Symbol API¶
Overview¶
This document lists the routines of the symbolic expression package:
mxnet.symbol |
Symbol API of MXNet. |
The Symbol
API, defined in the symbol
(or simply sym
) package, provides
neural network graphs and auto-differentiation.
A symbol represents a multi-output symbolic expression.
They are composited by operators, such as simple matrix operations (e.g. “+”),
or a neural network layer (e.g. convolution layer).
An operator can take several input variables,
produce more than one output variables, and have internal state variables.
A variable can be either free, which we can bind with value later,
or an output of another symbol.
>>> a = mx.sym.Variable('a')
>>> b = mx.sym.Variable('b')
>>> c = 2 * a + b
>>> type(c)
>>> e = c.bind(mx.cpu(), {'a': mx.nd.array([1,2]), 'b':mx.nd.array([2,3])})
>>> y = e.forward()
>>> y
[]
>>> y[0].asnumpy()
array([ 4., 7.], dtype=float32)
A detailed tutorial is available at Symbol - Neural network graphs and auto-differentiation.
Note
most operators provided in symbol
are similar to those in ndarray
although there are few differences:
symbol
adopts declarative programming. In other words, we need to first compose the computations, and then feed it with data for execution whereas ndarray adopts imperative programming.- Most binary operators in
symbol
such as+
and>
don’t broadcast. We need to call the broadcast version of the operator such asbroadcast_plus
explicitly.
In the rest of this document, we first overview the methods provided by the
symbol.Symbol
class, and then list other routines provided by the
symbol
package.
The Symbol
class¶
Composition¶
Composite multiple symbols into a new one by an operator.
Symbol.__call__ |
Composes symbol using inputs. |
Arithmetic operations¶
Symbol.__add__ |
x.__add__(y) <=> x+y |
Symbol.__sub__ |
x.__sub__(y) <=> x-y |
Symbol.__rsub__ |
x.__rsub__(y) <=> y-x |
Symbol.__neg__ |
x.__neg__() <=> -x |
Symbol.__mul__ |
x.__mul__(y) <=> x*y |
Symbol.__div__ |
x.__div__(y) <=> x/y |
Symbol.__rdiv__ |
x.__rdiv__(y) <=> y/x |
Symbol.__mod__ |
x.__mod__(y) <=> x%y |
Symbol.__rmod__ |
x.__rmod__(y) <=> y%x |
Symbol.__pow__ |
x.__pow__(y) <=> x**y |
Trigonometric functions¶
Symbol.sin |
Convenience fluent method for sin() . |
Symbol.cos |
Convenience fluent method for cos() . |
Symbol.tan |
Convenience fluent method for tan() . |
Symbol.arcsin |
Convenience fluent method for arcsin() . |
Symbol.arccos |
Convenience fluent method for arccos() . |
Symbol.arctan |
Convenience fluent method for arctan() . |
Symbol.degrees |
Convenience fluent method for degrees() . |
Symbol.radians |
Convenience fluent method for radians() . |
Hyperbolic functions¶
Symbol.sinh |
Convenience fluent method for sinh() . |
Symbol.cosh |
Convenience fluent method for cosh() . |
Symbol.tanh |
Convenience fluent method for tanh() . |
Symbol.arcsinh |
Convenience fluent method for arcsinh() . |
Symbol.arccosh |
Convenience fluent method for arccosh() . |
Symbol.arctanh |
Convenience fluent method for arctanh() . |
Exponents and logarithms¶
Symbol.exp |
Convenience fluent method for exp() . |
Symbol.expm1 |
Convenience fluent method for expm1() . |
Symbol.log |
Convenience fluent method for log() . |
Symbol.log10 |
Convenience fluent method for log10() . |
Symbol.log2 |
Convenience fluent method for log2() . |
Symbol.log1p |
Convenience fluent method for log1p() . |
Powers¶
Symbol.sqrt |
Convenience fluent method for sqrt() . |
Symbol.rsqrt |
Convenience fluent method for rsqrt() . |
Symbol.cbrt |
Convenience fluent method for cbrt() . |
Symbol.rcbrt |
Convenience fluent method for rcbrt() . |
Symbol.square |
Convenience fluent method for square() . |
Basic neural network functions¶
Symbol.relu |
Convenience fluent method for relu() . |
Symbol.sigmoid |
Convenience fluent method for sigmoid() . |
Symbol.softmax |
Convenience fluent method for softmax() . |
Symbol.log_softmax |
Convenience fluent method for log_softmax() . |
Comparison operators¶
Symbol.__lt__ |
x.__lt__(y) <=> x |
Symbol.__le__ |
x.__le__(y) <=> x<=y |
Symbol.__gt__ |
x.__gt__(y) <=> x>y |
Symbol.__ge__ |
x.__ge__(y) <=> x>=y |
Symbol.__eq__ |
x.__eq__(y) <=> x==y |
Symbol.__ne__ |
x.__ne__(y) <=> x!=y |
Symbol creation¶
Symbol.zeros_like |
Convenience fluent method for zeros_like() . |
Symbol.ones_like |
Convenience fluent method for ones_like() . |
Changing shape and type¶
Symbol.astype |
Convenience fluent method for cast() . |
Symbol.reshape |
Convenience fluent method for reshape() . |
Symbol.reshape_like |
Convenience fluent method for reshape_like() . |
Symbol.flatten |
Convenience fluent method for flatten() . |
Symbol.expand_dims |
Convenience fluent method for expand_dims() . |
Expanding elements¶
Symbol.broadcast_to |
Convenience fluent method for broadcast_to() . |
Symbol.broadcast_axes |
Convenience fluent method for broadcast_axes() . |
Symbol.tile |
Convenience fluent method for tile() . |
Symbol.pad |
Convenience fluent method for pad() . |
Rearranging elements¶
Symbol.transpose |
Convenience fluent method for transpose() . |
Symbol.swapaxes |
Convenience fluent method for swapaxes() . |
Symbol.flip |
Convenience fluent method for flip() . |
Reduce functions¶
Symbol.sum |
Convenience fluent method for sum() . |
Symbol.nansum |
Convenience fluent method for nansum() . |
Symbol.prod |
Convenience fluent method for prod() . |
Symbol.nanprod |
Convenience fluent method for nanprod() . |
Symbol.mean |
Convenience fluent method for mean() . |
Symbol.max |
Convenience fluent method for max() . |
Symbol.min |
Convenience fluent method for min() . |
Symbol.norm |
Convenience fluent method for norm() . |
Rounding¶
Symbol.round |
Convenience fluent method for round() . |
Symbol.rint |
Convenience fluent method for rint() . |
Symbol.fix |
Convenience fluent method for fix() . |
Symbol.floor |
Convenience fluent method for floor() . |
Symbol.ceil |
Convenience fluent method for ceil() . |
Symbol.trunc |
Convenience fluent method for trunc() . |
Sorting and searching¶
Symbol.sort |
Convenience fluent method for sort() . |
Symbol.argsort |
Convenience fluent method for argsort() . |
Symbol.topk |
Convenience fluent method for topk() . |
Symbol.argmax |
Convenience fluent method for argmax() . |
Symbol.argmin |
Convenience fluent method for argmin() . |
Symbol.argmax_channel |
Convenience fluent method for argmax_channel() . |
Query information¶
Symbol.name |
Gets name string from the symbol, this function only works for non-grouped symbol. |
Symbol.list_arguments |
Lists all the arguments in the symbol. |
Symbol.list_outputs |
Lists all the outputs in the symbol. |
Symbol.list_auxiliary_states |
Lists all the auxiliary states in the symbol. |
Symbol.list_attr |
Gets all attributes from the symbol. |
Symbol.attr |
Returns the attribute string for corresponding input key from the symbol. |
Symbol.attr_dict |
Recursively gets all attributes from the symbol and its children. |
Indexing¶
Symbol.slice |
Convenience fluent method for slice() . |
Symbol.slice_axis |
Convenience fluent method for slice_axis() . |
Symbol.take |
Convenience fluent method for take() . |
Symbol.one_hot |
Convenience fluent method for one_hot() . |
Symbol.pick |
Convenience fluent method for pick() . |
Get internal and output symbol¶
Symbol.__getitem__ |
x.__getitem__(i) <=> x[i] |
Symbol.__iter__ |
Returns a generator object of symbol. |
Symbol.get_internals |
Gets a new grouped symbol sgroup. |
Symbol.get_children |
Gets a new grouped symbol whose output contains inputs to output nodes of the original symbol. |
Inference type and shape¶
Symbol.infer_type |
Infers the type of all arguments and all outputs, given the known types for some arguments. |
Symbol.infer_shape |
Infers the shapes of all arguments and all outputs given the known shapes of some arguments. |
Symbol.infer_shape_partial |
Infers the shape partially. |
Bind¶
Symbol.bind |
Binds the current symbol to an executor and returns it. |
Symbol.simple_bind |
Bind current symbol to get an executor, allocate all the arguments needed. |
Save¶
Symbol.save |
Saves symbol to a file. |
Symbol.tojson |
Saves symbol to a JSON string. |
Symbol.debug_str |
Gets a debug string of symbol. |
Miscellaneous¶
Symbol.clip |
Convenience fluent method for clip() . |
Symbol.sign |
Convenience fluent method for sign() . |
Symbol creation routines¶
var |
Creates a symbolic variable with specified name. |
zeros |
Returns a new symbol of given shape and type, filled with zeros. |
zeros_like |
Return an array of zeros with the same shape and type as the input array. |
ones |
Returns a new symbol of given shape and type, filled with ones. |
ones_like |
Return an array of ones with the same shape and type as the input array. |
arange |
Returns evenly spaced values within a given interval. |
Symbol manipulation routines¶
Changing shape and type¶
cast |
Casts all elements of the input to a new type. |
reshape |
Reshapes the input array. |
reshape_like |
Reshape lhs to have the same shape as rhs. |
flatten |
Flattens the input array into a 2-D array by collapsing the higher dimensions. |
expand_dims |
Inserts a new axis of size 1 into the array shape |
Expanding elements¶
broadcast_to |
Broadcasts the input array to a new shape. |
broadcast_axes |
Broadcasts the input array over particular axes. |
repeat |
Repeats elements of an array. |
tile |
Repeats the whole array multiple times. |
pad |
Pads an input array with a constant or edge values of the array. |
Rearranging elements¶
transpose |
Permutes the dimensions of an array. |
swapaxes |
Interchanges two axes of an array. |
flip |
Reverses the order of elements along given axis while preserving array shape. |
Joining and splitting symbols¶
concat |
Joins input arrays along a given axis. |
split |
Splits an array along a particular axis into multiple sub-arrays. |
stack |
Join a sequence of arrays along a new axis. |
Indexing routines¶
slice |
Slices a region of the array. |
slice_axis |
Slices along a given axis. |
take |
Takes elements from an input array along the given axis. |
batch_take |
Takes elements from a data batch. |
one_hot |
Returns a one-hot array. |
pick |
Picks elements from an input array according to the input indices along the given axis. |
where |
Given three ndarrays, condition, x, and y, return an ndarray with the elements from x or y, depending on the elements from condition are true or false. |
gather_nd |
Gather elements or slices from data and store to a tensor whose shape is defined by indices. |
scatter_nd |
Scatters data into a new tensor according to indices. |
Mathematical functions¶
Arithmetic operations¶
broadcast_add |
Returns element-wise sum of the input arrays with broadcasting. |
broadcast_sub |
Returns element-wise difference of the input arrays with broadcasting. |
broadcast_mul |
Returns element-wise product of the input arrays with broadcasting. |
broadcast_div |
Returns element-wise division of the input arrays with broadcasting. |
broadcast_mod |
Returns element-wise modulo of the input arrays with broadcasting. |
negative |
Numerical negative of the argument, element-wise. |
dot |
Dot product of two arrays. |
batch_dot |
Batchwise dot product. |
add_n |
Adds all input arguments element-wise. |
Trigonometric functions¶
sin |
Computes the element-wise sine of the input array. |
cos |
Computes the element-wise cosine of the input array. |
tan |
Computes the element-wise tangent of the input array. |
arcsin |
Returns element-wise inverse sine of the input array. |
arccos |
Returns element-wise inverse cosine of the input array. |
arctan |
Returns element-wise inverse tangent of the input array. |
hypot |
Given the “legs” of a right triangle, returns its hypotenuse. |
broadcast_hypot |
Returns the hypotenuse of a right angled triangle, given its “legs” with broadcasting. |
degrees |
Converts each element of the input array from radians to degrees. |
radians |
Converts each element of the input array from degrees to radians. |
Hyperbolic functions¶
sinh |
Returns the hyperbolic sine of the input array, computed element-wise. |
cosh |
Returns the hyperbolic cosine of the input array, computed element-wise. |
tanh |
Returns the hyperbolic tangent of the input array, computed element-wise. |
arcsinh |
Returns the element-wise inverse hyperbolic sine of the input array, computed element-wise. |
arccosh |
Returns the element-wise inverse hyperbolic cosine of the input array, computed element-wise. |
arctanh |
