# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
# pylint: disable= arguments-differ
"""VGG, implemented in Gluon."""
from __future__ import division
__all__ = ['VGG',
'vgg11', 'vgg13', 'vgg16', 'vgg19',
'vgg11_bn', 'vgg13_bn', 'vgg16_bn', 'vgg19_bn',
'get_vgg']
import os
from ....context import cpu
from ....initializer import Xavier
from ...block import HybridBlock
from ... import nn
[docs]class VGG(HybridBlock):
r"""VGG model from the `"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
layers : list of int
Numbers of layers in each feature block.
filters : list of int
Numbers of filters in each feature block. List length should match the layers.
classes : int, default 1000
Number of classification classes.
batch_norm : bool, default False
Use batch normalization.
"""
def __init__(self, layers, filters, classes=1000, batch_norm=False, **kwargs):
super(VGG, self).__init__(**kwargs)
assert len(layers) == len(filters)
with self.name_scope():
self.features = self._make_features(layers, filters, batch_norm)
self.features.add(nn.Dense(4096, activation='relu',
weight_initializer='normal',
bias_initializer='zeros'))
self.features.add(nn.Dropout(rate=0.5))
self.features.add(nn.Dense(4096, activation='relu',
weight_initializer='normal',
bias_initializer='zeros'))
self.features.add(nn.Dropout(rate=0.5))
self.output = nn.Dense(classes,
weight_initializer='normal',
bias_initializer='zeros')
def _make_features(self, layers, filters, batch_norm):
featurizer = nn.HybridSequential(prefix='')
for i, num in enumerate(layers):
for _ in range(num):
featurizer.add(nn.Conv2D(filters[i], kernel_size=3, padding=1,
weight_initializer=Xavier(rnd_type='gaussian',
factor_type='out',
magnitude=2),
bias_initializer='zeros'))
if batch_norm:
featurizer.add(nn.BatchNorm())
featurizer.add(nn.Activation('relu'))
featurizer.add(nn.MaxPool2D(strides=2))
return featurizer
def hybrid_forward(self, F, x):
x = self.features(x)
x = self.output(x)
return x
# Specification
vgg_spec = {11: ([1, 1, 2, 2, 2], [64, 128, 256, 512, 512]),
13: ([2, 2, 2, 2, 2], [64, 128, 256, 512, 512]),
16: ([2, 2, 3, 3, 3], [64, 128, 256, 512, 512]),
19: ([2, 2, 4, 4, 4], [64, 128, 256, 512, 512])}
# Constructors
[docs]def get_vgg(num_layers, pretrained=False, ctx=cpu(),
root=os.path.join('~', '.mxnet', 'models'), **kwargs):
r"""VGG model from the `"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
num_layers : int
Number of layers for the variant of densenet. Options are 11, 13, 16, 19.
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
layers, filters = vgg_spec[num_layers]
net = VGG(layers, filters, **kwargs)
if pretrained:
from ..model_store import get_model_file
batch_norm_suffix = '_bn' if kwargs.get('batch_norm') else ''
net.load_params(get_model_file('vgg%d%s'%(num_layers, batch_norm_suffix),
root=root), ctx=ctx)
return net
[docs]def vgg11(**kwargs):
r"""VGG-11 model from the `"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
return get_vgg(11, **kwargs)
[docs]def vgg13(**kwargs):
r"""VGG-13 model from the `"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
return get_vgg(13, **kwargs)
[docs]def vgg16(**kwargs):
r"""VGG-16 model from the `"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
return get_vgg(16, **kwargs)
[docs]def vgg19(**kwargs):
r"""VGG-19 model from the `"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
return get_vgg(19, **kwargs)
[docs]def vgg11_bn(**kwargs):
r"""VGG-11 model with batch normalization from the
`"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
kwargs['batch_norm'] = True
return get_vgg(11, **kwargs)
[docs]def vgg13_bn(**kwargs):
r"""VGG-13 model with batch normalization from the
`"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
kwargs['batch_norm'] = True
return get_vgg(13, **kwargs)
[docs]def vgg16_bn(**kwargs):
r"""VGG-16 model with batch normalization from the
`"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
kwargs['batch_norm'] = True
return get_vgg(16, **kwargs)
[docs]def vgg19_bn(**kwargs):
r"""VGG-19 model with batch normalization from the
`"Very Deep Convolutional Networks for Large-Scale Image Recognition"
`_ paper.
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
ctx : Context, default CPU
The context in which to load the pretrained weights.
root : str, default '~/.mxnet/models'
Location for keeping the model parameters.
"""
kwargs['batch_norm'] = True
return get_vgg(19, **kwargs)