Source code for mxnet.gluon.contrib.rnn.conv_rnn_cell

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# pylint: disable=arguments-differ, too-many-lines
# coding: utf-8
"""Definition of various recurrent neural network cells."""
__all__ = ['Conv1DRNNCell', 'Conv2DRNNCell', 'Conv3DRNNCell',
           'Conv1DLSTMCell', 'Conv2DLSTMCell', 'Conv3DLSTMCell',
           'Conv1DGRUCell', 'Conv2DGRUCell', 'Conv3DGRUCell']


from math import floor

from ....base import numeric_types
from ...rnn import HybridRecurrentCell


def _get_conv_out_size(dimensions, kernels, paddings, dilations):
    return tuple(int(floor(x+2*p-d*(k-1)-1)+1) if x else 0 for x, k, p, d in
                 zip(dimensions, kernels, paddings, dilations))


class _BaseConvRNNCell(HybridRecurrentCell):
    """Abstract base class for convolutional RNNs"""
    def __init__(self, input_shape, hidden_channels,
                 i2h_kernel, h2h_kernel,
                 i2h_pad, i2h_dilate, h2h_dilate,
                 i2h_weight_initializer, h2h_weight_initializer,
                 i2h_bias_initializer, h2h_bias_initializer,
                 dims,
                 conv_layout, activation,
                 prefix=None, params=None):
        super(_BaseConvRNNCell, self).__init__(prefix=prefix, params=params)

        self._hidden_channels = hidden_channels
        self._input_shape = input_shape
        self._conv_layout = conv_layout
        self._activation = activation

        # Convolution setting
        assert all(isinstance(spec, int) or len(spec) == dims
                   for spec in [i2h_kernel, i2h_pad, i2h_dilate,
                                h2h_kernel, h2h_dilate]), \
               "For {dims}D convolution, the convolution settings can only be either int " \
               "or list/tuple of length {dims}".format(dims=dims)

        self._i2h_kernel = (i2h_kernel,) * dims if isinstance(i2h_kernel, numeric_types) \
                           else i2h_kernel
        self._stride = (1,) * dims
        self._i2h_pad = (i2h_pad,) * dims if isinstance(i2h_pad, numeric_types) \
                        else i2h_pad
        self._i2h_dilate = (i2h_dilate,) * dims if isinstance(i2h_dilate, numeric_types) \
                           else i2h_dilate
        self._h2h_kernel = (h2h_kernel,) * dims if isinstance(h2h_kernel, numeric_types) \
                           else h2h_kernel
        assert all(k % 2 == 1 for k in self._h2h_kernel), \
            "Only support odd number, get h2h_kernel= %s" % str(h2h_kernel)
        self._h2h_dilate = (h2h_dilate,) * dims if isinstance(h2h_dilate, numeric_types) \
                           else h2h_dilate

        self._channel_axis, \
        self._in_channels, \
        i2h_param_shape, \
        h2h_param_shape, \
        self._h2h_pad, \
        self._state_shape = self._decide_shapes()

        self.i2h_weight = self.params.get('i2h_weight', shape=i2h_param_shape,
                                          init=i2h_weight_initializer,
                                          allow_deferred_init=True)
        self.h2h_weight = self.params.get('h2h_weight', shape=h2h_param_shape,
                                          init=h2h_weight_initializer,
                                          allow_deferred_init=True)
        self.i2h_bias = self.params.get('i2h_bias', shape=(hidden_channels*self._num_gates,),
                                        init=i2h_bias_initializer,
                                        allow_deferred_init=True)
        self.h2h_bias = self.params.get('h2h_bias', shape=(hidden_channels*self._num_gates,),
                                        init=h2h_bias_initializer,
                                        allow_deferred_init=True)