Returns the element-wise inverse hyperbolic tangent of the input array, computed element-wise. |
Reduce functions¶
sum |
Computes the sum of array elements over given axes. |
nansum |
Computes the sum of array elements over given axes treating Not a Numbers (NaN ) as zero. |
prod |
Computes the product of array elements over given axes. |
nanprod |
Computes the product of array elements over given axes treating Not a Numbers (NaN ) as one. |
mean |
Computes the mean of array elements over given axes. |
max |
Computes the max of array elements over given axes. |
min |
Computes the min of array elements over given axes. |
norm |
Flattens the input array and then computes the l2 norm. |
Rounding¶
round |
Returns element-wise rounded value to the nearest integer of the input. |
rint |
Returns element-wise rounded value to the nearest integer of the input. |
fix |
Returns element-wise rounded value to the nearest integer towards zero of the input. |
floor |
Returns element-wise floor of the input. |
ceil |
Returns element-wise ceiling of the input. |
trunc |
Return the element-wise truncated value of the input. |
Exponents and logarithms¶
exp |
Returns element-wise exponential value of the input. |
expm1 |
Returns exp(x) - 1 computed element-wise on the input. |
log |
Returns element-wise Natural logarithmic value of the input. |
log10 |
Returns element-wise Base-10 logarithmic value of the input. |
log2 |
Returns element-wise Base-2 logarithmic value of the input. |
log1p |
Returns element-wise log(1 + x) value of the input. |
Powers¶
broadcast_power |
Returns result of first array elements raised to powers from second array, element-wise with broadcasting. |
sqrt |
Returns element-wise square-root value of the input. |
rsqrt |
Returns element-wise inverse square-root value of the input. |
cbrt |
Returns element-wise cube-root value of the input. |
rcbrt |
Returns element-wise inverse cube-root value of the input. |
square |
Returns element-wise squared value of the input. |
reciprocal |
Returns the reciprocal of the argument, element-wise. |
Comparison¶
broadcast_equal |
Returns the result of element-wise equal to (==) comparison operation with broadcasting. |
broadcast_not_equal |
Returns the result of element-wise not equal to (!=) comparison operation with broadcasting. |
broadcast_greater |
Returns the result of element-wise greater than (>) comparison operation with broadcasting. |
broadcast_greater_equal |
Returns the result of element-wise greater than or equal to (>=) comparison operation with broadcasting. |
broadcast_lesser |
Returns the result of element-wise lesser than (<) comparison operation with broadcasting. |
broadcast_lesser_equal |
Returns the result of element-wise lesser than or equal to (<=) comparison operation with broadcasting. |
Random sampling¶
mxnet.symbol.random.uniform |
Draw random samples from a uniform distribution. |
mxnet.symbol.random.normal |
Draw random samples from a normal (Gaussian) distribution. |
mxnet.symbol.random.gamma |
Draw random samples from a gamma distribution. |
mxnet.symbol.random.exponential |
Draw samples from an exponential distribution. |
mxnet.symbol.random.poisson |
Draw random samples from a Poisson distribution. |
mxnet.symbol.random.negative_binomial |
Draw random samples from a negative binomial distribution. |
mxnet.symbol.random.generalized_negative_binomial |
Draw random samples from a generalized negative binomial distribution. |
mxnet.random.seed |
Seeds the random number generators in MXNet. |
Sorting and searching¶
sort |
Returns a sorted copy of an input array along the given axis. |
topk |
Returns the top k elements in an input array along the given axis. |
argsort |
Returns the indices that would sort an input array along the given axis. |
argmax |
Returns indices of the maximum values along an axis. |
argmin |
Returns indices of the minimum values along an axis. |
Sequence operation¶
SequenceLast |
Takes the last element of a sequence. |
SequenceMask |
Sets all elements outside the sequence to a constant value. |
SequenceReverse |
Reverses the elements of each sequence. |
Miscellaneous¶
maximum |
Returns element-wise maximum of the input elements. |
minimum |
Returns element-wise minimum of the input elements. |
broadcast_maximum |
Returns element-wise maximum of the input arrays with broadcasting. |
broadcast_minimum |
Returns element-wise minimum of the input arrays with broadcasting. |
clip |
Clips (limits) the values in an array. |
abs |
Returns element-wise absolute value of the input. |
sign |
Returns element-wise sign of the input. |
gamma |
Returns the gamma function (extension of the factorial function to the reals), computed element-wise on the input array. |
gammaln |
Returns element-wise log of the absolute value of the gamma function of the input. |
Neural network¶
Basic¶
FullyConnected |
Applies a linear transformation: \(Y = XW^T + b\). |
Convolution |
Compute N-D convolution on (N+2)-D input. |
Activation |
Applies an activation function element-wise to the input. |
BatchNorm |
Batch normalization. |
Pooling |
Performs pooling on the input. |
SoftmaxOutput |
Computes the gradient of cross entropy loss with respect to softmax output. |
softmax |
Applies the softmax function. |
log_softmax |
Computes the log softmax of the input. |
relu |
Computes rectified linear. |
sigmoid |
Computes sigmoid of x element-wise. |
More¶
Correlation |
Applies correlation to inputs. |
Deconvolution |
Computes 2D transposed convolution (aka fractionally strided convolution) of the input tensor. |
RNN |
Applies a recurrent layer to input. |
Embedding |
Maps integer indices to vector representations (embeddings). |
LeakyReLU |
Applies Leaky rectified linear unit activation element-wise to the input. |
InstanceNorm |
Applies instance normalization to the n-dimensional input array. |
L2Normalization |
Normalize the input array using the L2 norm. |
LRN |
Applies local response normalization to the input. |
ROIPooling |
Performs region of interest(ROI) pooling on the input array. |
SoftmaxActivation |
Applies softmax activation to input. |
Dropout |
Applies dropout operation to input array. |
BilinearSampler |
Applies bilinear sampling to input feature map. |
GridGenerator |
Generates 2D sampling grid for bilinear sampling. |
UpSampling |
Performs nearest neighbor/bilinear up sampling to inputs. |
SpatialTransformer |
Applies a spatial transformer to input feature map. |
LinearRegressionOutput |
Computes and optimizes for squared loss during backward propagation. |
LogisticRegressionOutput |
Applies a logistic function to the input. |
MAERegressionOutput |
Computes mean absolute error of the input. |
SVMOutput |
Computes support vector machine based transformation of the input. |
softmax_cross_entropy |
Calculate cross entropy of softmax output and one-hot label. |
smooth_l1 |
Calculate Smooth L1 Loss(lhs, scalar) by summing |
IdentityAttachKLSparseReg |
Apply a sparse regularization to the output a sigmoid activation function. |
MakeLoss |
Make your own loss function in network construction. |
BlockGrad |
Stops gradient computation. |
Custom |
Apply a custom operator implemented in a frontend language (like Python). |
API Reference¶
-
class
mxnet.symbol.
Symbol
(handle)[source]¶ Symbol is symbolic graph of the mxnet.
-
__iter__
()[source]¶ Returns a generator object of symbol.
One can loop through the returned object list to get outputs.
Example
>>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a+b >>> d = mx.sym.Variable('d') >>> e = d+c >>> out = e.get_children() >>> out
>>> for i in out: ... i ...
-
__add__
(other)[source]¶ x.__add__(y) <=> x+y
Scalar input is supported. Broadcasting is not supported. Use broadcast_add instead.
-
__sub__
(other)[source]¶ x.__sub__(y) <=> x-y
Scalar input is supported. Broadcasting is not supported. Use broadcast_sub instead.
-
__rsub__
(other)[source]¶ x.__rsub__(y) <=> y-x
Only NDArray is supported for now.
Example
>>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rsub__(y).asnumpy() array([[-2., -2., -2.], [-2., -2., -2.]], dtype=float32)
-
__mul__
(other)[source]¶ x.__mul__(y) <=> x*y
Scalar input is supported. Broadcasting is not supported. Use broadcast_mul instead.
-
__div__
(other)[source]¶ x.__div__(y) <=> x/y
Scalar input is supported. Broadcasting is not supported. Use broadcast_div instead.
-
__rdiv__
(other)[source]¶ x.__rdiv__(y) <=> y/x
Only NDArray is supported for now.
Example
>>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rdiv__(y).asnumpy() array([[ 0.33333334, 0.33333334, 0.33333334], [ 0.33333334, 0.33333334, 0.33333334]], dtype=float32)
-
__mod__
(other)[source]¶ x.__mod__(y) <=> x%y
Scalar input is supported. Broadcasting is not supported. Use broadcast_mod instead.
-
__rmod__
(other)[source]¶ x.__rmod__(y) <=> y%x
Only NDArray is supported for now.
Example
>>> x = mx.nd.ones((2,3))*3 >>> y = mx.nd.ones((2,3)) >>> x.__rmod__(y).asnumpy() array([[ 1., 1., 1., [ 1., 1., 1., dtype=float32)
-
__pow__
(other)[source]¶ x.__pow__(y) <=> x**y
Scalar input is supported. Broadcasting is not supported. Use broadcast_pow instead.
-
__neg__
()[source]¶ x.__neg__() <=> -x
Numerical negative, element-wise.
Example
>>> a = mx.sym.Variable('a') >>> a
>>> -a >>> a_neg = a.__neg__() >>> c = a_neg*b >>> ex = c.eval(ctx=mx.cpu(), a=mx.nd.ones([2,3]), b=mx.nd.ones([2,3])) >>> ex[0].asnumpy() array([[-1., -1., -1.], [-1., -1., -1.]], dtype=float32)
-
__deepcopy__
(_)[source]¶ Returns a deep copy of the input object.
This function returns a deep copy of the input object including the current state of all its parameters such as weights, biases, etc.
Any changes made to the deep copy do not reflect in the original object.
Example
>>> import copy >>> data = mx.sym.Variable('data') >>> data_1 = copy.deepcopy(data) >>> data_1 = 2*data >>> data_1.tojson() >>> data_1 is data # Data got modified False
-
__eq__
(other)[source]¶ x.__eq__(y) <=> x==y
Scalar input is supported. Broadcasting is not supported. Use broadcast_equal instead.
-
__ne__
(other)[source]¶ x.__ne__(y) <=> x!=y
Scalar input is supported. Broadcasting is not supported. Use broadcast_not_equal instead.
-
__gt__
(other)[source]¶ x.__gt__(y) <=> x>y
Scalar input is supported. Broadcasting is not supported. Use broadcast_greater instead.
-
__ge__
(other)[source]¶ x.__ge__(y) <=> x>=y
Scalar input is supported. Broadcasting is not supported. Use broadcast_greater_equal instead.
-
__lt__
(other)[source]¶ x.__lt__(y) <=> x
Scalar input is supported. Broadcasting is not supported. Use broadcast_lesser instead.
-
__le__
(other)[source]¶ x.__le__(y) <=> x<=y
Scalar input is supported. Broadcasting is not supported. Use broadcast_lesser_equal instead.
-
__call__
(*args, **kwargs)[source]¶ Composes symbol using inputs.
x.__call__(y, z) <=> x(y,z)
This function internally calls _compose to compose the symbol and returns the composed symbol.
Example
>>> data = mx.symbol.Variable('data') >>> net1 = mx.symbol.FullyConnected(data=data, name='fc1', num_hidden=10) >>> net2 = mx.symbol.FullyConnected(name='fc3', num_hidden=10) >>> composed = net2(fc3_data=net1, name='composed') >>> composed
>>> called = net2.__call__(fc3_data=net1, name='composed') >>> called Parameters: - args – Positional arguments.
- kwargs – Keyword arguments.
Returns: Return type: The resulting symbol.
-
__getitem__
(index)[source]¶ x.__getitem__(i) <=> x[i]
Returns a sliced view of the input symbol.
Example
>>> a = mx.sym.var('a') >>> a.__getitem__(0)
>>> a[0] Parameters: index (int or str) – Indexing key
-
name
¶ Gets name string from the symbol, this function only works for non-grouped symbol.
Returns: value – The name of this symbol, returns None
for grouped symbol.Return type: str
-
attr
(key)[source]¶ Returns the attribute string for corresponding input key from the symbol.
This function only works for non-grouped symbols.
Example
>>> data = mx.sym.Variable('data', attr={'mood': 'angry'}) >>> data.attr('mood') 'angry'
Parameters: key (str) – The key corresponding to the desired attribute. Returns: value – The desired attribute value, returns None
if the attribute does not exist.Return type: str
-
list_attr
(recursive=False)[source]¶ Gets all attributes from the symbol.
Example
>>> data = mx.sym.Variable('data', attr={'mood': 'angry'}) >>> data.list_attr() {'mood': 'angry'}
Returns: ret – A dictionary mapping attribute keys to values. Return type: Dict of str to str
-
attr_dict
()[source]¶ Recursively gets all attributes from the symbol and its children.
