(ctypes.c_int(val.device_typeid)) ctx_map_dev_ids.append(ctypes.c_int(val.device_id)) handle = ExecutorHandle() shared_handle = shared_exec.handle if shared_exec is not None else ExecutorHandle() check_call(_LIB.MXExecutorBindEX(self.handle, ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), mx_uint(len(ctx_map_keys)), c_array(ctypes.c_char_p, ctx_map_keys), c_array(ctypes.c_int, ctx_map_dev_types), c_array(ctypes.c_int, ctx_map_dev_ids), mx_uint(len(args)), args_handle, args_grad_handle, reqs_array, mx_uint(len(aux_states)), aux_args_handle, shared_handle, ctypes.byref(handle))) executor = Executor(handle, self, ctx, grad_req, group2ctx) executor.arg_arrays = args executor.grad_arrays = args_grad executor.aux_arrays = aux_states return executor
[docs] def gradient(self, wrt): """Gets the autodiff of current symbol. This function can only be used if current symbol is a loss function. .. note:: This function is currently not implemented. Parameters ---------- wrt : Array of String keyword arguments of the symbol that the gradients are taken. Returns ------- grad : Symbol A gradient Symbol with returns to be the corresponding gradients. """ handle = SymbolHandle() c_wrt = c_array(ctypes.c_char_p, [c_str(key) for key in wrt]) check_call(_LIB.MXSymbolGrad(self.handle, mx_uint(len(wrt)), c_wrt, ctypes.byref(handle))) return Symbol(handle)
# pylint: enable= no-member
[docs] def eval(self, ctx=None, **kwargs): """Evaluates a symbol given arguments. The `eval` method combines a call to `bind` (which returns an executor) with a call to `forward` (executor method). For the common use case, where you might repeatedly evaluate with same arguments, eval is slow. In that case, you should call `bind` once and then repeatedly call forward. This function allows simpler syntax for less cumbersome introspection. Example usage: ---------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a + b >>> ex = c.eval(ctx = mx.cpu(), a = mx.nd.ones([2,3]), b = mx.nd.ones([2,3])) >>> ex [] >>> ex[0].asnumpy() array([[ 2., 2., 2.], [ 2., 2., 2.]], dtype=float32) Parameters ---------- ctx : Context The device context the generated executor to run on. kwargs : Keyword arguments of type `NDArray` Input arguments to the symbol. All the arguments must be provided. Returns ---------- result : a list of NDArrays corresponding to the values taken by each symbol when evaluated on given args. When called on a single symbol (not a group), the result will be a list with one element. """ if ctx is None: ctx = Context.default_ctx return self.bind(ctx, kwargs).forward()
[docs] def reshape(self, shape): """Shorthand for mxnet.sym.reshape. Parameters ---------- shape : tuple of int The new shape should not change the array size, namely ``np.prod(new_shape)`` should be equal to ``np.prod(self.shape)``. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions. Returns ------- Symbol A reshaped symbol. """ return reshape(self, shape=shape)
def wait_to_read(self): raise NotImplementedForSymbol(self.wait_to_read, None) def asnumpy(self): raise NotImplementedForSymbol(self.asnumpy, None) def asscalar(self): raise NotImplementedForSymbol(self.asscalar, None) def astype(self): raise NotImplementedForSymbol(self.astype, None) def copy(self): raise NotImplementedForSymbol(self.copy, None) def as_in_context(self): raise NotImplementedForSymbol(self.as_in_context, None) def detach(self): raise NotImplementedForSymbol(self.detach, None) def backward(self): raise NotImplementedForSymbol(self.backward, None)