    def _decide_shapes(self):
        channel_axis = self._conv_layout.find('C')
        input_shape = self._input_shape
        in_channels = input_shape[channel_axis - 1]
        hidden_channels = self._hidden_channels
        if channel_axis == 1:
            dimensions = input_shape[1:]
        else:
            dimensions = input_shape[:-1]

        total_out = hidden_channels * self._num_gates

        i2h_param_shape = (total_out,)
        h2h_param_shape = (total_out,)
        state_shape = (hidden_channels,)
        conv_out_size = _get_conv_out_size(dimensions,
                                           self._i2h_kernel,
                                           self._i2h_pad,
                                           self._i2h_dilate)
        h2h_pad = tuple(d*(k-1)//2 for d, k in zip(self._h2h_dilate, self._h2h_kernel))
        if channel_axis == 1:
            i2h_param_shape += (in_channels,) + self._i2h_kernel
            h2h_param_shape += (hidden_channels,) + self._h2h_kernel
            state_shape += conv_out_size
        else:
            i2h_param_shape += self._i2h_kernel + (in_channels,)
            h2h_param_shape += self._h2h_kernel + (hidden_channels,)
            state_shape = conv_out_size + state_shape

        return channel_axis, in_channels, i2h_param_shape, \
               h2h_param_shape, h2h_pad, state_shape

    def __repr__(self):
        s = '{name}({mapping}'
        if hasattr(self, '_activation'):
            s += ', {_activation}'
        s += ', {_conv_layout}'
        s += ')'
        attrs = self.__dict__
        mapping = ('{_in_channels} -> {_hidden_channels}'.format(**attrs) if self._in_channels
                   else self._hidden_channels)
        return s.format(name=self.__class__.__name__,
                        mapping=mapping,
                        **attrs)

    @property
    def _num_gates(self):
        return len(self._gate_names)

    def _conv_forward(self, F, inputs, states,
                      i2h_weight, h2h_weight, i2h_bias, h2h_bias,
                      prefix):
        i2h = F.Convolution(data=inputs,
                            num_filter=self._hidden_channels*self._num_gates,
                            kernel=self._i2h_kernel,
                            stride=self._stride,
                            pad=self._i2h_pad,
                            dilate=self._i2h_dilate,
                            weight=i2h_weight,
                            bias=i2h_bias,
                            layout=self._conv_layout,
                            name=prefix+'i2h')
        h2h = F.Convolution(data=states[0],
                            num_filter=self._hidden_channels*self._num_gates,
                            kernel=self._h2h_kernel,
                            dilate=self._h2h_dilate,
                            pad=self._h2h_pad,
                            stride=self._stride,
                            weight=h2h_weight,
                            bias=h2h_bias,
                            layout=self._conv_layout,
                            name=prefix+'h2h')
        return i2h, h2h

    def state_info(self, batch_size=0):
        raise NotImplementedError("_BaseConvRNNCell is abstract class for convolutional RNN")

    def hybrid_forward(self, F, inputs, states):
        raise NotImplementedError("_BaseConvRNNCell is abstract class for convolutional RNN")


class _ConvRNNCell(_BaseConvRNNCell):
    def __init__(self, input_shape, hidden_channels,
                 i2h_kernel, h2h_kernel, i2h_pad, i2h_dilate, h2h_dilate,
                 i2h_weight_initializer, h2h_weight_initializer,
                 i2h_bias_initializer, h2h_bias_initializer,
                 dims, conv_layout, activation, prefix, params):
        super(_ConvRNNCell, self).__init__(input_shape=input_shape,
                                           hidden_channels=hidden_channels,
                                           activation=activation,
                                           i2h_kernel=i2h_kernel,
                                           i2h_pad=i2h_pad, i2h_dilate=i2h_dilate,
                                           h2h_kernel=h2h_kernel, h2h_dilate=h2h_dilate,
                                           i2h_weight_initializer=i2h_weight_initializer,
                                           h2h_weight_initializer=h2h_weight_initializer,
                                           i2h_bias_initializer=i2h_bias_initializer,
                                           h2h_bias_initializer=h2h_bias_initializer,
                                           dims=dims,
                                           conv_layout=conv_layout,
                                           prefix=prefix, params=params)

    def state_info(self, batch_size=0):
        return [{'shape': (batch_size,)+self._state_shape, '__layout__': self._conv_layout}]

    def _alias(self):
        return 'conv_rnn'