Example
>>> a = mx.sym.Variable('a', attr={'a1':'a2'}) >>> b = mx.sym.Variable('b', attr={'b1':'b2'}) >>> c = a+b >>> c.attr_dict() {'a': {'a1': 'a2'}, 'b': {'b1': 'b2'}}
Returns: ret – There is a key in the returned dict for every child with non-empty attribute set. For each symbol, the name of the symbol is its key in the dict and the correspond value is that symbol’s attribute list (itself a dictionary). Return type: Dict of str to dict
-
get_internals
()[source]¶ Gets a new grouped symbol sgroup. The output of sgroup is a list of outputs of all of the internal nodes.
Consider the following code:
Example
>>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> d = c.get_internals() >>> d
>>> d.list_outputs() ['a', 'b', '_plus4_output'] Returns: sgroup – A symbol group containing all internal and leaf nodes of the computation graph used to compute the symbol. Return type: Symbol
-
get_children
()[source]¶ Gets a new grouped symbol whose output contains inputs to output nodes of the original symbol.
Example
>>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.Variable('z') >>> a = y+z >>> b = x+a >>> b.get_children()
>>> b.get_children().list_outputs() ['x', '_plus10_output'] >>> b.get_children().get_children().list_outputs() ['y', 'z'] Returns: sgroup – The children of the head node. If the symbol has no inputs then None
will be returned.Return type: Symbol or None
-
list_arguments
()[source]¶ Lists all the arguments in the symbol.
Example
>>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_arguments ['a', 'b']
Returns: args – List containing the names of all the arguments required to compute the symbol. Return type: list of string
-
list_outputs
()[source]¶ Lists all the outputs in the symbol.
Example
>>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_outputs() ['_plus12_output']
Returns: List of all the outputs. For most symbols, this list contains only the name of this symbol. For symbol groups, this is a list with the names of all symbols in the group. Return type: list of str
-
list_auxiliary_states
()[source]¶ Lists all the auxiliary states in the symbol.
Example
>>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> c.list_auxiliary_states() []
Example of auxiliary states in BatchNorm.
>>> data = mx.symbol.Variable('data') >>> weight = mx.sym.Variable(name='fc1_weight') >>> fc1 = mx.symbol.FullyConnected(data = data, weight=weight, name='fc1', num_hidden=128) >>> fc2 = mx.symbol.BatchNorm(fc1, name='batchnorm0') >>> fc2.list_auxiliary_states() ['batchnorm0_moving_mean', 'batchnorm0_moving_var']
Returns: aux_states – List of the auxiliary states in input symbol. Return type: list of str Notes
Auxiliary states are special states of symbols that do not correspond to an argument, and are not updated by gradient descent. Common examples of auxiliary states include the moving_mean and moving_variance in BatchNorm. Most operators do not have auxiliary states.
-
list_inputs
()[source]¶ Lists all arguments and auxiliary states of this Symbol.
Returns: inputs – List of all inputs. Return type: list of str Examples
>>> bn = mx.sym.BatchNorm(name='bn') >>> bn.list_arguments() ['bn_data', 'bn_gamma', 'bn_beta'] >>> bn.list_auxiliary_states() ['bn_moving_mean', 'bn_moving_var'] >>> bn.list_inputs() ['bn_data', 'bn_gamma', 'bn_beta', 'bn_moving_mean', 'bn_moving_var']
-
infer_type
(*args, **kwargs)[source]¶ Infers the type of all arguments and all outputs, given the known types for some arguments.
This function takes the known types of some arguments in either positional way or keyword argument way as input. It returns a tuple of None values if there is not enough information to deduce the missing types.
Inconsistencies in the known types will cause an error to be raised.
Example
>>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> arg_types, out_types, aux_types = c.infer_type(a='float32') >>> arg_types [
, >>> out_types [] ] >>> aux_types []Parameters: - *args – Type of known arguments in a positional way. Unknown type can be marked as None.
- **kwargs – Keyword arguments of known types.
Returns: - arg_types (list of numpy.dtype or None) – List of argument types. The order is same as the order of list_arguments().
- out_types (list of numpy.dtype or None) – List of output types. The order is same as the order of list_outputs().
- aux_types (list of numpy.dtype or None) – List of auxiliary state types. The order is same as the order of list_auxiliary_states().
-
infer_shape
(*args, **kwargs)[source]¶ Infers the shapes of all arguments and all outputs given the known shapes of some arguments.
This function takes the known shapes of some arguments in either positional way or keyword argument way as input. It returns a tuple of None values if there is not enough information to deduce the missing shapes.
Example
>>> a = mx.sym.var('a') >>> b = mx.sym.var('b') >>> c = a + b >>> arg_shapes, out_shapes, aux_shapes = c.infer_shape(a=(3,3)) >>> arg_shapes [(3L, 3L), (3L, 3L)] >>> out_shapes [(3L, 3L)] >>> aux_shapes [] >>> c.infer_shape(a=(0,3)) # 0s in shape means unknown dimensions. So, returns None. (None, None, None)
Inconsistencies in the known shapes will cause an error to be raised. See the following example:
>>> data = mx.sym.Variable('data') >>> out = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=1000) >>> out = mx.sym.Activation(data=out, act_type='relu') >>> out = mx.sym.FullyConnected(data=out, name='fc2', num_hidden=10) >>> weight_shape= (1, 100) >>> data_shape = (100, 100) >>> out.infer_shape(data=data_shape, fc1_weight=weight_shape) Error in operator fc1: Shape inconsistent, Provided=(1,100), inferred shape=(1000,100)
Parameters: - *args – Shape of arguments in a positional way. Unknown shape can be marked as None.
- **kwargs – Keyword arguments of the known shapes.
Returns: - arg_shapes (list of tuple or None) – List of argument shapes. The order is same as the order of list_arguments().
- out_shapes (list of tuple or None) – List of output shapes. The order is same as the order of list_outputs().
- aux_shapes (list of tuple or None) – List of auxiliary state shapes. The order is same as the order of list_auxiliary_states().
-
infer_shape_partial
(*args, **kwargs)[source]¶ Infers the shape partially.
This functions works the same way as infer_shape, except that this function can return partial results.
In the following example, information about fc2 is not available. So, infer_shape will return a tuple of None values but infer_shape_partial will return partial values.
Example
>>> data = mx.sym.Variable('data') >>> prev = mx.sym.Variable('prev') >>> fc1 = mx.sym.FullyConnected(data=data, name='fc1', num_hidden=128) >>> fc2 = mx.sym.FullyConnected(data=prev, name='fc2', num_hidden=128) >>> out = mx.sym.Activation(data=mx.sym.elemwise_add(fc1, fc2), act_type='relu') >>> out.list_arguments() ['data', 'fc1_weight', 'fc1_bias', 'prev', 'fc2_weight', 'fc2_bias'] >>> out.infer_shape(data=(10,64)) (None, None, None) >>> out.infer_shape_partial(data=(10,64)) ([(10L, 64L), (128L, 64L), (128L,), (), (), ()], [(10L, 128L)], []) >>> # infers shape if you give information about fc2 >>> out.infer_shape(data=(10,64), prev=(10,128)) ([(10L, 64L), (128L, 64L), (128L,), (10L, 128L), (128L, 128L), (128L,)], [(10L, 128L)], [])
Parameters: - *args – Shape of arguments in a positional way. Unknown shape can be marked as None
- **kwargs – Keyword arguments of known shapes.
Returns: - arg_shapes (list of tuple or None) – List of argument shapes. The order is same as the order of list_arguments().
- out_shapes (list of tuple or None) – List of output shapes. The order is same as the order of list_outputs().
- aux_shapes (list of tuple or None) – List of auxiliary state shapes. The order is same as the order of list_auxiliary_states().
-
debug_str
()[source]¶ Gets a debug string of symbol.
It contains Symbol output, variables and operators in the computation graph with their inputs, variables and attributes.
Returns: Debug string of the symbol. Return type: string Examples
>>> a = mx.sym.Variable('a') >>> b = mx.sym.sin(a) >>> c = 2 * a + b >>> d = mx.sym.FullyConnected(data=c, num_hidden=10) >>> d.debug_str() >>> print d.debug_str() Symbol Outputs: output[0]=fullyconnected0(0) Variable:a -------------------- Op:_mul_scalar, Name=_mulscalar0 Inputs: arg[0]=a(0) version=0 Attrs: scalar=2 -------------------- Op:sin, Name=sin0 Inputs: arg[0]=a(0) version=0 -------------------- Op:elemwise_add, Name=_plus0 Inputs: arg[0]=_mulscalar0(0) arg[1]=sin0(0) Variable:fullyconnected0_weight Variable:fullyconnected0_bias -------------------- Op:FullyConnected, Name=fullyconnected0 Inputs: arg[0]=_plus0(0) arg[1]=fullyconnected0_weight(0) version=0 arg[2]=fullyconnected0_bias(0) version=0 Attrs: num_hidden=10
-
save
(fname)[source]¶ Saves symbol to a file.
You can also use pickle to do the job if you only work on python. The advantage of load/save functions is that the file contents are language agnostic. This means the model saved by one language binding can be loaded by a different language binding of MXNet. You also get the benefit of being able to directly load/save from cloud storage(S3, HDFS).
Parameters: fname (str) – The name of the file.
- “s3://my-bucket/path/my-s3-symbol”
- “hdfs://my-bucket/path/my-hdfs-symbol”
- “/path-to/my-local-symbol”
See also
symbol.load()
- Used to load symbol from file.
-
tojson
()[source]¶ Saves symbol to a JSON string.
See also
symbol.load_json()
- Used to load symbol from JSON string.
-
simple_bind
(ctx, grad_req='write', type_dict=None, stype_dict=None, group2ctx=None, shared_arg_names=None, shared_exec=None, shared_buffer=None, **kwargs)[source]¶ Bind current symbol to get an executor, allocate all the arguments needed. Allows specifying data types.
This function simplifies the binding procedure. You need to specify only input data shapes. Before binding the executor, the function allocates arguments and auxiliary states that were not explicitly specified. Allows specifying data types.
Example
>>> x = mx.sym.Variable('x') >>> y = mx.sym.FullyConnected(x, num_hidden=4) >>> exe = y.simple_bind(mx.cpu(), x=(5,4), grad_req='null') >>> exe.forward() [
] >>> exe.outputs[0].asnumpy() array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]], dtype=float32) >>> exe.arg_arrays [, >>> exe.grad_arrays [, ] , , ] Parameters: - ctx (Context) – The device context the generated executor to run on.
- grad_req (string) –
{‘write’, ‘add’, ‘null’}, or list of str or dict of str to str, optional To specify how we should update the gradient to the args_grad.
- ‘write’ means every time gradient is written to specified args_grad NDArray.
- ‘add’ means every time gradient is added to the specified NDArray.
- ‘null’ means no action is taken, the gradient may not be calculated.
- type_dict (Dict of str->numpy.dtype) – Input type dictionary, name->dtype
- stype_dict (Dict of str->str) – Input storage type dictionary, name->storage_type
- group2ctx (Dict of string to mx.Context) – The dict mapping the ctx_group attribute to the context assignment.
- shared_arg_names (List of string) – The argument names whose NDArray of shared_exec can be reused for initializing the current executor.
- shared_exec (Executor) – The executor whose arg_arrays, arg_arrays, grad_arrays, and aux_arrays can be reused for initializing the current executor.
- shared_buffer (Dict of string to NDArray) – The dict mapping argument names to the NDArray that can be reused for initializing the current executor. This buffer will be checked for reuse if one argument name of the current executor is not found in shared_arg_names. The `NDArray`s are expected have default storage type.
- kwargs (Dict of str->shape) – Input shape dictionary, name->shape
Returns: executor – The generated executor
Return type: mxnet.Executor
-
bind
(ctx, args, args_grad=None, grad_req='write', aux_states=None, group2ctx=None, shared_exec=None)[source]¶ Binds the current symbol to an executor and returns it.
We first declare the computation and then bind to the data to run. This function returns an executor which provides method forward() method for evaluation and a outputs() method to get all the results.
Example
>>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a + b
>>> ex = c.bind(ctx=mx.cpu(), args={'a' : mx.nd.ones([2,3]), 'b' : mx.nd.ones([2,3])}) >>> ex.forward() [ ] >>> ex.outputs[0].asnumpy() [[ 2. 2. 2.] [ 2. 2. 2.]]Parameters: - ctx (Context) – The device context the generated executor to run on.
- args (list of NDArray or dict of str to NDArray) –
Input arguments to the symbol.
- If the input type is a list of NDArray, the order should be same as the order of list_arguments().
- If the input type is a dict of str to NDArray, then it maps the name of arguments to the corresponding NDArray.
- In either case, all the arguments must be provided.
- args_grad (list of NDArray or dict of str to NDArray, optional) –
When specified, args_grad provides NDArrays to hold the result of gradient value in backward.
- If the input type is a list of NDArray, the order should be same as the order of list_arguments().
- If the input type is a dict of str to NDArray, then it maps the name of arguments to the corresponding NDArray.
- When the type is a dict of str to NDArray, one only need to provide the dict for required argument gradient. Only the specified argument gradient will be calculated.
- grad_req ({'write', 'add', 'null'}, or list of str or dict of str to str, optional) –
To specify how we should update the gradient to the args_grad.
- ‘write’ means everytime gradient is write to specified args_grad NDArray.