[docs]def var(name, attr=None, shape=None, lr_mult=None, wd_mult=None, dtype=None, init=None, **kwargs): """Creates a symbolic variable with specified name. Example usage: ---------- >>> data = mx.sym.Variable('data', attr={'a': 'b'}) >>> data Parameters ---------- name : str Variable name. attr : Dict of strings Additional attributes to set on the variable. Format {string : string}. shape : tuple The shape of a variable. If specified, this will be used during the shape inference. If one has specified a different shape for this variable using a keyword argument when calling shape inference, this shape information will be ignored. lr_mult : float The learning rate multiplier for input variable. wd_mult : float Weight decay multiplier for input variable. dtype : str or numpy.dtype The dtype for input variable. If not specified, this value will be inferred. init : initializer (mxnet.init.*) Initializer for this variable to (optionally) override the default initializer. kwargs : Additional attribute variables Additional attributes must start and end with double underscores. Returns ------- variable : Symbol A symbol corresponding to an input to the computation graph. """ if not isinstance(name, string_types): raise TypeError('Expect a string for variable `name`') handle = SymbolHandle() check_call(_LIB.MXSymbolCreateVariable(c_str(name), ctypes.byref(handle))) ret = Symbol(handle) attr = AttrScope.current.get(attr) attr = {} if attr is None else attr if shape is not None: attr['__shape__'] = str(shape) if lr_mult is not None: attr['__lr_mult__'] = str(lr_mult) if wd_mult is not None: attr['__wd_mult__'] = str(wd_mult) if dtype is not None: attr['__dtype__'] = str(_DTYPE_NP_TO_MX[_numpy.dtype(dtype).type]) if init is not None: if not isinstance(init, string_types): init = init.dumps() attr['__init__'] = init for k, v in kwargs.items(): if k.startswith('__') and k.endswith('__'): attr[k] = str(v) else: raise ValueError('Attribute name=%s is not supported.' ' Additional attributes must start and end with double underscores,' ' e.g, __yourattr__' % k) ret._set_attr(**attr) return ret
# for back compatibility Variable = var
[docs]def Group(symbols): """Creates a symbol that contains a collection of other symbols, grouped together. Example usage: ---------- >>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> mx.sym.Group([a,b]) Parameters ---------- symbols : list List of symbols to be grouped. Returns ------- sym : Symbol A group symbol. """ ihandles = [] for sym in symbols: if not isinstance(sym, Symbol): raise TypeError('Expected a list of symbols as input') ihandles.append(sym.handle) handle = SymbolHandle() check_call(_LIB.MXSymbolCreateGroup( mx_uint(len(ihandles)), c_array(SymbolHandle, ihandles), ctypes.byref(handle))) return Symbol(handle)
[docs]def load(fname): """Loads symbol from a JSON file. You can also use pickle to do the job if you only work on python. The advantage of load/save is the file is language agnostic. This means the file saved using save can be loaded by other language binding of mxnet. You also get the benefit being able to directly load/save from cloud storage(S3, HDFS). Parameters ---------- fname : str The name of the file, examples: - `s3://my-bucket/path/my-s3-symbol` - `hdfs://my-bucket/path/my-hdfs-symbol` - `/path-to/my-local-symbol` Returns ------- sym : Symbol The loaded symbol. See Also -------- Symbol.save : Used to save symbol into file. """ if not isinstance(fname, string_types): raise TypeError('fname need to be string') handle = SymbolHandle() check_call(_LIB.MXSymbolCreateFromFile(c_str(fname), ctypes.byref(handle))) return Symbol(handle)
[docs]def load_json(json_str): """Loads symbol from json string. Parameters ---------- json_str : str A JSON string. Returns ------- sym : Symbol The loaded symbol. See Also -------- Symbol.tojson : Used to save symbol into json string. """ if not isinstance(json_str, string_types): raise TypeError('fname required to be string') handle = SymbolHandle() check_call(_LIB.MXSymbolCreateFromJSON(c_str(json_str), ctypes.byref(handle))) return Symbol(handle)