    @property
    def _gate_names(self):
        return ('',)

    def hybrid_forward(self, F, inputs, states, i2h_weight,
                       h2h_weight, i2h_bias, h2h_bias):
        prefix = 't%d_'%self._counter
        i2h, h2h = self._conv_forward(F, inputs, states,
                                      i2h_weight, h2h_weight, i2h_bias, h2h_bias,
                                      prefix)
        output = self._get_activation(F, i2h + h2h, self._activation,
                                      name=prefix+'out')
        return output, [output]


[docs]class Conv1DRNNCell(_ConvRNNCell): r"""1D Convolutional RNN cell. .. math:: h_t = tanh(W_i \ast x_t + R_i \ast h_{t-1} + b_i) Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCW' the shape should be (C, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0,) Pad for input convolution. i2h_dilate : int or tuple of int, default (1,) Input convolution dilate. h2h_dilate : int or tuple of int, default (1,) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCW' Layout for all convolution inputs, outputs and weights. Options are 'NCW' and 'NWC'. activation : str or Block, default 'tanh' Type of activation function. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_rnn_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0,), i2h_dilate=(1,), h2h_dilate=(1,), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCW', activation='tanh', prefix=None, params=None): super(Conv1DRNNCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=1, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)
[docs]class Conv2DRNNCell(_ConvRNNCell): r"""2D Convolutional RNN cell. .. math:: h_t = tanh(W_i \ast x_t + R_i \ast h_{t-1} + b_i) Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCHW' the shape should be (C, H, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0, 0) Pad for input convolution. i2h_dilate : int or tuple of int, default (1, 1) Input convolution dilate. h2h_dilate : int or tuple of int, default (1, 1) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCHW' Layout for all convolution inputs, outputs and weights. Options are 'NCHW' and 'NHWC'. activation : str or Block, default 'tanh' Type of activation function. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_rnn_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0, 0), i2h_dilate=(1, 1), h2h_dilate=(1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCHW', activation='tanh', prefix=None, params=None): super(Conv2DRNNCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=2, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)
[docs]class Conv3DRNNCell(_ConvRNNCell): r"""3D Convolutional RNN cells .. math:: h_t = tanh(W_i \ast x_t + R_i \ast h_{t-1} + b_i) Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCDHW' the shape should be (C, D, H, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0, 0, 0) Pad for input convolution. i2h_dilate : int or tuple of int, default (1, 1, 1) Input convolution dilate. h2h_dilate : int or tuple of int, default (1, 1, 1) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCDHW' Layout for all convolution inputs, outputs and weights. Options are 'NCDHW' and 'NDHWC'. activation : str or Block, default 'tanh' Type of activation function. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_rnn_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0, 0, 0), i2h_dilate=(1, 1, 1), h2h_dilate=(1, 1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCDHW', activation='tanh', prefix=None, params=None): super(Conv3DRNNCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=3, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)