- ‘add’ means everytime gradient is add to the specified NDArray.
- ‘null’ means no action is taken, the gradient may not be calculated.
- aux_states (list of NDArray, or dict of str to NDArray, optional) –
Input auxiliary states to the symbol, only needed when the output of list_auxiliary_states() is not empty.
- If the input type is a list of NDArray, the order should be same as the order of list_auxiliary_states().
- If the input type is a dict of str to NDArray, then it maps the name of auxiliary_states to the corresponding NDArray,
- In either case, all the auxiliary states need to be provided.
- group2ctx (Dict of string to mx.Context) – The dict mapping the ctx_group attribute to the context assignment.
- shared_exec (mx.executor.Executor) – Executor to share memory with. This is intended for runtime reshaping, variable length sequences, etc. The returned executor shares state with shared_exec, and should not be used in parallel with it.
Returns: executor – The generated executor
Return type: Notes
Auxiliary states are the special states of symbols that do not correspond to an argument, and do not have gradient but are still useful for the specific operations. Common examples of auxiliary states include the moving_mean and moving_variance states in BatchNorm. Most operators do not have auxiliary states and in those cases, this parameter can be safely ignored.
One can give up gradient by using a dict in args_grad and only specify gradient they interested in.
-
gradient
(wrt)[source]¶ Gets the autodiff of current symbol.
This function can only be used if current symbol is a loss function.
Note
This function is currently not implemented.
Parameters: wrt (Array of String) – keyword arguments of the symbol that the gradients are taken. Returns: grad – A gradient Symbol with returns to be the corresponding gradients. Return type: Symbol
-
eval
(ctx=None, **kwargs)[source]¶ Evaluates a symbol given arguments.
The eval method combines a call to bind (which returns an executor) with a call to forward (executor method). For the common use case, where you might repeatedly evaluate with same arguments, eval is slow. In that case, you should call bind once and then repeatedly call forward. This function allows simpler syntax for less cumbersome introspection.
Example
>>> a = mx.sym.Variable('a') >>> b = mx.sym.Variable('b') >>> c = a + b >>> ex = c.eval(ctx = mx.cpu(), a = mx.nd.ones([2,3]), b = mx.nd.ones([2,3])) >>> ex [
] >>> ex[0].asnumpy() array([[ 2., 2., 2.], [ 2., 2., 2.]], dtype=float32)Parameters: - ctx (Context) – The device context the generated executor to run on.
- kwargs (Keyword arguments of type NDArray) – Input arguments to the symbol. All the arguments must be provided.
Returns: - result (a list of NDArrays corresponding to the values taken by each symbol when)
- evaluated on given args. When called on a single symbol (not a group),
- the result will be a list with one element.
-
reshape
(*args, **kwargs)[source]¶ Convenience fluent method for
reshape()
.The arguments are the same as for
reshape()
, with this array as data.
-
reshape_like
(*args, **kwargs)[source]¶ Convenience fluent method for
reshape_like()
.The arguments are the same as for
reshape_like()
, with this array as data.
-
astype
(*args, **kwargs)[source]¶ Convenience fluent method for
cast()
.The arguments are the same as for
cast()
, with this array as data.
-
zeros_like
(*args, **kwargs)[source]¶ Convenience fluent method for
zeros_like()
.The arguments are the same as for
zeros_like()
, with this array as data.
-
ones_like
(*args, **kwargs)[source]¶ Convenience fluent method for
ones_like()
.The arguments are the same as for
ones_like()
, with this array as data.
-
broadcast_axes
(*args, **kwargs)[source]¶ Convenience fluent method for
broadcast_axes()
.The arguments are the same as for
broadcast_axes()
, with this array as data.
-
repeat
(*args, **kwargs)[source]¶ Convenience fluent method for
repeat()
.The arguments are the same as for
repeat()
, with this array as data.
-
pad
(*args, **kwargs)[source]¶ Convenience fluent method for
pad()
.The arguments are the same as for
pad()
, with this array as data.
-
swapaxes
(*args, **kwargs)[source]¶ Convenience fluent method for
swapaxes()
.The arguments are the same as for
swapaxes()
, with this array as data.
-
split
(*args, **kwargs)[source]¶ Convenience fluent method for
split()
.The arguments are the same as for
split()
, with this array as data.
-
slice
(*args, **kwargs)[source]¶ Convenience fluent method for
slice()
.The arguments are the same as for
slice()
, with this array as data.
-
slice_axis
(*args, **kwargs)[source]¶ Convenience fluent method for
slice_axis()
.The arguments are the same as for
slice_axis()
, with this array as data.
-
take
(*args, **kwargs)[source]¶ Convenience fluent method for
take()
.The arguments are the same as for
take()
, with this array as data.
-
one_hot
(*args, **kwargs)[source]¶ Convenience fluent method for
one_hot()
.The arguments are the same as for
one_hot()
, with this array as data.
-
pick
(*args, **kwargs)[source]¶ Convenience fluent method for
pick()
.The arguments are the same as for
pick()
, with this array as data.
-
sort
(*args, **kwargs)[source]¶ Convenience fluent method for
sort()
.The arguments are the same as for
sort()
, with this array as data.
-
topk
(*args, **kwargs)[source]¶ Convenience fluent method for
topk()
.The arguments are the same as for
topk()
, with this array as data.
-
argsort
(*args, **kwargs)[source]¶ Convenience fluent method for
argsort()
.The arguments are the same as for
argsort()
, with this array as data.
-
argmax
(*args, **kwargs)[source]¶ Convenience fluent method for
argmax()
.The arguments are the same as for
argmax()
, with this array as data.
-
argmax_channel
(*args, **kwargs)[source]¶ Convenience fluent method for
argmax_channel()
.The arguments are the same as for
argmax_channel()
, with this array as data.
-
argmin
(*args, **kwargs)[source]¶ Convenience fluent method for
argmin()
.The arguments are the same as for
argmin()
, with this array as data.
-
clip
(*args, **kwargs)[source]¶ Convenience fluent method for
clip()
.The arguments are the same as for
clip()
, with this array as data.
-
abs
(*args, **kwargs)[source]¶ Convenience fluent method for
abs()
.The arguments are the same as for
abs()
, with this array as data.
-
sign
(*args, **kwargs)[source]¶ Convenience fluent method for
sign()
.The arguments are the same as for
sign()
, with this array as data.
-
flatten
(*args, **kwargs)[source]¶ Convenience fluent method for
flatten()
.The arguments are the same as for
flatten()
, with this array as data.
-
expand_dims
(*args, **kwargs)[source]¶ Convenience fluent method for
expand_dims()
.The arguments are the same as for
expand_dims()
, with this array as data.
-
broadcast_to
(*args, **kwargs)[source]¶ Convenience fluent method for
broadcast_to()
.The arguments are the same as for
broadcast_to()
, with this array as data.
-
tile
(*args, **kwargs)[source]¶ Convenience fluent method for
tile()
.The arguments are the same as for
tile()
, with this array as data.
-
transpose
(*args, **kwargs)[source]¶ Convenience fluent method for
transpose()
.The arguments are the same as for
transpose()
, with this array as data.
-
flip
(*args, **kwargs)[source]¶ Convenience fluent method for
flip()
.The arguments are the same as for
flip()
, with this array as data.
-
sum
(*args, **kwargs)[source]¶ Convenience fluent method for
sum()
.The arguments are the same as for
sum()
, with this array as data.
-
nansum
(*args, **kwargs)[source]¶ Convenience fluent method for
nansum()
.The arguments are the same as for
nansum()
, with this array as data.
-
prod
(*args, **kwargs)[source]¶ Convenience fluent method for
prod()
.The arguments are the same as for
prod()
, with this array as data.
-
nanprod
(*args, **kwargs)[source]¶ Convenience fluent method for
nanprod()
.The arguments are the same as for
nanprod()
, with this array as data.
-
mean
(*args, **kwargs)[source]¶ Convenience fluent method for
mean()
.The arguments are the same as for
mean()
, with this array as data.
-
max
(*args, **kwargs)[source]¶ Convenience fluent method for
max()
.The arguments are the same as for
max()
, with this array as data.
-
min
(*args, **kwargs)[source]¶ Convenience fluent method for
min()
.The arguments are the same as for
min()
, with this array as data.
-
norm
(*args, **kwargs)[source]¶ Convenience fluent method for
norm()
.The arguments are the same as for
norm()
, with this array as data.
-
round
(*args, **kwargs)[source]¶ Convenience fluent method for
round()
.The arguments are the same as for
round()
, with this array as data.
-
rint
(*args, **kwargs)[source]¶ Convenience fluent method for
rint()
.The arguments are the same as for
rint()
, with this array as data.
-
fix
(*args, **kwargs)[source]¶ Convenience fluent method for
fix()
.The arguments are the same as for
fix()
, with this array as data.
-
floor
(*args, **kwargs)[source]¶ Convenience fluent method for
floor()
.The arguments are the same as for
floor()
, with this array as data.
-
ceil
(*args, **kwargs)[source]¶ Convenience fluent method for
ceil()
.The arguments are the same as for
ceil()
, with this array as data.
-
trunc
(*args, **kwargs)[source]¶ Convenience fluent method for
trunc()
.The arguments are the same as for
trunc()
, with this array as data.
-
sin
(*args, **kwargs)[source]¶ Convenience fluent method for
sin()
.The arguments are the same as for
sin()
, with this array as data.
-
cos
(*args, **kwargs)[source]¶ Convenience fluent method for
cos()
.The arguments are the same as for
cos()
, with this array as data.
-
tan
(*args, **kwargs)[source]¶ Convenience fluent method for
tan()
.The arguments are the same as for
tan()
, with this array as data.
-
arcsin
(*args, **kwargs)[source]¶ Convenience fluent method for
arcsin()
.The arguments are the same as for
arcsin()
, with this array as data.
-
arccos
(*args, **kwargs)[source]¶ Convenience fluent method for
arccos()
.The arguments are the same as for
arccos()
, with this array as data.
-
arctan
(*args, **kwargs)[source]¶ Convenience fluent method for
arctan()
.The arguments are the same as for
arctan()
, with this array as data.
-
degrees
(*args, **kwargs)[source]¶ Convenience fluent method for
degrees()
.The arguments are the same as for
degrees()
, with this array as data.
-
radians
(*args, **kwargs)[source]¶ Convenience fluent method for
radians()
.The arguments are the same as for
radians()
, with this array as data.
-
sinh
(*args, **kwargs)[source]¶ Convenience fluent method for
sinh()
.The arguments are the same as for
sinh()
, with this array as data.
-
cosh
(*args, **kwargs)[source]¶ Convenience fluent method for
cosh()
.The arguments are the same as for
cosh()
, with this array as data.
-
tanh
(*args, **kwargs)[source]¶ Convenience fluent method for
tanh()
.The arguments are the same as for
tanh()
, with this array as data.
-
arcsinh
(*args, **kwargs)[source]¶ Convenience fluent method for
arcsinh()
.The arguments are the same as for
arcsinh()
, with this array as data.
-
arccosh
(*args, **kwargs)[source]¶ Convenience fluent method for
arccosh()
.The arguments are the same as for
arccosh()
, with this array as data.
-
arctanh
(*args, **kwargs)[source]¶ Convenience fluent method for
arctanh()
.The arguments are the same as for
arctanh()
, with this array as data.
-
exp
(*args, **kwargs)[source]¶ Convenience fluent method for
exp()
.The arguments are the same as for
exp()
, with this array as data.
-
expm1
(*args, **kwargs)[source]¶ Convenience fluent method for
expm1()
.The arguments are the same as for
expm1()
, with this array as data.
-
log
(*args, **kwargs)[source]¶ Convenience fluent method for
log()
.The arguments are the same as for
log()
, with this array as data.
-
log10
(*args, **kwargs)[source]¶ Convenience fluent method for
log10()
.The arguments are the same as for
log10()
, with this array as data.
-
log2
(*args, **kwargs)[source]¶ Convenience fluent method for
log2()
.The arguments are the same as for
log2()
, with this array as data.
-
log1p
(*args, **kwargs)[source]¶ Convenience fluent method for
log1p()
.The arguments are the same as for
log1p()
, with this array as data.
-
sqrt
(*args, **kwargs)[source]¶ Convenience fluent method for
sqrt()
.The arguments are the same as for
sqrt()
, with this array as data.
-
rsqrt
(*args, **kwargs)[source]¶ Convenience fluent method for
rsqrt()
.The arguments are the same as for
rsqrt()
, with this array as data.
-
cbrt
(*args, **kwargs)[source]¶ Convenience fluent method for
cbrt()
.The arguments are the same as for
cbrt()
, with this array as data.
-
rcbrt
(*args, **kwargs)[source]¶ Convenience fluent method for
rcbrt()
.The arguments are the same as for
rcbrt()
, with this array as data.
-
square
(*args, **kwargs)[source]¶ Convenience fluent method for
square()
.The arguments are the same as for
square()
, with this array as data.
-
reciprocal
(*args, **kwargs)[source]¶ Convenience fluent method for
reciprocal()
.The arguments are the same as for
reciprocal()
, with this array as data.