# pylint: disable=no-member # pylint: disable=redefined-builtin
[docs]def pow(base, exp): """Returns element-wise result of base element raised to powers from exp element. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Use `broadcast_pow` instead. Parameters --------- base : Symbol or scalar The base symbol exp : Symbol or scalar The exponent symbol Returns ------- Symbol or scalar The bases in x raised to the exponents in y. Examples -------- >>> mx.sym.pow(2, 3) 8 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.pow(x, 2) >>> z.eval(x=mx.nd.array([1,2]))[0].asnumpy() array([ 1., 4.], dtype=float32) >>> z = mx.sym.pow(3, y) >>> z.eval(y=mx.nd.array([2,3]))[0].asnumpy() array([ 9., 27.], dtype=float32) >>> z = mx.sym.pow(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([2,3]))[0].asnumpy() array([ 9., 64.], dtype=float32) """ if isinstance(base, Symbol) and isinstance(exp, Symbol): return _internal._Power(base, exp) if isinstance(base, Symbol) and isinstance(exp, Number): return _internal._PowerScalar(base, scalar=exp) if isinstance(base, Number) and isinstance(exp, Symbol): return _internal._RPowerScalar(exp, scalar=base) if isinstance(base, Number) and isinstance(exp, Number): return base**exp else: raise TypeError('types (%s, %s) not supported' % (str(type(base)), str(type(exp))))
# pylint: disable=no-member # pylint: disable=redefined-builtin
[docs]def maximum(left, right): """Returns element-wise maximum of the input elements. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Parameters --------- left : Symbol or scalar First symbol to be compared. right : Symbol or scalar Second symbol to be compared. Returns ------- Symbol or scalar The element-wise maximum of the input symbols. Examples -------- >>> mx.sym.maximum(2, 3.5) 3.5 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.maximum(x, 4) >>> z.eval(x=mx.nd.array([3,5,2,10]))[0].asnumpy() array([ 4., 5., 4., 10.], dtype=float32) >>> z = mx.sym.maximum(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy() array([ 10., 4.], dtype=float32) """ if isinstance(left, Symbol) and isinstance(right, Symbol): return _internal._Maximum(left, right) if isinstance(left, Symbol) and isinstance(right, Number): return _internal._MaximumScalar(left, scalar=right) if isinstance(left, Number) and isinstance(right, Symbol): return _internal._MaximumScalar(right, scalar=left) if isinstance(left, Number) and isinstance(right, Number): return left if left > right else right else: raise TypeError('types (%s, %s) not supported' % (str(type(left)), str(type(right))))
# pylint: disable=no-member # pylint: disable=redefined-builtin
[docs]def minimum(left, right): """Returns element-wise minimum of the input elements. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Parameters --------- left : Symbol or scalar First symbol to be compared. right : Symbol or scalar Second symbol to be compared. Returns ------- Symbol or scalar The element-wise minimum of the input symbols. Examples -------- >>> mx.sym.minimum(2, 3.5) 2 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.minimum(x, 4) >>> z.eval(x=mx.nd.array([3,5,2,10]))[0].asnumpy() array([ 3., 4., 2., 4.], dtype=float32) >>> z = mx.sym.minimum(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy() array([ 3., 2.], dtype=float32) """ if isinstance(left, Symbol) and isinstance(right, Symbol): return _internal._Minimum(left, right) if isinstance(left, Symbol) and isinstance(right, Number): return _internal._MinimumScalar(left, scalar=right) if isinstance(left, Number) and isinstance(right, Symbol): return _internal._MinimumScalar(right, scalar=left) if isinstance(left, Number) and isinstance(right, Number): return left if left < right else right else: raise TypeError('types (%s, %s) not supported' % (str(type(left)), str(type(right))))
# pylint: disable=no-member # pylint: disable=redefined-builtin
[docs]def hypot(left, right): """Given the "legs" of a right triangle, returns its hypotenuse. Equivalent to :math:`\\sqrt(left^2 + right^2)`, element-wise. