# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
# pylint: disable=
"""Neural network parameter."""
__all__ = ['DeferredInitializationError', 'Parameter', 'ParameterDict',
'tensor_types']
from collections import OrderedDict
import warnings
import numpy as np
from ..base import mx_real_t, MXNetError
from .. import symbol, ndarray, initializer, context
from ..context import Context
from .. import autograd
from .utils import _indent
# pylint: disable= invalid-name
tensor_types = (symbol.Symbol, ndarray.NDArray)
# pylint: enable= invalid-name
[docs]class DeferredInitializationError(MXNetError):
"""Error for unfinished deferred initialization."""
pass
[docs]class Parameter(object):
"""A Container holding parameters (weights) of Blocks.
:py:class:`Parameter` holds a copy of the parameter on each :py:class:`Context` after
it is initialized with ``Parameter.initialize(...)``. If :py:attr:`grad_req` is
not ``'null'``, it will also hold a gradient array on each :py:class:`Context`::
ctx = mx.gpu(0)
x = mx.nd.zeros((16, 100), ctx=ctx)
w = mx.gluon.Parameter('fc_weight', shape=(64, 100), init=mx.init.Xavier())
b = mx.gluon.Parameter('fc_bias', shape=(64,), init=mx.init.Zero())
w.initialize(ctx=ctx)
b.initialize(ctx=ctx)
out = mx.nd.FullyConnected(x, w.data(ctx), b.data(ctx), num_hidden=64)
Parameters
----------
name : str
Name of this parameter.
grad_req : {'write', 'add', 'null'}, default 'write'
Specifies how to update gradient to grad arrays.
- ``'write'`` means everytime gradient is written to grad :py:class:`NDArray`.
- ``'add'`` means everytime gradient is added to the grad :py:class:`NDArray`. You need
to manually call ``zero_grad()`` to clear the gradient buffer before each
iteration when using this option.
- 'null' means gradient is not requested for this parameter. gradient arrays
will not be allocated.
shape : tuple of int, default None
Shape of this parameter. By default shape is not specified. Parameter with
unknown shape can be used for :py:class:`Symbol` API, but ``init`` will throw an error
when using :py:class:`NDArray` API.
dtype : numpy.dtype or str, default 'float32'
Data type of this parameter. For example, ``numpy.float32`` or ``'float32'``.
lr_mult : float, default 1.0
Learning rate multiplier. Learning rate will be multiplied by lr_mult
when updating this parameter with optimizer.
wd_mult : float, default 1.0
Weight decay multiplier (L2 regularizer coefficient). Works similar to lr_mult.
init : Initializer, default None
Initializer of this parameter. Will use the global initializer by default.
Attributes
----------
grad_req : {'write', 'add', 'null'}
This can be set before or after initialization. Setting ``grad_req`` to ``'null'``
with ``x.grad_req = 'null'`` saves memory and computation when you don't
need gradient w.r.t x.
lr_mult : float
Local learning rate multiplier for this Parameter. The actual learning rate
is calculated with ``learning_rate * lr_mult``. You can set it with
``param.lr_mult = 2.0``
wd_mult : float
Local weight decay multiplier for this Parameter.
