NDArray API¶
The NDArray package (mxnet.ndarray
) contains tensor operations similar to numpy.ndarray
. The syntax is also similar, except for some additional calls for dealing with I/O and multiple devices.
Topics:
Create NDArray¶
Create mxnet.ndarray
as follows:
scala> import ml.dmlc.mxnet._
scala> // all-zero array of dimension 100x50
scala> val a = NDArray.zeros(100, 50)
scala> // all-one array of dimension 256x32x128x1
scala> val b = NDArray.ones(256, 32, 128, 1)
scala> // initialize array with contents, you can specify dimensions of array using Shape parameter while creating array.
scala> val c = NDArray.array(Array(1, 2, 3, 4, 5, 6), shape = Shape(2, 3))
This is similar to the way you use numpy
.
NDArray Operations¶
We provide some basic ndarray operations, like arithmetic and slice operations.
Arithmetic Operations¶
scala> import ml.dmlc.mxnet._
scala> val a = NDArray.zeros(100, 50)
scala> a.shape
ml.dmlc.mxnet.Shape = (100,50)
scala> val b = NDArray.ones(100, 50)
scala> // c and d will be calculated in parallel here!
scala> val c = a + b
scala> val d = a - b
scala> // inplace operation, b's contents will be modified, but c and d won't be affected.
scala> b += d
Multiplication/Division Operations¶
scala> import ml.dmlc.mxnet._
//Multiplication
scala> val ndones = NDArray.ones(2, 1)
scala> val ndtwos = ndones * 2
scala> ndtwos.toArray
Array[Float] = Array(2.0, 2.0)
scala> (ndones * ndones).toArray
Array[Float] = Array(1.0, 1.0)
scala> (ndtwos * ndtwos).toArray
Array[Float] = Array(4.0, 4.0)
scala> ndtwos *= ndtwos // inplace
scala> ndtwos.toArray
Array[Float] = Array(4.0, 4.0)
//Division
scala> val ndones = NDArray.ones(2, 1)
scala> val ndzeros = ndones - 1f
scala> val ndhalves = ndones / 2
scala> ndhalves.toArray
Array[Float] = Array(0.5, 0.5)
scala> (ndhalves / ndhalves).toArray
Array[Float] = Array(1.0, 1.0)
scala> (ndones / ndones).toArray
Array[Float] = Array(1.0, 1.0)
scala> (ndzeros / ndones).toArray
Array[Float] = Array(0.0, 0.0)
scala> ndhalves /= ndhalves
scala> ndhalves.toArray
Array[Float] = Array(1.0, 1.0)
Slice Operations¶
scala> import ml.dmlc.mxnet._
scala> val a = NDArray.array(Array(1f, 2f, 3f, 4f, 5f, 6f), shape = Shape(3, 2))
scala> val a1 = a.slice(1)
scala> assert(a1.shape === Shape(1, 2))
scala> assert(a1.toArray === Array(3f, 4f))
scala> val a2 = arr.slice(1, 3)
scala> assert(a2.shape === Shape(2, 2))
scala> assert(a2.toArray === Array(3f, 4f, 5f, 6f))
Dot Product¶
scala> import ml.dmlc.mxnet._
scala> val arr1 = NDArray.array(Array(1f, 2f), shape = Shape(1, 2))
scala> val arr2 = NDArray.array(Array(3f, 4f), shape = Shape(2, 1))
scala> val res = NDArray.dot(arr1, arr2)
scala> res.shape
ml.dmlc.mxnet.Shape = (1,1)
scala> res.toArray
Array[Float] = Array(11.0)
Save and Load NDArray¶
You can use MXNet functions to save and load a list or dictionary of NDArrays from file systems, as follows:
scala> import ml.dmlc.mxnet._
scala> val a = NDArray.zeros(100, 200)
scala> val b = NDArray.zeros(100, 200)
scala> // save list of NDArrays
scala> NDArray.save("/path/to/array/file", Array(a, b))
scala> // save dictionary of NDArrays to AWS S3
scala> NDArray.save("s3://path/to/s3/array", Map("A" -> a, "B" -> b))
scala> // save list of NDArrays to hdfs.
scala> NDArray.save("hdfs://path/to/hdfs/array", Array(a, b))
scala> val from_file = NDArray.load("/path/to/array/file")
scala> val from_s3 = NDArray.load("s3://path/to/s3/array")
scala> val from_hdfs = NDArray.load("hdfs://path/to/hdfs/array")
The good thing about using the save
and load
interface is that you can use the format across all mxnet
language bindings. They also already support Amazon S3 and HDFS.
Multi-Device Support¶
Device information is stored in the mxnet.Context
structure. When creating NDArray in MXNet, you can use the context argument (the default is the CPU context) to create arrays on specific devices as follows:
scala> import ml.dmlc.mxnet._
scala> val cpu_a = NDArray.zeros(100, 200)
scala> cpu_a.context
ml.dmlc.mxnet.Context = cpu(0)
scala> val ctx = Context.gpu(0)
scala> val gpu_b = NDArray.zeros(Shape(100, 200), ctx)
scala> gpu_b.context
ml.dmlc.mxnet.Context = gpu(0)
Currently, we do not allow operations among arrays from different contexts. To manually enable this, use the copyto
member function to copy the content to different devices, and continue computation:
scala> import ml.dmlc.mxnet._
scala> val x = NDArray.zeros(100, 200)
scala> val ctx = Context.gpu(0)
scala> val y = NDArray.zeros(Shape(100, 200), ctx)
scala> val z = x + y
mxnet.base.MXNetError: [13:29:12] src/ndarray/ndarray.cc:33:
Check failed: lhs.ctx() == rhs.ctx() operands context mismatch
scala> val cpu_y = NDArray.zeros(100, 200)
scala> y.copyto(cpu_y)
scala> val z = x + cpu_y
Next Steps¶
- See KVStore API for multi-GPU and multi-host distributed training.