-
relu
(*args, **kwargs)[source]¶ Convenience fluent method for
relu()
.The arguments are the same as for
relu()
, with this array as data.
-
sigmoid
(*args, **kwargs)[source]¶ Convenience fluent method for
sigmoid()
.The arguments are the same as for
sigmoid()
, with this array as data.
-
softmax
(*args, **kwargs)[source]¶ Convenience fluent method for
softmax()
.The arguments are the same as for
softmax()
, with this array as data.
-
log_softmax
(*args, **kwargs)[source]¶ Convenience fluent method for
log_softmax()
.The arguments are the same as for
log_softmax()
, with this array as data.
-
Symbol API of MXNet.
-
mxnet.symbol.
Activation
(data=None, act_type=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies an activation function element-wise to the input.
The following activation functions are supported:
- relu: Rectified Linear Unit, \(y = max(x, 0)\)
- sigmoid: \(y = \frac{1}{1 + exp(-x)}\)
- tanh: Hyperbolic tangent, \(y = \frac{exp(x) - exp(-x)}{exp(x) + exp(-x)}\)
- softrelu: Soft ReLU, or SoftPlus, \(y = log(1 + exp(x))\)
Defined in src/operator/activation.cc:L92
Parameters: - data (Symbol) – Input array to activation function.
- act_type ({'relu', 'sigmoid', 'softrelu', 'tanh'}, required) – Activation function to be applied.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type: Examples
A one-hidden-layer MLP with ReLU activation:
>>> data = Variable('data') >>> mlp = FullyConnected(data=data, num_hidden=128, name='proj') >>> mlp = Activation(data=mlp, act_type='relu', name='activation') >>> mlp = FullyConnected(data=mlp, num_hidden=10, name='mlp') >>> mlp
ReLU activation
>>> test_suites = [ ... ('relu', lambda x: np.maximum(x, 0)), ... ('sigmoid', lambda x: 1 / (1 + np.exp(-x))), ... ('tanh', lambda x: np.tanh(x)), ... ('softrelu', lambda x: np.log(1 + np.exp(x))) ... ] >>> x = test_utils.random_arrays((2, 3, 4)) >>> for act_type, numpy_impl in test_suites: ... op = Activation(act_type=act_type, name='act') ... y = test_utils.simple_forward(op, act_data=x) ... y_np = numpy_impl(x) ... print('%s: %s' % (act_type, test_utils.almost_equal(y, y_np))) relu: True sigmoid: True tanh: True softrelu: True
-
mxnet.symbol.
BatchNorm
(data=None, gamma=None, beta=None, moving_mean=None, moving_var=None, eps=_Null, momentum=_Null, fix_gamma=_Null, use_global_stats=_Null, output_mean_var=_Null, axis=_Null, cudnn_off=_Null, name=None, attr=None, out=None, **kwargs)¶ Batch normalization.
Normalizes a data batch by mean and variance, and applies a scale
gamma
as well as offsetbeta
.Assume the input has more than one dimension and we normalize along axis 1. We first compute the mean and variance along this axis:
\[\begin{split}data\_mean[i] = mean(data[:,i,:,...]) \\ data\_var[i] = var(data[:,i,:,...])\end{split}\]Then compute the normalized output, which has the same shape as input, as following:
\[out[:,i,:,...] = \frac{data[:,i,:,...] - data\_mean[i]}{\sqrt{data\_var[i]+\epsilon}} * gamma[i] + beta[i]\]Both mean and var returns a scalar by treating the input as a vector.
Assume the input has size k on axis 1, then both
gamma
andbeta
have shape (k,). Ifoutput_mean_var
is set to be true, then outputs bothdata_mean
anddata_var
as well, which are needed for the backward pass.Besides the inputs and the outputs, this operator accepts two auxiliary states,
moving_mean
andmoving_var
, which are k-length vectors. They are global statistics for the whole dataset, which are updated by:moving_mean = moving_mean * momentum + data_mean * (1 - momentum) moving_var = moving_var * momentum + data_var * (1 - momentum)
If
use_global_stats
is set to be true, thenmoving_mean
andmoving_var
are used instead ofdata_mean
anddata_var
to compute the output. It is often used during inference.The parameter
axis
specifies which axis of the input shape denotes the ‘channel’ (separately normalized groups). The default is 1. Specifying -1 sets the channel axis to be the last item in the input shape.Both
gamma
andbeta
are learnable parameters. But iffix_gamma
is true, then setgamma
to 1 and its gradient to 0.Defined in src/operator/batch_norm.cc:L400
Parameters: - data (Symbol) – Input data to batch normalization
- gamma (Symbol) – gamma array
- beta (Symbol) – beta array
- moving_mean (Symbol) – running mean of input
- moving_var (Symbol) – running variance of input
- eps (double, optional, default=0.001) – Epsilon to prevent div 0. Must be no less than CUDNN_BN_MIN_EPSILON defined in cudnn.h when using cudnn (usually 1e-5)
- momentum (float, optional, default=0.9) – Momentum for moving average
- fix_gamma (boolean, optional, default=1) – Fix gamma while training
- use_global_stats (boolean, optional, default=0) – Whether use global moving statistics instead of local batch-norm. This will force change batch-norm into a scale shift operator.
- output_mean_var (boolean, optional, default=0) – Output All,normal mean and var
- axis (int, optional, default='1') – Specify which shape axis the channel is specified
- cudnn_off (boolean, optional, default=0) – Do not select CUDNN operator, if available
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
BatchNorm_v1
(data=None, gamma=None, beta=None, eps=_Null, momentum=_Null, fix_gamma=_Null, use_global_stats=_Null, output_mean_var=_Null, name=None, attr=None, out=None, **kwargs)¶ Batch normalization.
Normalizes a data batch by mean and variance, and applies a scale
gamma
as well as offsetbeta
.Assume the input has more than one dimension and we normalize along axis 1. We first compute the mean and variance along this axis:
\[\begin{split}data\_mean[i] = mean(data[:,i,:,...]) \\ data\_var[i] = var(data[:,i,:,...])\end{split}\]Then compute the normalized output, which has the same shape as input, as following:
\[out[:,i,:,...] = \frac{data[:,i,:,...] - data\_mean[i]}{\sqrt{data\_var[i]+\epsilon}} * gamma[i] + beta[i]\]Both mean and var returns a scalar by treating the input as a vector.
Assume the input has size k on axis 1, then both
gamma
andbeta
have shape (k,). Ifoutput_mean_var
is set to be true, then outputs bothdata_mean
anddata_var
as well, which are needed for the backward pass.Besides the inputs and the outputs, this operator accepts two auxiliary states,
moving_mean
andmoving_var
, which are k-length vectors. They are global statistics for the whole dataset, which are updated by:moving_mean = moving_mean * momentum + data_mean * (1 - momentum) moving_var = moving_var * momentum + data_var * (1 - momentum)
If
use_global_stats
is set to be true, thenmoving_mean
andmoving_var
are used instead ofdata_mean
anddata_var
to compute the output. It is often used during inference.Both
gamma
andbeta
are learnable parameters. But iffix_gamma
is true, then setgamma
to 1 and its gradient to 0.Defined in src/operator/batch_norm_v1.cc:L90
Parameters: - data (Symbol) – Input data to batch normalization
- gamma (Symbol) – gamma array
- beta (Symbol) – beta array
- eps (float, optional, default=0.001) – Epsilon to prevent div 0
- momentum (float, optional, default=0.9) – Momentum for moving average
- fix_gamma (boolean, optional, default=1) – Fix gamma while training
- use_global_stats (boolean, optional, default=0) – Whether use global moving statistics instead of local batch-norm. This will force change batch-norm into a scale shift operator.
- output_mean_var (boolean, optional, default=0) – Output All,normal mean and var
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
BilinearSampler
(data=None, grid=None, name=None, attr=None, out=None, **kwargs)¶ Applies bilinear sampling to input feature map.
Bilinear Sampling is the key of [NIPS2015] “Spatial Transformer Networks”. The usage of the operator is very similar to remap function in OpenCV, except that the operator has the backward pass.
Given \(data\) and \(grid\), then the output is computed by
\[\begin{split}x_{src} = grid[batch, 0, y_{dst}, x_{dst}] \\ y_{src} = grid[batch, 1, y_{dst}, x_{dst}] \\ output[batch, channel, y_{dst}, x_{dst}] = G(data[batch, channel, y_{src}, x_{src})\end{split}\]\(x_{dst}\), \(y_{dst}\) enumerate all spatial locations in \(output\), and \(G()\) denotes the bilinear interpolation kernel. The out-boundary points will be padded with zeros.The shape of the output will be (data.shape[0], data.shape[1], grid.shape[2], grid.shape[3]).
The operator assumes that \(data\) has ‘NCHW’ layout and \(grid\) has been normalized to [-1, 1].
BilinearSampler often cooperates with GridGenerator which generates sampling grids for BilinearSampler. GridGenerator supports two kinds of transformation:
affine
andwarp
. If users want to design a CustomOp to manipulate \(grid\), please firstly refer to the code of GridGenerator.Example 1:
## Zoom out data two times data = array([[[[1, 4, 3, 6], [1, 8, 8, 9], [0, 4, 1, 5], [1, 0, 1, 3]]]]) affine_matrix = array([[2, 0, 0], [0, 2, 0]]) affine_matrix = reshape(affine_matrix, shape=(1, 6)) grid = GridGenerator(data=affine_matrix, transform_type='affine', target_shape=(4, 4)) out = BilinearSampler(data, grid) out [[[[ 0, 0, 0, 0], [ 0, 3.5, 6.5, 0], [ 0, 1.25, 2.5, 0], [ 0, 0, 0, 0]]]
Example 2:
## shift data horizontally by -1 pixel data = array([[[[1, 4, 3, 6], [1, 8, 8, 9], [0, 4, 1, 5], [1, 0, 1, 3]]]]) warp_maxtrix = array([[[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]]) grid = GridGenerator(data=warp_matrix, transform_type='warp') out = BilinearSampler(data, grid) out [[[[ 4, 3, 6, 0], [ 8, 8, 9, 0], [ 4, 1, 5, 0], [ 0, 1, 3, 0]]]
Defined in src/operator/bilinear_sampler.cc:L245
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
BlockGrad
(data=None, name=None, attr=None, out=None, **kwargs)¶ Stops gradient computation.
Stops the accumulated gradient of the inputs from flowing through this operator in the backward direction. In other words, this operator prevents the contribution of its inputs to be taken into account for computing gradients.
Example:
v1 = [1, 2] v2 = [0, 1] a = Variable('a') b = Variable('b') b_stop_grad = stop_gradient(3 * b) loss = MakeLoss(b_stop_grad + a) executor = loss.simple_bind(ctx=cpu(), a=(1,2), b=(1,2)) executor.forward(is_train=True, a=v1, b=v2) executor.outputs [ 1. 5.] executor.backward() executor.grad_arrays [ 0. 0.] [ 1. 1.]
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L167
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Cast
(data=None, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Casts all elements of the input to a new type.
Note
Cast
is deprecated. Usecast
instead.Example:
cast([0.9, 1.3], dtype='int32') = [0, 1] cast([1e20, 11.1], dtype='float16') = [inf, 11.09375] cast([300, 11.1, 10.9, -1, -3], dtype='uint8') = [44, 11, 10, 255, 253]
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L311
Parameters: - data (Symbol) – The input.
- dtype ({'float16', 'float32', 'float64', 'int32', 'uint8'}, required) – Output data type.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Concat
(*data, **kwargs)¶ Joins input arrays along a given axis.
Note
Concat is deprecated. Use concat instead.
The dimensions of the input arrays should be the same except the axis along which they will be concatenated. The dimension of the output array along the concatenated axis will be equal to the sum of the corresponding dimensions of the input arrays.
Example:
x = [[1,1],[2,2]] y = [[3,3],[4,4],[5,5]] z = [[6,6], [7,7],[8,8]] concat(x,y,z,dim=0) = [[ 1., 1.], [ 2., 2.], [ 3., 3.], [ 4., 4.], [ 5., 5.], [ 6., 6.], [ 7., 7.], [ 8., 8.]] Note that you cannot concat x,y,z along dimension 1 since dimension 0 is not the same for all the input arrays. concat(y,z,dim=1) = [[ 3., 3., 6., 6.], [ 4., 4., 7., 7.], [ 5., 5., 8., 8.]]
Defined in src/operator/concat.cc:L104 This function support variable length of positional input.
Parameters: - data (Symbol[]) – List of arrays to concatenate
- dim (int, optional, default='1') – the dimension to be concated.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type: Examples
Concat two (or more) inputs along a specific dimension:
>>> a = Variable('a') >>> b = Variable('b') >>> c = Concat(a, b, dim=1, name='my-concat') >>> c
>>> SymbolDoc.get_output_shape(c, a=(128, 10, 3, 3), b=(128, 15, 3, 3)) {'my-concat_output': (128L, 25L, 3L, 3L)} Note the shape should be the same except on the dimension that is being concatenated.
-
mxnet.symbol.