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Parameters --------- left : Symbol or scalar First leg of the triangle(s). right : Symbol or scalar Second leg of the triangle(s). Returns ------- Symbol or scalar The hypotenuse of the triangle(s) Examples -------- >>> mx.sym.hypot(3, 4) 5.0 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.hypot(x, 4) >>> z.eval(x=mx.nd.array([3,5,2]))[0].asnumpy() array([ 5., 6.40312433, 4.47213602], dtype=float32) >>> z = mx.sym.hypot(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([10,2]))[0].asnumpy() array([ 10.44030666, 4.47213602], dtype=float32) """ if isinstance(left, Symbol) and isinstance(right, Symbol): return _internal._Hypot(left, right) if isinstance(left, Symbol) and isinstance(right, Number): return _internal._HypotScalar(left, scalar=right) if isinstance(left, Number) and isinstance(right, Symbol): return _internal._HypotScalar(right, scalar=left) if isinstance(left, Number) and isinstance(right, Number): return _numpy.hypot(left, right) else: raise TypeError('types (%s, %s) not supported' % (str(type(left)), str(type(right))))
[docs]def zeros(shape, dtype=None, **kwargs): """Returns a new symbol of given shape and type, filled with zeros. Parameters ---------- shape : int or sequence of ints Shape of the new array. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol. """ if dtype is None: dtype = _numpy.float32 return _internal._zeros(shape=shape, dtype=dtype, **kwargs)
[docs]def ones(shape, dtype=None, **kwargs): """Returns a new symbol of given shape and type, filled with ones. Parameters ---------- shape : int or sequence of ints Shape of the new array. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol """ if dtype is None: dtype = _numpy.float32 return _internal._ones(shape=shape, dtype=dtype, **kwargs)
[docs]def full(shape, val, dtype=None, **kwargs): """Returns a new array of given shape and type, filled with the given value `val`. Parameters ---------- shape : int or sequence of ints Shape of the new array. val : scalar Fill value. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol """ if dtype is None: dtype = _numpy.float32 return _internal._MulScalar(ones(shape=shape, dtype=dtype, **kwargs), scalar=val)
[docs]def arange(start, stop=None, step=1.0, repeat=1, name=None, dtype=None): """Returns evenly spaced values within a given interval. Parameters ---------- start : number Start of interval. The interval includes this value. The default start value is 0. stop : number, optional End of interval. The interval does not include this value. step : number, optional Spacing between values. repeat : int, optional "The repeating time of all elements. E.g repeat=3, the element a will be repeated three times --> a, a, a. dtype : str or numpy.dtype, optional The value type of the inner value, default to ``np.float32``. Returns ------- out : Symbol The created Symbol """ if dtype is None: dtype = _numpy.float32 return _internal._arange(start=start, stop=stop, step=step, repeat=repeat, name=name, dtype=dtype)
def _make_atomic_symbol_function(handle, name): """Create an atomic symbol function by handle and function name.""" real_name = ctypes.c_char_p() desc = ctypes.c_char_p() num_args = mx_uint() arg_names = ctypes.POINTER(ctypes.c_char_p)() arg_types = ctypes.POINTER(ctypes.c_char_p)() arg_descs = ctypes.POINTER(ctypes.c_char_p)() key_var_num_args = ctypes.c_char_p() ret_type = ctypes.c_char_p() check_call(_LIB.MXSymbolGetAtomicSymbolInfo( handle, ctypes.byref(real_name), ctypes.byref(desc), ctypes.byref(num_args), ctypes.byref(arg_names), ctypes.byref(arg_types), ctypes.byref(arg_descs), ctypes.byref(key_var_num_args), ctypes.byref(ret_type))) narg = int(num_args.value) arg_names = [py_str(arg_names[i]) for i in range(narg)] arg_types = [py_str(arg_types[i]) for i in range(narg)] func_name = name key_var_num_args = py_str(key_var_num_args.value) ret_type = py_str(ret_type.value) if ret_type.value is not None else '' doc_str = _build_doc(func_name, py_str(desc.value), arg_names, arg_types, [py_str(arg_descs[i]) for i in range(narg)], key_var_num_args, ret_type) dtype_name = None arr_name = None ndsignature = [] signature = [] ndarg_names = [] kwarg_names = [] for i in range(narg): name, atype = arg_names[i], arg_types[i] if name == 'dtype': dtype_name = name signature.append('%s=_Null'%name) elif atype.startswith('NDArray') or atype.startswith('Symbol'): assert not