"""
def __init__(self, name, grad_req='write', shape=None, dtype=mx_real_t,
lr_mult=1.0, wd_mult=1.0, init=None, allow_deferred_init=False,
differentiable=True):
self._var = None
self._data = None
self._grad = None
self._ctx_list = None
self._ctx_map = None
self._deferred_init = ()
self._differentiable = differentiable
self._allow_deferred_init = allow_deferred_init
self._grad_req = None
self.name = name
self.shape = shape
self.dtype = dtype
self.lr_mult = lr_mult
self.wd_mult = wd_mult
self.grad_req = grad_req
self.init = init
def __repr__(self):
s = 'Parameter {name} (shape={shape}, dtype={dtype})'
return s.format(**self.__dict__)
@property
def grad_req(self):
return self._grad_req
@grad_req.setter
def grad_req(self, req):
assert req in ['write', 'add', 'null'], \
"grad_req must be one of write, add, or null, but got %s"%req
if not self._differentiable:
req = 'null'
if self._grad_req == req:
return
self._grad_req = req
if req == 'null' and self._grad is not None:
self._grad = None
self._data = [i.detach() for i in self._data]
elif self._data is not None:
self._init_grad()
def _check_and_get(self, arr_list, ctx):
if arr_list is not None:
if ctx is list:
return arr_list
if ctx is None:
if len(arr_list) == 1:
return arr_list[0]
else:
ctx = context.current_context()
idx = self._ctx_map[ctx.device_typeid][ctx.device_id]
if idx is not None:
return arr_list[idx]
raise RuntimeError(
"Parameter %s was not initialized on context %s. "
"It was only initialized on %s."%(
self.name, str(ctx), str(self._ctx_list)))
if self._deferred_init:
raise DeferredInitializationError(
"Parameter %s has not been initialized yet because initialization was " \
"deferred. Actual initialization happens during the first forward pass. " \
"Please pass one batch of data through the network before accessing Parameters. " \
"You can also avoid deferred initialization by specifying in_units, " \
"num_features, etc., for network layers."%(self.name))
raise RuntimeError(
"Parameter %s has not been initialized. Note that " \
"you should initialize parameters and create Trainer " \
"with Block.collect_params() instead of Block.params " \
"because the later does not include Parameters of " \
"nested child Blocks"%(self.name))
def _load_init(self, data, ctx):
"""(Re)initializes by loading from data."""
if self.shape:
for i, j in zip(self.shape, data.shape):
assert i == 0 or i == j, \
"Failed loading Parameter %s from saved params: " \
"shape incompatible expacted %s vs saved %s"%(
self.name, str(self.shape), str(data.shape))
if self.dtype:
assert np.dtype(self.dtype).type == data.dtype, \
"Failed loading Parameter %s from saved params: " \
"dtype incompatible expacted %s vs saved %s"%(
self.name, str(self.dtype), str(data.dtype))
if isinstance(ctx, Context):
ctx = [ctx]
if self._data is None:
if self._deferred_init:
assert set(ctx) == set(self._deferred_init[1]), \
"Failed to load Parameter %s on %s because it was " \
"previous initialized on %s."%(
self.name, str(ctx), str(self.list_ctx()))
self._init_impl(data, ctx)
else:
assert set(ctx) == set(self.list_ctx()), \
"Failed to load Parameter %s on %s because it was " \
"previous initialized on %s."%(
self.name, str(ctx), str(self.list_ctx()))
self.set_data(data)
self._deferred_init = ()
def _finish_deferred_init(self):
"""Finishes deferred initialization."""
if not self._deferred_init:
return
init, ctx, default_init = self._deferred_init
self._deferred_init = ()
assert self.shape is not None and np.prod(self.shape) > 0, \
"Cannot initialize Parameter %s because it has " \
"invalid shape: %s. Please specify in_units, " \
"in_channels, etc for `Block`s."%(
self.name, str(self.shape))
with autograd.pause():
data = ndarray.zeros(shape=self.shape, dtype=self.dtype,
ctx=context.cpu())
initializer.create(default_init)(
initializer.InitDesc(self.name, {'__init__': init}), data)
self._init_impl(data, ctx)
def _init_impl(self, data, ctx_list):
"""Sets data and grad."""
self._ctx_list = list(ctx_list)
self._ctx_map = []
for i, ctx in enumerate(self._ctx_list):
while len(self._ctx_map) <= ctx.device_typeid:
self._ctx_map.append([])
dev_list = self._ctx_map[ctx.device_typeid]
while len(dev_list) <= ctx.device_id:
dev_list.append(None)
dev_list[ctx.device_id] = i
self._data = [data.copyto(ctx) for ctx in self._ctx_list]
self._init_grad()
def _init_grad(self):
"""Initialize grad buffers."""
if self.grad_req == 'null':
self._grad = None
return
self._grad = [ndarray.zeros_like(i) for i in self._data]
autograd.mark_variables(self.list_data(), self.list_grad(), self.grad_req)
def _reduce(self):
"""Reduce data from multiple context."""
block = self.list_data()
data = ndarray.add_n(*(w.copyto(context.cpu()) for w in block)) / len(block)
return data
[docs] def initialize(self, init=None, ctx=None, default_init=initializer.Uniform(),
force_reinit=False):
"""Initializes parameter and gradient arrays. Only used for :py:class:`NDArray` API.