class _ConvLSTMCell(_BaseConvRNNCell): def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad, i2h_dilate, h2h_dilate, i2h_weight_initializer, h2h_weight_initializer, i2h_bias_initializer, h2h_bias_initializer, dims, conv_layout, activation, prefix, params): super(_ConvLSTMCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=dims, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params) def state_info(self, batch_size=0): return [{'shape': (batch_size,)+self._state_shape, '__layout__': self._conv_layout}, {'shape': (batch_size,)+self._state_shape, '__layout__': self._conv_layout}] def _alias(self): return 'conv_lstm' @property def _gate_names(self): return ['_i', '_f', '_c', '_o'] def hybrid_forward(self, F, inputs, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias): prefix = 't%d_'%self._counter i2h, h2h = self._conv_forward(F, inputs, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias, prefix) gates = i2h + h2h slice_gates = F.SliceChannel(gates, num_outputs=4, name=prefix+'slice', axis=self._channel_axis) in_gate = F.Activation(slice_gates[0], act_type="sigmoid", name=prefix+'i') forget_gate = F.Activation(slice_gates[1], act_type="sigmoid", name=prefix+'f') in_transform = self._get_activation(F, slice_gates[2], self._activation, name=prefix+'c') out_gate = F.Activation(slice_gates[3], act_type="sigmoid", name=prefix+'o') next_c = F._internal._plus(forget_gate * states[1], in_gate * in_transform, name=prefix+'state') next_h = F._internal._mul(out_gate, self._get_activation(F, next_c, self._activation), name=prefix+'out') return next_h, [next_h, next_c]
[docs]class Conv1DLSTMCell(_ConvLSTMCell): r"""1D Convolutional LSTM network cell. `"Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting" `_ paper. Xingjian et al. NIPS2015 .. math:: \begin{array}{ll} i_t = \sigma(W_i \ast x_t + R_i \ast h_{t-1} + b_i) \\ f_t = \sigma(W_f \ast x_t + R_f \ast h_{t-1} + b_f) \\ o_t = \sigma(W_o \ast x_t + R_o \ast h_{t-1} + b_o) \\ c^\prime_t = tanh(W_c \ast x_t + R_c \ast h_{t-1} + b_c) \\ c_t = f_t \circ c_{t-1} + i_t \circ c^\prime_t \\ h_t = o_t \circ tanh(c_t) \\ \end{array} Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCW' the shape should be (C, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0,) Pad for input convolution. i2h_dilate : int or tuple of int, default (1,) Input convolution dilate. h2h_dilate : int or tuple of int, default (1,) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCW' Layout for all convolution inputs, outputs and weights. Options are 'NCW' and 'NWC'. activation : str or Block, default 'tanh' Type of activation function used in c^\prime_t. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_lstm_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0,), i2h_dilate=(1,), h2h_dilate=(1,), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCW', activation='tanh', prefix=None, params=None): super(Conv1DLSTMCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=1, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)
[docs]class Conv2DLSTMCell(_ConvLSTMCell): r"""2D Convolutional LSTM network cell. `"Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting" `_ paper. Xingjian et al. NIPS2015 .. math:: \begin{array}{ll} i_t = \sigma(W_i \ast x_t + R_i \ast h_{t-1} + b_i) \\ f_t = \sigma(W_f \ast x_t + R_f \ast h_{t-1} + b_f) \\ o_t = \sigma(W_o \ast x_t + R_o \ast h_{t-1} + b_o) \\ c^\prime_t = tanh(W_c \ast x_t + R_c \ast h_{t-1} + b_c) \\ c_t = f_t \circ c_{t-1} + i_t \circ c^\prime_t \\ h_t = o_t \circ tanh(c_t) \\ \end{array} Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCHW' the shape should be (C, H, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0, 0) Pad for input convolution. i2h_dilate : int or tuple of int, default (1, 1) Input convolution dilate. h2h_dilate : int or tuple of int, default (1, 1) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCHW' Layout for all convolution inputs, outputs and weights. Options are 'NCHW' and 'NHWC'. activation : str or Block, default 'tanh' Type of activation function used in c^\prime_t. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_lstm_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0, 0), i2h_dilate=(1, 1), h2h_dilate=(1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCHW', activation='tanh', prefix=None, params=None): super(Conv2DLSTMCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=2, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)