Convolution
(data=None, weight=None, bias=None, kernel=_Null, stride=_Null, dilate=_Null, pad=_Null, num_filter=_Null, num_group=_Null, workspace=_Null, no_bias=_Null, cudnn_tune=_Null, cudnn_off=_Null, layout=_Null, name=None, attr=None, out=None, **kwargs)¶ Compute N-D convolution on (N+2)-D input.
In the 2-D convolution, given input data with shape (batch_size, channel, height, width), the output is computed by
\[out[n,i,:,:] = bias[i] + \sum_{j=0}^{channel} data[n,j,:,:] \star weight[i,j,:,:]\]where \(\star\) is the 2-D cross-correlation operator.
For general 2-D convolution, the shapes are
- data: (batch_size, channel, height, width)
- weight: (num_filter, channel, kernel[0], kernel[1])
- bias: (num_filter,)
- out: (batch_size, num_filter, out_height, out_width).
Define:
f(x,k,p,s,d) = floor((x+2*p-d*(k-1)-1)/s)+1
then we have:
out_height=f(height, kernel[0], pad[0], stride[0], dilate[0]) out_width=f(width, kernel[1], pad[1], stride[1], dilate[1])
If
no_bias
is set to be true, then thebias
term is ignored.The default data
layout
is NCHW, namely (batch_size, channel, height, width). We can choose other layouts such as NHWC.If
num_group
is larger than 1, denoted by g, then split the inputdata
evenly into g parts along the channel axis, and also evenly splitweight
along the first dimension. Next compute the convolution on the i-th part of the data with the i-th weight part. The output is obtained by concatenating all the g results.1-D convolution does not have height dimension but only width in space.
- data: (batch_size, channel, width)
- weight: (num_filter, channel, kernel[0])
- bias: (num_filter,)
- out: (batch_size, num_filter, out_width).
3-D convolution adds an additional depth dimension besides height and width. The shapes are
- data: (batch_size, channel, depth, height, width)
- weight: (num_filter, channel, kernel[0], kernel[1], kernel[2])
- bias: (num_filter,)
- out: (batch_size, num_filter, out_depth, out_height, out_width).
Both
weight
andbias
are learnable parameters.There are other options to tune the performance.
- cudnn_tune: enable this option leads to higher startup time but may give
faster speed. Options are
- off: no tuning
- limited_workspace:run test and pick the fastest algorithm that doesn’t exceed workspace limit.
- fastest: pick the fastest algorithm and ignore workspace limit.
- None (default): the behavior is determined by environment variable
MXNET_CUDNN_AUTOTUNE_DEFAULT
. 0 for off, 1 for limited workspace (default), 2 for fastest.
- workspace: A large number leads to more (GPU) memory usage but may improve the performance.
Defined in src/operator/convolution.cc:L170
Parameters: - data (Symbol) – Input data to the ConvolutionOp.
- weight (Symbol) – Weight matrix.
- bias (Symbol) – Bias parameter.
- kernel (Shape(tuple), required) – convolution kernel size: (h, w) or (d, h, w)
- stride (Shape(tuple), optional, default=[]) – convolution stride: (h, w) or (d, h, w)
- dilate (Shape(tuple), optional, default=[]) – convolution dilate: (h, w) or (d, h, w)
- pad (Shape(tuple), optional, default=[]) – pad for convolution: (h, w) or (d, h, w)
- num_filter (int (non-negative), required) – convolution filter(channel) number
- num_group (int (non-negative), optional, default=1) – Number of group partitions.
- workspace (long (non-negative), optional, default=1024) – Maximum temporary workspace allowed for convolution (MB).
- no_bias (boolean, optional, default=0) – Whether to disable bias parameter.
- cudnn_tune ({None, 'fastest', 'limited_workspace', 'off'},optional, default='None') – Whether to pick convolution algo by running performance test.
- cudnn_off (boolean, optional, default=0) – Turn off cudnn for this layer.
- layout ({None, 'NCDHW', 'NCHW', 'NCW', 'NDHWC', 'NHWC'},optional, default='None') – Set layout for input, output and weight. Empty for default layout: NCW for 1d, NCHW for 2d and NCDHW for 3d.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Convolution_v1
(data=None, weight=None, bias=None, kernel=_Null, stride=_Null, dilate=_Null, pad=_Null, num_filter=_Null, num_group=_Null, workspace=_Null, no_bias=_Null, cudnn_tune=_Null, cudnn_off=_Null, layout=_Null, name=None, attr=None, out=None, **kwargs)¶ This operator is DEPRECATED. Apply convolution to input then add a bias.
Parameters: - data (Symbol) – Input data to the ConvolutionV1Op.
- weight (Symbol) – Weight matrix.
- bias (Symbol) – Bias parameter.
- kernel (Shape(tuple), required) – convolution kernel size: (h, w) or (d, h, w)
- stride (Shape(tuple), optional, default=[]) – convolution stride: (h, w) or (d, h, w)
- dilate (Shape(tuple), optional, default=[]) – convolution dilate: (h, w) or (d, h, w)
- pad (Shape(tuple), optional, default=[]) – pad for convolution: (h, w) or (d, h, w)
- num_filter (int (non-negative), required) – convolution filter(channel) number
- num_group (int (non-negative), optional, default=1) – Number of group partitions. Equivalent to slicing input into num_group partitions, apply convolution on each, then concatenate the results
- workspace (long (non-negative), optional, default=1024) – Maximum tmp workspace allowed for convolution (MB).
- no_bias (boolean, optional, default=0) – Whether to disable bias parameter.
- cudnn_tune ({None, 'fastest', 'limited_workspace', 'off'},optional, default='None') – Whether to pick convolution algo by running performance test. Leads to higher startup time but may give faster speed. Options are: ‘off’: no tuning ‘limited_workspace’: run test and pick the fastest algorithm that doesn’t exceed workspace limit. ‘fastest’: pick the fastest algorithm and ignore workspace limit. If set to None (default), behavior is determined by environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT: 0 for off, 1 for limited workspace (default), 2 for fastest.
- cudnn_off (boolean, optional, default=0) – Turn off cudnn for this layer.
- layout ({None, 'NCDHW', 'NCHW', 'NDHWC', 'NHWC'},optional, default='None') – Set layout for input, output and weight. Empty for default layout: NCHW for 2d and NCDHW for 3d.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Correlation
(data1=None, data2=None, kernel_size=_Null, max_displacement=_Null, stride1=_Null, stride2=_Null, pad_size=_Null, is_multiply=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies correlation to inputs.
The correlation layer performs multiplicative patch comparisons between two feature maps.
Given two multi-channel feature maps \(f_{1}, f_{2}\), with \(w\), \(h\), and \(c\) being their width, height, and number of channels, the correlation layer lets the network compare each patch from \(f_{1}\) with each patch from \(f_{2}\).
For now we consider only a single comparison of two patches. The ‘correlation’ of two patches centered at \(x_{1}\) in the first map and \(x_{2}\) in the second map is then defined as:
\[c(x_{1}, x_{2}) = \sum_{o \in [-k,k] \times [-k,k]}\] for a square patch of size \(K:=2k+1\).
Note that the equation above is identical to one step of a convolution in neural networks, but instead of convolving data with a filter, it convolves data with other data. For this reason, it has no training weights.
Computing \(c(x_{1}, x_{2})\) involves \(c * K^{2}\) multiplications. Comparing all patch combinations involves \(w^{2}*h^{2}\) such computations.
Given a maximum displacement \(d\), for each location \(x_{1}\) it computes correlations \(c(x_{1}, x_{2})\) only in a neighborhood of size \(D:=2d+1\), by limiting the range of \(x_{2}\). We use strides \(s_{1}, s_{2}\), to quantize \(x_{1}\) globally and to quantize \(x_{2}\) within the neighborhood centered around \(x_{1}\).
The final output is defined by the following expression:
\[out[n, q, i, j] = c(x_{i, j}, x_{q})\]where \(i\) and \(j\) enumerate spatial locations in \(f_{1}\), and \(q\) denotes the \(q^{th}\) neighborhood of \(x_{i,j}\).
Defined in src/operator/correlation.cc:L192
Parameters: - data1 (Symbol) – Input data1 to the correlation.
- data2 (Symbol) – Input data2 to the correlation.
- kernel_size (int (non-negative), optional, default=1) – kernel size for Correlation must be an odd number
- max_displacement (int (non-negative), optional, default=1) – Max displacement of Correlation
- stride1 (int (non-negative), optional, default=1) – stride1 quantize data1 globally
- stride2 (int (non-negative), optional, default=1) – stride2 quantize data2 within the neighborhood centered around data1
- pad_size (int (non-negative), optional, default=0) – pad for Correlation
- is_multiply (boolean, optional, default=1) – operation type is either multiplication or subduction
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Crop
(*data, **kwargs)¶ Note
Crop is deprecated. Use slice instead.
Crop the 2nd and 3rd dim of input data, with the corresponding size of h_w or with width and height of the second input symbol, i.e., with one input, we need h_w to specify the crop height and width, otherwise the second input symbol’s size will be used
Defined in src/operator/crop.cc:L50 This function support variable length of positional input.
Parameters: - data (Symbol or Symbol[]) – Tensor or List of Tensors, the second input will be used as crop_like shape reference
- offset (Shape(tuple), optional, default=[0,0]) – crop offset coordinate: (y, x)
- h_w (Shape(tuple), optional, default=[0,0]) – crop height and width: (h, w)
- center_crop (boolean, optional, default=0) – If set to true, then it will use be the center_crop,or it will crop using the shape of crop_like
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Custom
(*data, **kwargs)¶ Apply a custom operator implemented in a frontend language (like Python).
Custom operators should override required methods like forward and backward. The custom operator must be registered before it can be used. Please check the tutorial here: /versions/1.0.0/how_to/new_op.html.
Defined in src/operator/custom/custom.cc:L369
Parameters: - data (Symbol[]) – Input data for the custom operator.
- op_type (string) – Name of the custom operator. This is the name that is passed to mx.operator.register to register the operator.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Deconvolution
(data=None, weight=None, bias=None, kernel=_Null, stride=_Null, dilate=_Null, pad=_Null, adj=_Null, target_shape=_Null, num_filter=_Null, num_group=_Null, workspace=_Null, no_bias=_Null, cudnn_tune=_Null, cudnn_off=_Null, layout=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes 2D transposed convolution (aka fractionally strided convolution) of the input tensor. This operation can be seen as the gradient of Convolution operation with respect to its input. Convolution usually reduces the size of the input. Transposed convolution works the other way, going from a smaller input to a larger output while preserving the connectivity pattern.
Parameters: - data (Symbol) – Input tensor to the deconvolution operation.
- weight (Symbol) – Weights representing the kernel.
- bias (Symbol) – Bias added to the result after the deconvolution operation.
- kernel (Shape(tuple), required) – Deconvolution kernel size: (h, w) or (d, h, w). This is same as the kernel size used for the corresponding convolution
- stride (Shape(tuple), optional, default=[]) – The stride used for the corresponding convolution: (h, w) or (d, h, w).
- dilate (Shape(tuple), optional, default=[]) – Dilation factor for each dimension of the input: (h, w) or (d, h, w).
- pad (Shape(tuple), optional, default=[]) – The amount of implicit zero padding added during convolution for each dimension of the input: (h, w) or (d, h, w).
(kernel-1)/2
is usually a good choice. If target_shape is set, pad will be ignored and a padding that will generate the target shape will be used. - adj (Shape(tuple), optional, default=[]) – Adjustment for output shape: (h, w) or (d, h, w). If target_shape is set, adj will be ignored and computed accordingly.
- target_shape (Shape(tuple), optional, default=[]) – Shape of the output tensor: (h, w) or (d, h, w).
- num_filter (int (non-negative), required) – Number of output filters.
- num_group (int (non-negative), optional, default=1) – Number of groups partition.
- workspace (long (non-negative), optional, default=512) – Maximum temporal workspace allowed for deconvolution (MB).
- no_bias (boolean, optional, default=1) – Whether to disable bias parameter.
- cudnn_tune ({None, 'fastest', 'limited_workspace', 'off'},optional, default='None') – Whether to pick convolution algorithm by running performance test.
- cudnn_off (boolean, optional, default=0) – Turn off cudnn for this layer.
- layout ({None, 'NCDHW', 'NCHW', 'NCW', 'NDHWC', 'NHWC'},optional, default='None') – Set layout for input, output and weight. Empty for default layout, NCW for 1d, NCHW for 2d and NCDHW for 3d.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Dropout
(data=None, p=_Null, mode=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies dropout operation to input array.
- During training, each element of the input is set to zero with probability p. The whole array is rescaled by \(1/(1-p)\) to keep the expected sum of the input unchanged.
- During testing, this operator does not change the input if mode is ‘training’. If mode is ‘always’, the same computaion as during training will be applied.