Parameters
----------
init : Initializer
The initializer to use. Overrides :py:meth:`Parameter.init` and default_init.
ctx : Context or list of Context, defaults to :py:meth:`context.current_context()`.
Initialize Parameter on given context. If ctx is a list of Context, a
copy will be made for each context.
.. note::
Copies are independent arrays. User is responsible for keeping
their values consistent when updating.
Normally :py:class:`gluon.Trainer` does this for you.
default_init : Initializer
Default initializer is used when both :py:func:`init`
and :py:meth:`Parameter.init` are ``None``.
force_reinit : bool, default False
Whether to force re-initialization if parameter is already initialized.
Examples
--------
>>> weight = mx.gluon.Parameter('weight', shape=(2, 2))
>>> weight.initialize(ctx=mx.cpu(0))
>>> weight.data()
[[-0.01068833 0.01729892]
[ 0.02042518 -0.01618656]]
>>> weight.grad()
[[ 0. 0.]
[ 0. 0.]]
>>> weight.initialize(ctx=[mx.gpu(0), mx.gpu(1)])
>>> weight.data(mx.gpu(0))
[[-0.00873779 -0.02834515]
[ 0.05484822 -0.06206018]]
>>> weight.data(mx.gpu(1))
[[-0.00873779 -0.02834515]
[ 0.05484822 -0.06206018]]
"""
if self._data is not None and not force_reinit:
warnings.warn("Parameter %s is already initialized, ignoring. " \
"Set force_reinit=True to re-initialize."%self.name)
return
self._data = self._grad = None
if ctx is None:
ctx = [context.current_context()]
if isinstance(ctx, Context):
ctx = [ctx]
if init is None:
init = default_init if self.init is None else self.init
if not self.shape or np.prod(self.shape) <= 0:
if self._allow_deferred_init:
self._deferred_init = (init, ctx, default_init)
return
raise ValueError("Cannot initialize Parameter %s because it has " \
"invalid shape: %s."%(self.name, str(self.shape)))
self._deferred_init = (init, ctx, default_init)
self._finish_deferred_init()
[docs] def reset_ctx(self, ctx):
"""Re-assign Parameter to other contexts.
ctx : Context or list of Context, default ``context.current_context()``.
Assign Parameter to given context. If ctx is a list of Context, a
copy will be made for each context.
"""
if ctx is None:
ctx = [context.current_context()]
if isinstance(ctx, Context):
ctx = [ctx]
if self._data:
data = self._reduce()
with autograd.pause():
self._init_impl(data, ctx)
elif self._deferred_init:
init, _, default_init = self._deferred_init
self._deferred_init = (init, ctx, default_init)
else:
raise ValueError("Cannot reset context for Parameter %s because it "
"has not been initialized."%self.name)
[docs] def set_data(self, data):
"""Sets this parameter's value on all contexts to data."""
assert self._data is not None, \
"Parameter %s has not been initialized"%self.name
for arr in self.list_data():
arr[:] = data
[docs] def data(self, ctx=None):
"""Returns a copy of this parameter on one context. Must have been
initialized on this context before.
Parameters
----------
ctx : Context
Desired context.
Returns
-------
NDArray on ctx
"""
return self._check_and_get(self._data, ctx)
[docs] def list_data(self):
"""Returns copies of this parameter on all contexts, in the same order
as creation."""
return self._check_and_get(self._data, list)
[docs] def grad(self, ctx=None):
"""Returns a gradient buffer for this parameter on one context.