arr_name, \ "Op can only have one argument with variable " \ "size and it must be the last argument." if atype.endswith('[]'): ndsignature.append('*%s'%name) arr_name = name else: ndsignature.append('%s=None'%name) ndarg_names.append(name) else: signature.append('%s=_Null'%name) kwarg_names.append(name) #signature.append('is_train=False') signature.append('name=None') signature.append('attr=None') signature.append('out=None') signature.append('**kwargs') signature = ndsignature + signature code = [] if arr_name: code.append(""" def %s(*%s, **kwargs):"""%(func_name, arr_name)) code.append(""" sym_args = [] for i in {}: assert isinstance(i, SymbolBase), \\ "Positional arguments must be Symbol instances, " \\ "but got %s"%str(i) sym_args.append(i)""".format(arr_name)) if dtype_name is not None: code.append(""" if '%s' in kwargs: kwargs['%s'] = _numpy.dtype(kwargs['%s']).name"""%( dtype_name, dtype_name, dtype_name)) code.append(""" attr = kwargs.pop('attr', None) kwargs.update(AttrScope.current.get(attr)) name = kwargs.pop('name', None) name = NameManager.current.get(name, '%s') _ = kwargs.pop('out', None) keys = [] vals = [] sym_kwargs = dict() for k, v in kwargs.items(): if isinstance(v, SymbolBase): sym_kwargs[k] = v else: keys.append(k) vals.append(v)"""%(func_name.lower())) if key_var_num_args: code.append(""" if '%s' not in kwargs: keys.append('%s') vals.append(len(sym_args) + len(sym_kwargs))"""%( key_var_num_args, key_var_num_args)) code.append(""" return _symbol_creator(%d, sym_args, sym_kwargs, keys, vals, name)"""%( handle.value)) else: code.append(""" def %s(%s): kwargs.update(AttrScope.current.get(attr)) sym_kwargs = dict() keys = [] vals = []"""%(func_name, ', '.join(signature))) code.append(""" for k, v in kwargs.items(): if isinstance(v, SymbolBase): sym_kwargs[k] = v else: keys.append(k) vals.append(v)""") # NDArray args for name in ndarg_names: # pylint: disable=redefined-argument-from-local code.append(""" if {name} is not None: assert isinstance({name}, SymbolBase), \\ "Argument {name} must be Symbol instances, but got %s"%str({name}) sym_kwargs['{name}'] = {name}""".format(name=name)) # kwargs for name in kwarg_names: # pylint: disable=redefined-argument-from-local code.append(""" if %s is not _Null: keys.append('%s') vals.append(%s)"""%(name, name, name)) # dtype if dtype_name is not None: code.append(""" if %s is not _Null: keys.append('%s') vals.append(_numpy.dtype(%s).name)"""%(dtype_name, dtype_name, dtype_name)) code.append(""" name = NameManager.current.get(name, '%s') return _symbol_creator(%d, None, sym_kwargs, keys, vals, name)"""%( func_name.lower(), handle.value)) local = {} exec(''.join(code), None, local) # pylint: disable=exec-used symbol_function = local[func_name] symbol_function.__name__ = func_name symbol_function.__doc__ = doc_str symbol_function.__module__ = 'mxnet.symbol' return symbol_function def _init_symbol_module(symbol_class, root_namespace): """List and add all the atomic symbol functions to current module.""" _set_symbol_class(symbol_class) plist = ctypes.POINTER(ctypes.c_char_p)() size = ctypes.c_uint() check_call(_LIB.MXListAllOpNames(ctypes.byref(size), ctypes.byref(plist))) op_names = [] for i in range(size.value): op_names.append(py_str(plist[i])) module_obj = _sys.modules["%s.symbol" % root_namespace] module_internal = _sys.modules["%s._symbol_internal" % root_namespace] module_contrib = _sys.modules["%s.contrib.symbol" % root_namespace] for name in op_names: hdl = OpHandle() check_call(_LIB.NNGetOpHandle(c_str(name), ctypes.byref(hdl))) function = _make_atomic_symbol_function(hdl, name) if function.__name__.startswith('_contrib_'): function.__name__ = function.__name__[9:] function.__module__ = 'mxnet.contrib.symbol' setattr(module_contrib, function.__name__, function) elif function.__name__.startswith('_'): setattr(module_internal, function.__name__, function) else: setattr(module_obj, function.__name__, function) # Initialize the atomic symbol in startups _init_symbol_module(Symbol, "mxnet")