Example:
random.seed(998) input_array = array([[3., 0.5, -0.5, 2., 7.], [2., -0.4, 7., 3., 0.2]]) a = symbol.Variable('a') dropout = symbol.Dropout(a, p = 0.2) executor = dropout.simple_bind(a = input_array.shape) ## If training executor.forward(is_train = True, a = input_array) executor.outputs [[ 3.75 0.625 -0. 2.5 8.75 ] [ 2.5 -0.5 8.75 3.75 0. ]] ## If testing executor.forward(is_train = False, a = input_array) executor.outputs [[ 3. 0.5 -0.5 2. 7. ] [ 2. -0.4 7. 3. 0.2 ]]
Defined in src/operator/dropout.cc:L78
Parameters: - data (Symbol) – Input array to which dropout will be applied.
- p (float, optional, default=0.5) – Fraction of the input that gets dropped out during training time.
- mode ({'always', 'training'},optional, default='training') – Whether to only turn on dropout during training or to also turn on for inference.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type: Examples
Apply dropout to corrupt input as zero with probability 0.2:
>>> data = Variable('data') >>> data_dp = Dropout(data=data, p=0.2)
>>> shape = (100, 100) # take larger shapes to be more statistical stable >>> x = np.ones(shape) >>> op = Dropout(p=0.5, name='dp') >>> # dropout is identity during testing >>> y = test_utils.simple_forward(op, dp_data=x, is_train=False) >>> test_utils.almost_equal(x, y) True >>> y = test_utils.simple_forward(op, dp_data=x, is_train=True) >>> # expectation is (approximately) unchanged >>> np.abs(x.mean() - y.mean()) < 0.1 True >>> set(np.unique(y)) == set([0, 2]) True
-
mxnet.symbol.
ElementWiseSum
(*args, **kwargs)¶ Adds all input arguments element-wise.
\[add\_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n\]add_n
is potentially more efficient than callingadd
by n times.The storage type of
add_n
output depends on storage types of inputs- add_n(row_sparse, row_sparse, ..) = row_sparse
- otherwise,
add_n
generates output with default storage
Defined in src/operator/tensor/elemwise_sum.cc:L123 This function support variable length of positional input.
Parameters: - args (Symbol[]) – Positional input arguments
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Embedding
(data=None, weight=None, input_dim=_Null, output_dim=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Maps integer indices to vector representations (embeddings).
This operator maps words to real-valued vectors in a high-dimensional space, called word embeddings. These embeddings can capture semantic and syntactic properties of the words. For example, it has been noted that in the learned embedding spaces, similar words tend to be close to each other and dissimilar words far apart.
For an input array of shape (d1, ..., dK), the shape of an output array is (d1, ..., dK, output_dim). All the input values should be integers in the range [0, input_dim).
If the input_dim is ip0 and output_dim is op0, then shape of the embedding weight matrix must be (ip0, op0).
By default, if any index mentioned is too large, it is replaced by the index that addresses the last vector in an embedding matrix.
Examples:
input_dim = 4 output_dim = 5 // Each row in weight matrix y represents a word. So, y = (w0,w1,w2,w3) y = [[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.], [ 10., 11., 12., 13., 14.], [ 15., 16., 17., 18., 19.]] // Input array x represents n-grams(2-gram). So, x = [(w1,w3), (w0,w2)] x = [[ 1., 3.], [ 0., 2.]] // Mapped input x to its vector representation y. Embedding(x, y, 4, 5) = [[[ 5., 6., 7., 8., 9.], [ 15., 16., 17., 18., 19.]], [[ 0., 1., 2., 3., 4.], [ 10., 11., 12., 13., 14.]]]
Defined in src/operator/tensor/indexing_op.cc:L224
Parameters: - data (Symbol) – The input array to the embedding operator.
- weight (Symbol) – The embedding weight matrix.
- input_dim (int, required) – Vocabulary size of the input indices.
- output_dim (int, required) – Dimension of the embedding vectors.
- dtype ({'float16', 'float32', 'float64', 'int32', 'uint8'},optional, default='float32') – Data type of weight.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type: Examples
Assume we want to map the 26 English alphabet letters to 16-dimensional vectorial representations.
>>> vocabulary_size = 26 >>> embed_dim = 16 >>> seq_len, batch_size = (10, 64) >>> input = Variable('letters') >>> op = Embedding(data=input, input_dim=vocabulary_size, output_dim=embed_dim, ...name='embed') >>> SymbolDoc.get_output_shape(op, letters=(seq_len, batch_size)) {'embed_output': (10L, 64L, 16L)}
>>> vocab_size, embed_dim = (26, 16) >>> batch_size = 12 >>> word_vecs = test_utils.random_arrays((vocab_size, embed_dim)) >>> op = Embedding(name='embed', input_dim=vocab_size, output_dim=embed_dim) >>> x = np.random.choice(vocab_size, batch_size) >>> y = test_utils.simple_forward(op, embed_data=x, embed_weight=word_vecs) >>> y_np = word_vecs[x] >>> test_utils.almost_equal(y, y_np) True
-
mxnet.symbol.
Flatten
(data=None, name=None, attr=None, out=None, **kwargs)¶ Flattens the input array into a 2-D array by collapsing the higher dimensions.
Note
Flatten is deprecated. Use flatten instead.
For an input array with shape
(d1, d2, ..., dk)
, flatten operation reshapes the input array into an output array of shape(d1, d2*...*dk)
.Example:
x = [[ [1,2,3], [4,5,6], [7,8,9] ], [ [1,2,3], [4,5,6], [7,8,9] ]], flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.], [ 1., 2., 3., 4., 5., 6., 7., 8., 9.]]
Defined in src/operator/tensor/matrix_op.cc:L150
Parameters: - data (Symbol) – Input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type: Examples
Flatten is usually applied before FullyConnected, to reshape the 4D tensor produced by convolutional layers to 2D matrix:
>>> data = Variable('data') # say this is 4D from some conv/pool >>> flatten = Flatten(data=data, name='flat') # now this is 2D >>> SymbolDoc.get_output_shape(flatten, data=(2, 3, 4, 5)) {'flat_output': (2L, 60L)}
>>> test_dims = [(2, 3, 4, 5), (2, 3), (2,)] >>> op = Flatten(name='flat') >>> for dims in test_dims: ... x = test_utils.random_arrays(dims) ... y = test_utils.simple_forward(op, flat_data=x) ... y_np = x.reshape((dims[0], np.prod(dims[1:]).astype('int32'))) ... print('%s: %s' % (dims, test_utils.almost_equal(y, y_np))) (2, 3, 4, 5): True (2, 3): True (2,): True
-
mxnet.symbol.
FullyConnected
(data=None, weight=None, bias=None, num_hidden=_Null, no_bias=_Null, flatten=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies a linear transformation: \(Y = XW^T + b\).
If
flatten
is set to be true, then the shapes are:- data: (batch_size, x1, x2, ..., xn)
- weight: (num_hidden, x1 * x2 * ... * xn)
- bias: (num_hidden,)
- out: (batch_size, num_hidden)
If
flatten
is set to be false, then the shapes are:- data: (x1, x2, ..., xn, input_dim)
- weight: (num_hidden, input_dim)
- bias: (num_hidden,)
- out: (x1, x2, ..., xn, num_hidden)
The learnable parameters include both
weight
andbias
.If
no_bias
is set to be true, then thebias
term is ignored.Defined in src/operator/fully_connected.cc:L98
Parameters: - data (Symbol) – Input data.
- weight (Symbol) – Weight matrix.
- bias (Symbol) – Bias parameter.
- num_hidden (int, required) – Number of hidden nodes of the output.
- no_bias (boolean, optional, default=0) – Whether to disable bias parameter.
- flatten (boolean, optional, default=1) – Whether to collapse all but the first axis of the input data tensor.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type: Examples
Construct a fully connected operator with target dimension 512.
>>> data = Variable('data') # or some constructed NN >>> op = FullyConnected(data=data, ... num_hidden=512, ... name='FC1') >>> op
>>> SymbolDoc.get_output_shape(op, data=(128, 100)) {'FC1_output': (128L, 512L)} A simple 3-layer MLP with ReLU activation:
>>> net = Variable('data') >>> for i, dim in enumerate([128, 64]): ... net = FullyConnected(data=net, num_hidden=dim, name='FC%d' % i) ... net = Activation(data=net, act_type='relu', name='ReLU%d' % i) >>> # 10-class predictor (e.g. MNIST) >>> net = FullyConnected(data=net, num_hidden=10, name='pred') >>> net
>>> dim_in, dim_out = (3, 4) >>> x, w, b = test_utils.random_arrays((10, dim_in), (dim_out, dim_in), (dim_out,)) >>> op = FullyConnected(num_hidden=dim_out, name='FC') >>> out = test_utils.simple_forward(op, FC_data=x, FC_weight=w, FC_bias=b) >>> # numpy implementation of FullyConnected >>> out_np = np.dot(x, w.T) + b >>> test_utils.almost_equal(out, out_np) True
-
mxnet.symbol.
GridGenerator
(data=None, transform_type=_Null, target_shape=_Null, name=None, attr=None, out=None, **kwargs)¶ Generates 2D sampling grid for bilinear sampling.
Parameters: - data (Symbol) – Input data to the function.
- transform_type ({'affine', 'warp'}, required) – The type of transformation. For affine, input data should be an affine matrix of size (batch, 6). For warp, input data should be an optical flow of size (batch, 2, h, w).
- target_shape (Shape(tuple), optional, default=[0,0]) – Specifies the output shape (H, W). This is required if transformation type is affine. If transformation type is warp, this parameter is ignored.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
IdentityAttachKLSparseReg
(data=None, sparseness_target=_Null, penalty=_Null, momentum=_Null, name=None, attr=None, out=None, **kwargs)¶ Apply a sparse regularization to the output a sigmoid activation function.
Parameters: - data (Symbol) – Input data.
- sparseness_target (float, optional, default=0.1) – The sparseness target
- penalty (float, optional, default=0.001) – The tradeoff parameter for the sparseness penalty
- momentum (float, optional, default=0.9) – The momentum for running average
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
InstanceNorm
(data=None, gamma=None, beta=None, eps=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies instance normalization to the n-dimensional input array.
This operator takes an n-dimensional input array where (n>2) and normalizes the input using the following formula:
\[out = \frac{x - mean[data]}{ \sqrt{Var[data]} + \epsilon} * gamma + beta\]This layer is similar to batch normalization layer (BatchNorm) with two differences: first, the normalization is carried out per example (instance), not over a batch. Second, the same normalization is applied both at test and train time. This operation is also known as contrast normalization.
If the input data is of shape [batch, channel, spacial_dim1, spacial_dim2, ...], gamma and beta parameters must be vectors of shape [channel].
This implementation is based on paper:
[1] Instance Normalization: The Missing Ingredient for Fast Stylization, D. Ulyanov, A. Vedaldi, V. Lempitsky, 2016 (arXiv:1607.08022v2). Examples:
// Input of shape (2,1,2) x = [[[ 1.1, 2.2]], [[ 3.3, 4.4]]] // gamma parameter of length 1 gamma = [1.5] // beta parameter of length 1 beta = [0.5] // Instance normalization is calculated with the above formula InstanceNorm(x,gamma,beta) = [[[-0.997527 , 1.99752665]], [[-0.99752653, 1.99752724]]]
Defined in src/operator/instance_norm.cc:L95
Parameters: - data (Symbol) – An n-dimensional input array (n > 2) of the form [batch, channel, spatial_dim1, spatial_dim2, ...].
- gamma (Symbol) – A vector of length ‘channel’, which multiplies the normalized input.
- beta (Symbol) – A vector of length ‘channel’, which is added to the product of the normalized input and the weight.
- eps (float, optional, default=0.001) – An epsilon parameter to prevent division by 0.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
L2Normalization
(data=None, eps=_Null, mode=_Null, name=None, attr=None, out=None, **kwargs)¶ Normalize the input array using the L2 norm.
For 1-D NDArray, it computes:
out = data / sqrt(sum(data ** 2) + eps)
For N-D NDArray, if the input array has shape (N, N, ..., N),
with
mode
=instance
, it normalizes each instance in the multidimensional array by its L2 norm.:for i in 0...N out[i,:,:,...,:] = data[i,:,:,...,:] / sqrt(sum(data[i,:,:,...,:] ** 2) + eps)
with
mode
=channel
, it normalizes each channel in the array by its L2 norm.:for i in 0...N out[:,i,:,...,:] = data[:,i,:,...,:] / sqrt(sum(data[:,i,:,...,:] ** 2) + eps)
with
mode
=spatial
, it normalizes the cross channel norm for each position in the array by its L2 norm.:for dim in 2...N for i in 0...N out[.....,i,...] = take(out, indices=i, axis=dim) / sqrt(sum(take(out, indices=i, axis=dim) ** 2) + eps) -dim-
Example:
x = [[[1,2], [3,4]], [[2,2], [5,6]]] L2Normalization(x, mode='instance') =[[[ 0.18257418 0.36514837] [ 0.54772252 0.73029673]] [[ 0.24077171 0.24077171] [ 0.60192931 0.72231513]]] L2Normalization(x, mode='channel') =[[[ 0.31622776 0.44721359] [ 0.94868326 0.89442718]] [[ 0.37139067 0.31622776] [ 0.92847669 0.94868326]]] L2Normalization(x, mode='spatial') =[[[ 0.44721359 0.89442718] [ 0.60000002 0.80000001]] [[ 0.70710677 0.70710677] [ 0.6401844 0.76822126]]]
Defined in src/operator/l2_normalization.cc:L93
Parameters: - data (Symbol) – Input array to normalize.