Parameters
----------
ctx : Context
Desired context.
"""
if self._data is not None and self._grad is None:
raise RuntimeError(
"Cannot get gradient array for Parameter %s " \
"because grad_req='null'"%(self.name))
return self._check_and_get(self._grad, ctx)
[docs] def list_grad(self):
"""Returns gradient buffers on all contexts, in the same order
as :py:meth:`values`."""
if self._data is not None and self._grad is None:
raise RuntimeError(
"Cannot get gradient array for Parameter %s " \
"because grad_req='null'"%(self.name))
return self._check_and_get(self._grad, list)
[docs] def list_ctx(self):
"""Returns a list of contexts this parameter is initialized on."""
if self._data is None:
if self._deferred_init:
return self._deferred_init[1]
raise RuntimeError("Parameter %s has not been initialized"%self.name)
return self._ctx_list
[docs] def zero_grad(self):
"""Sets gradient buffer on all contexts to 0. No action is taken if
parameter is uninitialized or doesn't require gradient."""
if self._grad is None:
return
for i in self._grad:
i[:] = 0
[docs] def var(self):
"""Returns a symbol representing this parameter."""
if self._var is None:
self._var = symbol.var(self.name, shape=self.shape, dtype=self.dtype,
lr_mult=self.lr_mult, wd_mult=self.wd_mult,
init=self.init)
return self._var
[docs]class ParameterDict(object):
"""A dictionary managing a set of parameters.
Parameters
----------
prefix : str, default ``''``
The prefix to be prepended to all Parameters' names created by this dict.
shared : ParameterDict or None
If not ``None``, when this dict's :py:meth:`get` method creates a new parameter, will
first try to retrieve it from "shared" dict. Usually used for sharing
parameters with another Block.
"""
def __init__(self, prefix='', shared=None):
self._prefix = prefix
self._params = OrderedDict()
self._shared = shared
def __repr__(self):
s = '{name}(\n{content}\n)'
name = self._prefix+' ' if self._prefix else ''
return s.format(name=name,
content='\n'.join([_indent(' {0}'.format(v), 2)
for v in self.values()]))
def __getitem__(self, key):
return self._params[key]
def __iter__(self):
return iter(self._params)
def items(self):
return self._params.items()
def keys(self):
return self._params.keys()
def values(self):
return self._params.values()
@property
def prefix(self):
"""Prefix of this dict. It will be prepended to :py:class:`Parameter`s' name created
with :py:func:`get`."""
return self._prefix
def _get_impl(self, name):
if name in self._params:
return self._params[name]
if self._shared is not None and name in self._shared._params:
self._params[name] = self._shared._params[name]
return self._shared._params[name]
return None
[docs] def get(self, name, **kwargs):
"""Retrieves a :py:class:`Parameter` with name ``self.prefix+name``. If not found,
:py:func:`get` will first try to retrieve it from "shared" dict. If still not
found, :py:func:`get` will create a new :py:class:`Parameter` with key-word arguments and
insert it to self.
Parameters
----------
name : str
Name of the desired Parameter. It will be prepended with this dictionary's
prefix.
**kwargs : dict
The rest of key-word arguments for the created :py:class:`Parameter`.
Returns
-------
Parameter
The created or retrieved :py:class:`Parameter`.
"""
name = self.prefix + name
param = self._get_impl(name)
if param is None:
param = Parameter(name, **kwargs)
self._params[name] = param
else:
for k, v in kwargs.items():
if hasattr(param, k) and getattr(param, k) is not None:
assert v is None or v == getattr(param, k), \
"Cannot retrieve Parameter %s because desired attribute " \
"does not match with stored for attribute %s: " \
"desired %s vs stored %s."%(
name, k, str(v), str(getattr(param, k)))
else:
setattr(param, k, v)
return param
[docs] def update(self, other):
"""Copies all Parameters in ``other`` to self."""
for k, v in other.items():
if k in self._params:
assert self._params[k] is v, \
"Cannot update self with other because they have different " \
"Parameters with the same name %s"%k
else:
self._params[k] = v
[docs] def initialize(self, init=initializer.Uniform(), ctx=None, verbose=False,
force_reinit=False):
"""Initializes all Parameters managed by this dictionary to be used for :py:class:`NDArray`
API. It has no effect when using :py:class:`Symbol` API.