[docs]class Conv3DLSTMCell(_ConvLSTMCell): r"""3D Convolutional LSTM network cell. `"Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting" `_ paper. Xingjian et al. NIPS2015 .. math:: \begin{array}{ll} i_t = \sigma(W_i \ast x_t + R_i \ast h_{t-1} + b_i) \\ f_t = \sigma(W_f \ast x_t + R_f \ast h_{t-1} + b_f) \\ o_t = \sigma(W_o \ast x_t + R_o \ast h_{t-1} + b_o) \\ c^\prime_t = tanh(W_c \ast x_t + R_c \ast h_{t-1} + b_c) \\ c_t = f_t \circ c_{t-1} + i_t \circ c^\prime_t \\ h_t = o_t \circ tanh(c_t) \\ \end{array} Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCDHW' the shape should be (C, D, H, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0, 0, 0) Pad for input convolution. i2h_dilate : int or tuple of int, default (1, 1, 1) Input convolution dilate. h2h_dilate : int or tuple of int, default (1, 1, 1) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCDHW' Layout for all convolution inputs, outputs and weights. Options are 'NCDHW' and 'NDHWC'. activation : str or Block, default 'tanh' Type of activation function used in c^\prime_t. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_lstm_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0, 0, 0), i2h_dilate=(1, 1, 1), h2h_dilate=(1, 1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCDHW', activation='tanh', prefix=None, params=None): super(Conv3DLSTMCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=3, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)
class _ConvGRUCell(_BaseConvRNNCell): def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad, i2h_dilate, h2h_dilate, i2h_weight_initializer, h2h_weight_initializer, i2h_bias_initializer, h2h_bias_initializer, dims, conv_layout, activation, prefix, params): super(_ConvGRUCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=dims, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params) def state_info(self, batch_size=0): return [{'shape': (batch_size,)+self._state_shape, '__layout__': self._conv_layout}] def _alias(self): return 'conv_gru' @property def _gate_names(self): return ['_r', '_z', '_o'] def hybrid_forward(self, F, inputs, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias): prefix = 't%d_'%self._counter i2h, h2h = self._conv_forward(F, inputs, states, i2h_weight, h2h_weight, i2h_bias, h2h_bias, prefix) i2h_r, i2h_z, i2h = F.SliceChannel(i2h, num_outputs=3, name=prefix+'i2h_slice', axis=self._channel_axis) h2h_r, h2h_z, h2h = F.SliceChannel(h2h, num_outputs=3, name=prefix+'h2h_slice', axis=self._channel_axis) reset_gate = F.Activation(i2h_r + h2h_r, act_type="sigmoid", name=prefix+'r_act') update_gate = F.Activation(i2h_z + h2h_z, act_type="sigmoid", name=prefix+'z_act') next_h_tmp = self._get_activation(F, i2h + reset_gate * h2h, self._activation, name=prefix+'h_act') next_h = F._internal._plus((1. - update_gate) * next_h_tmp, update_gate * states[0], name=prefix+'out') return next_h, [next_h]
[docs]class Conv1DGRUCell(_ConvGRUCell): r"""1D Convolutional Gated Rectified Unit (GRU) network cell. .. math:: \begin{array}{ll} r_t = \sigma(W_r \ast x_t + R_r \ast h_{t-1} + b_r) \\ z_t = \sigma(W_z \ast x_t + R_z \ast h_{t-1} + b_z) \\ n_t = tanh(W_i \ast x_t + b_i + r_t \circ (R_n \ast h_{t-1} + b_n)) \\ h^\prime_t = (1 - z_t) \circ n_t + z_t \circ h \\ \end{array} Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCW' the shape should be (C, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0,) Pad for input convolution. i2h_dilate : int or tuple of int, default (1,) Input convolution dilate. h2h_dilate : int or tuple of int, default (1,) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCW' Layout for all convolution inputs, outputs and weights. Options are 'NCW' and 'NWC'. activation : str or Block, default 'tanh' Type of activation function used in n_t. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_gru_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0,), i2h_dilate=(1,), h2h_dilate=(1,), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCW', activation='tanh', prefix=None, params=None): super(Conv1DGRUCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=1, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)