Parameters
----------
init : Initializer
Global default Initializer to be used when :py:meth:`Parameter.init` is ``None``.
Otherwise, :py:meth:`Parameter.init` takes precedence.
ctx : Context or list of Context
Keeps a copy of Parameters on one or many context(s).
force_reinit : bool, default False
Whether to force re-initialization if parameter is already initialized.
"""
if verbose:
init.set_verbosity(verbose=verbose)
for _, v in self.items():
v.initialize(None, ctx, init, force_reinit=force_reinit)
[docs] def zero_grad(self):
"""Sets all Parameters' gradient buffer to 0."""
for i in self.values():
i.zero_grad()
[docs] def reset_ctx(self, ctx):
"""Re-assign all Parameters to other contexts.
ctx : Context or list of Context, default :py:meth:`context.current_context()`.
Assign Parameter to given context. If ctx is a list of Context, a
copy will be made for each context.
"""
for i in self.values():
i.reset_ctx(ctx)
[docs] def setattr(self, name, value):
"""Set an attribute to a new value for all Parameters.
For example, set grad_req to null if you don't need gradient w.r.t a
model's Parameters::
model.collect_params().setattr('grad_req', 'null')
or change the learning rate multiplier::
model.collect_params().setattr('lr_mult', 0.5)
Parameters
----------
name : str
Name of the attribute.
value : valid type for attribute name
The new value for the attribute.
"""
for i in self.values():
setattr(i, name, value)
[docs] def save(self, filename, strip_prefix=''):
"""Save parameters to file.
filename : str
Path to parameter file.
strip_prefix : str, default ''
Strip prefix from parameter names before saving.
"""
arg_dict = {}
for param in self.values():
weight = param._reduce()
if not param.name.startswith(strip_prefix):
raise ValueError(
"Prefix %s is to be striped before saving, but Parameter " \
"%s does not start with %s. If you are using Block.save_params, " \
"This may be due to your Block shares parameters from other " \
"Blocks or you forgot to use ``with name_scope()`` during init. " \
"Consider switching to Block.collect_params.save and " \
"Block.collect_params.load instead."%(
strip_prefix, param.name, strip_prefix))
arg_dict[param.name[len(strip_prefix):]] = weight
ndarray.save(filename, arg_dict)
[docs] def load(self, filename, ctx, allow_missing=False,
ignore_extra=False, restore_prefix=''):
"""Load parameters from file.
filename : str
Path to parameter file.
ctx : Context or list of Context
Context(s) initialize loaded parameters on.
allow_missing : bool, default False
Whether to silently skip loading parameters not represents in the file.
ignore_extra : bool, default False
Whether to silently ignore parameters from the file that are not
present in this ParameterDict.
restore_prefix : str, default ''
prepend prefix to names of stored parameters before loading.
"""
if restore_prefix:
for name in self.keys():
assert name.startswith(restore_prefix), \
"restore_prefix is %s but Parameters name %s does not start " \
"with %s"%(restore_prefix, name, restore_prefix)
lprefix = len(restore_prefix)
loaded = [(k[4:] if k.startswith('arg:') or k.startswith('aux:') else k, v) \
for k, v in ndarray.load(filename).items()]
arg_dict = {restore_prefix+k: v for k, v in loaded}
if not allow_missing:
for name in self.keys():
assert name in arg_dict, \
"Parameter %s is missing in file %s"%(name[lprefix:], filename)
for name in arg_dict:
if name not in self._params:
assert ignore_extra, \
"Parameter %s loaded from file %s is not present in ParameterDict"%(
name[lprefix:], filename)
continue
self[name]._load_init(arg_dict[name], ctx)