[docs]class Conv2DGRUCell(_ConvGRUCell): r"""2D Convolutional Gated Rectified Unit (GRU) network cell. .. math:: \begin{array}{ll} r_t = \sigma(W_r \ast x_t + R_r \ast h_{t-1} + b_r) \\ z_t = \sigma(W_z \ast x_t + R_z \ast h_{t-1} + b_z) \\ n_t = tanh(W_i \ast x_t + b_i + r_t \circ (R_n \ast h_{t-1} + b_n)) \\ h^\prime_t = (1 - z_t) \circ n_t + z_t \circ h \\ \end{array} Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCHW' the shape should be (C, H, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0, 0) Pad for input convolution. i2h_dilate : int or tuple of int, default (1, 1) Input convolution dilate. h2h_dilate : int or tuple of int, default (1, 1) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCHW' Layout for all convolution inputs, outputs and weights. Options are 'NCHW' and 'NHWC'. activation : str or Block, default 'tanh' Type of activation function used in n_t. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_gru_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0, 0), i2h_dilate=(1, 1), h2h_dilate=(1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCHW', activation='tanh', prefix=None, params=None): super(Conv2DGRUCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=2, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)
[docs]class Conv3DGRUCell(_ConvGRUCell): r"""3D Convolutional Gated Rectified Unit (GRU) network cell. .. math:: \begin{array}{ll} r_t = \sigma(W_r \ast x_t + R_r \ast h_{t-1} + b_r) \\ z_t = \sigma(W_z \ast x_t + R_z \ast h_{t-1} + b_z) \\ n_t = tanh(W_i \ast x_t + b_i + r_t \circ (R_n \ast h_{t-1} + b_n)) \\ h^\prime_t = (1 - z_t) \circ n_t + z_t \circ h \\ \end{array} Parameters ---------- input_shape : tuple of int Input tensor shape at each time step for each sample, excluding dimension of the batch size and sequence length. Must be consistent with `conv_layout`. For example, for layout 'NCDHW' the shape should be (C, D, H, W). hidden_channels : int Number of output channels. i2h_kernel : int or tuple of int Input convolution kernel sizes. h2h_kernel : int or tuple of int Recurrent convolution kernel sizes. Only odd-numbered sizes are supported. i2h_pad : int or tuple of int, default (0, 0, 0) Pad for input convolution. i2h_dilate : int or tuple of int, default (1, 1, 1) Input convolution dilate. h2h_dilate : int or tuple of int, default (1, 1, 1) Recurrent convolution dilate. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the input convolutions. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the input convolutions. i2h_bias_initializer : str or Initializer, default zeros Initializer for the input convolution bias vectors. h2h_bias_initializer : str or Initializer, default zeros Initializer for the recurrent convolution bias vectors. conv_layout : str, default 'NCDHW' Layout for all convolution inputs, outputs and weights. Options are 'NCDHW' and 'NDHWC'. activation : str or Block, default 'tanh' Type of activation function used in n_t. If argument type is string, it's equivalent to nn.Activation(act_type=str). See :func:`~mxnet.ndarray.Activation` for available choices. Alternatively, other activation blocks such as nn.LeakyReLU can be used. prefix : str, default 'conv_gru_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, input_shape, hidden_channels, i2h_kernel, h2h_kernel, i2h_pad=(0, 0, 0), i2h_dilate=(1, 1, 1), h2h_dilate=(1, 1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', conv_layout='NCDHW', activation='tanh', prefix=None, params=None): super(Conv3DGRUCell, self).__init__(input_shape=input_shape, hidden_channels=hidden_channels, i2h_kernel=i2h_kernel, h2h_kernel=h2h_kernel, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, h2h_dilate=h2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, dims=3, conv_layout=conv_layout, activation=activation, prefix=prefix, params=params)