- eps (float, optional, default=1e-10) – A small constant for numerical stability.
- mode ({'channel', 'instance', 'spatial'},optional, default='instance') – Specify the dimension along which to compute L2 norm.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
LRN
(data=None, alpha=_Null, beta=_Null, knorm=_Null, nsize=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies local response normalization to the input.
The local response normalization layer performs “lateral inhibition” by normalizing over local input regions.
If \(a_{x,y}^{i}\) is the activity of a neuron computed by applying kernel \(i\) at position \((x, y)\) and then applying the ReLU nonlinearity, the response-normalized activity \(b_{x,y}^{i}\) is given by the expression:
\[b_{x,y}^{i} = \frac{a_{x,y}^{i}}{\Bigg({k + \alpha \sum_{j=max(0, i-\frac{n}{2})}^{min(N-1, i+\frac{n}{2})} (a_{x,y}^{j})^{2}}\Bigg)^{\beta}}\]where the sum runs over \(n\) “adjacent” kernel maps at the same spatial position, and \(N\) is the total number of kernels in the layer.
Defined in src/operator/lrn.cc:L73
Parameters: - data (Symbol) – Input data.
- alpha (float, optional, default=0.0001) – The variance scaling parameter \(lpha\) in the LRN expression.
- beta (float, optional, default=0.75) – The power parameter \(eta\) in the LRN expression.
- knorm (float, optional, default=2) – The parameter \(k\) in the LRN expression.
- nsize (int (non-negative), required) – normalization window width in elements.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
LeakyReLU
(data=None, act_type=_Null, slope=_Null, lower_bound=_Null, upper_bound=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies Leaky rectified linear unit activation element-wise to the input.
Leaky ReLUs attempt to fix the “dying ReLU” problem by allowing a small slope when the input is negative and has a slope of one when input is positive.
The following modified ReLU Activation functions are supported:
- elu: Exponential Linear Unit. y = x > 0 ? x : slope * (exp(x)-1)
- leaky: Leaky ReLU. y = x > 0 ? x : slope * x
- prelu: Parametric ReLU. This is same as leaky except that slope is learnt during training.
- rrelu: Randomized ReLU. same as leaky but the slope is uniformly and randomly chosen from [lower_bound, upper_bound) for training, while fixed to be (lower_bound+upper_bound)/2 for inference.
Defined in src/operator/leaky_relu.cc:L58
Parameters: - data (Symbol) – Input data to activation function.
- act_type ({'elu', 'leaky', 'prelu', 'rrelu'},optional, default='leaky') – Activation function to be applied.
- slope (float, optional, default=0.25) – Init slope for the activation. (For leaky and elu only)
- lower_bound (float, optional, default=0.125) – Lower bound of random slope. (For rrelu only)
- upper_bound (float, optional, default=0.334) – Upper bound of random slope. (For rrelu only)
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
LinearRegressionOutput
(data=None, label=None, grad_scale=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes and optimizes for squared loss during backward propagation. Just outputs
data
during forward propagation.If \(\hat{y}_i\) is the predicted value of the i-th sample, and \(y_i\) is the corresponding target value, then the squared loss estimated over \(n\) samples is defined as
\(\text{SquaredLoss}(y, \hat{y} ) = \frac{1}{n} \sum_{i=0}^{n-1} \left( y_i - \hat{y}_i \right)^2\)
Note
Use the LinearRegressionOutput as the final output layer of a net.
By default, gradients of this loss function are scaled by factor 1/n, where n is the number of training examples. The parameter grad_scale can be used to change this scale to grad_scale/n.
Defined in src/operator/regression_output.cc:L70
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
LogisticRegressionOutput
(data=None, label=None, grad_scale=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies a logistic function to the input.
The logistic function, also known as the sigmoid function, is computed as \(\frac{1}{1+exp(-x)}\).
Commonly, the sigmoid is used to squash the real-valued output of a linear model :math:wTx+b into the [0,1] range so that it can be interpreted as a probability. It is suitable for binary classification or probability prediction tasks.
Note
Use the LogisticRegressionOutput as the final output layer of a net.
By default, gradients of this loss function are scaled by factor 1/n, where n is the number of training examples. The parameter grad_scale can be used to change this scale to grad_scale/n.
Defined in src/operator/regression_output.cc:L112
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
MAERegressionOutput
(data=None, label=None, grad_scale=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes mean absolute error of the input.
MAE is a risk metric corresponding to the expected value of the absolute error.
If \(\hat{y}_i\) is the predicted value of the i-th sample, and \(y_i\) is the corresponding target value, then the mean absolute error (MAE) estimated over \(n\) samples is defined as
\(\text{MAE}(y, \hat{y} ) = \frac{1}{n} \sum_{i=0}^{n-1} \left| y_i - \hat{y}_i \right|\)
Note
Use the MAERegressionOutput as the final output layer of a net.
By default, gradients of this loss function are scaled by factor 1/n, where n is the number of training examples. The parameter grad_scale can be used to change this scale to grad_scale/n.
Defined in src/operator/regression_output.cc:L91
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
MakeLoss
(data=None, grad_scale=_Null, valid_thresh=_Null, normalization=_Null, name=None, attr=None, out=None, **kwargs)¶ Make your own loss function in network construction.
This operator accepts a customized loss function symbol as a terminal loss and the symbol should be an operator with no backward dependency. The output of this function is the gradient of loss with respect to the input data.
For example, if you are a making a cross entropy loss function. Assume
out
is the predicted output andlabel
is the true label, then the cross entropy can be defined as:cross_entropy = label * log(out) + (1 - label) * log(1 - out) loss = MakeLoss(cross_entropy)
We will need to use
MakeLoss
when we are creating our own loss function or we want to combine multiple loss functions. Also we may want to stop some variables’ gradients from backpropagation. See more detail inBlockGrad
orstop_gradient
.In addition, we can give a scale to the loss by setting
grad_scale
, so that the gradient of the loss will be rescaled in the backpropagation.Note
This operator should be used as a Symbol instead of NDArray.
Defined in src/operator/make_loss.cc:L71
Parameters: - data (Symbol) – Input array.
- grad_scale (float, optional, default=1) – Gradient scale as a supplement to unary and binary operators
- valid_thresh (float, optional, default=0) – clip each element in the array to 0 when it is less than
valid_thresh
. This is used whennormalization
is set to'valid'
. - normalization ({'batch', 'null', 'valid'},optional, default='null') – If this is set to null, the output gradient will not be normalized. If this is set to batch, the output gradient will be divided by the batch size. If this is set to valid, the output gradient will be divided by the number of valid input elements.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Pad
(data=None, mode=_Null, pad_width=_Null, constant_value=_Null, name=None, attr=None, out=None, **kwargs)¶ Pads an input array with a constant or edge values of the array.
Note
Pad is deprecated. Use pad instead.
Note
Current implementation only supports 4D and 5D input arrays with padding applied only on axes 1, 2 and 3. Expects axes 4 and 5 in pad_width to be zero.
This operation pads an input array with either a constant_value or edge values along each axis of the input array. The amount of padding is specified by pad_width.
pad_width is a tuple of integer padding widths for each axis of the format
(before_1, after_1, ... , before_N, after_N)
. The pad_width should be of length2*N
whereN
is the number of dimensions of the array.For dimension
N
of the input array,before_N
andafter_N
indicates how many values to add before and after the elements of the array along dimensionN
. The widths of the higher two dimensionsbefore_1
,after_1
,before_2
,after_2
must be 0.Example:
x = [[[[ 1. 2. 3.] [ 4. 5. 6.]] [[ 7. 8. 9.] [ 10. 11. 12.]]] [[[ 11. 12. 13.] [ 14. 15. 16.]] [[ 17. 18. 19.] [ 20. 21. 22.]]]] pad(x,mode="edge", pad_width=(0,0,0,0,1,1,1,1)) = [[[[ 1. 1. 2. 3. 3.] [ 1. 1. 2. 3. 3.] [ 4. 4. 5. 6. 6.] [ 4. 4. 5. 6. 6.]] [[ 7. 7. 8. 9. 9.] [ 7. 7. 8. 9. 9.] [ 10. 10. 11. 12. 12.] [ 10. 10. 11. 12. 12.]]] [[[ 11. 11. 12. 13. 13.] [ 11. 11. 12. 13. 13.] [ 14. 14. 15. 16. 16.] [ 14. 14. 15. 16. 16.]] [[ 17. 17. 18. 19. 19.] [ 17. 17. 18. 19. 19.] [ 20. 20. 21. 22. 22.] [ 20. 20. 21. 22. 22.]]]] pad(x, mode="constant", constant_value=0, pad_width=(0,0,0,0,1,1,1,1)) = [[[[ 0. 0. 0. 0. 0.] [ 0. 1. 2. 3. 0.] [ 0. 4. 5. 6. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0. 0. 0. 0.] [ 0. 7. 8. 9. 0.] [ 0. 10. 11. 12. 0.] [ 0. 0. 0. 0. 0.]]] [[[ 0. 0. 0. 0. 0.] [ 0. 11. 12. 13. 0.] [ 0. 14. 15. 16. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0. 0. 0. 0.] [ 0. 17. 18. 19. 0.] [ 0. 20. 21. 22. 0.] [ 0. 0. 0. 0. 0.]]]]
Defined in src/operator/pad.cc:L766
Parameters: - data (Symbol) – An n-dimensional input array.
- mode ({'constant', 'edge', 'reflect'}, required) – Padding type to use. “constant” pads with constant_value “edge” pads using the edge values of the input array “reflect” pads by reflecting values with respect to the edges.
- pad_width (Shape(tuple), required) – Widths of the padding regions applied to the edges of each axis. It is a tuple of integer padding widths for each axis of the format
(before_1, after_1, ... , before_N, after_N)
. It should be of length2*N
whereN
is the number of dimensions of the array.This is equivalent to pad_width in numpy.pad, but flattened. - constant_value (double, optional, default=0) – The value used for padding when mode is “constant”.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Pooling
(data=None, global_pool=_Null, cudnn_off=_Null, kernel=_Null, pool_type=_Null, pooling_convention=_Null, stride=_Null, pad=_Null, name=None, attr=None, out=None, **kwargs)¶ Performs pooling on the input.
The shapes for 1-D pooling are
- data: (batch_size, channel, width),
- out: (batch_size, num_filter, out_width).
The shapes for 2-D pooling are
data: (batch_size, channel, height, width)
out: (batch_size, num_filter, out_height, out_width), with:
out_height = f(height, kernel[0], pad[0], stride[0]) out_width = f(width, kernel[1], pad[1], stride[1])
The definition of f depends on
pooling_convention
, which has two options:valid (default):
f(x, k, p, s) = floor((x+2*p-k)/s)+1
full, which is compatible with Caffe:
f(x, k, p, s) = ceil((x+2*p-k)/s)+1
But
global_pool
is set to be true, then do a global pooling, namely resetkernel=(height, width)
.Three pooling options are supported by
pool_type
:- avg: average pooling
- max: max pooling
- sum: sum pooling
For 3-D pooling, an additional depth dimension is added before height. Namely the input data will have shape (batch_size, channel, depth, height, width).
Defined in src/operator/pooling.cc:L133
Parameters: - data (Symbol) – Input data to the pooling operator.
- global_pool (boolean, optional, default=0) – Ignore kernel size, do global pooling based on current input feature map.
- cudnn_off (boolean, optional, default=0) – Turn off cudnn pooling and use MXNet pooling operator.
- kernel (Shape(tuple), required) – pooling kernel size: (y, x) or (d, y, x)
- pool_type ({'avg', 'max', 'sum'}, required) – Pooling type to be applied.
- pooling_convention ({'full', 'valid'},optional, default='valid') – Pooling convention to be applied.
- stride (Shape(tuple), optional, default=[]) – stride: for pooling (y, x) or (d, y, x)
- pad (Shape(tuple), optional, default=[]) – pad for pooling: (y, x) or (d, y, x)
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Pooling_v1
(data=None, global_pool=_Null, kernel=_Null, pool_type=_Null, pooling_convention=_Null, stride=_Null, pad=_Null, name=None, attr=None, out=None, **kwargs)¶ This operator is DEPRECATED. Perform pooling on the input.
The shapes for 2-D pooling is
data: (batch_size, channel, height, width)
out: (batch_size, num_filter, out_height, out_width), with:
out_height = f(height, kernel[0], pad[0], stride[0]) out_width = f(width, kernel[1], pad[1], stride[1])
The definition of f depends on
pooling_convention
, which has two options:valid (default):
f(x, k, p, s) = floor((x+2*p-k)/s)+1
full, which is compatible with Caffe:
f(x, k, p, s) = ceil((x+2*p-k)/s)+1
But
global_pool
is set to be true, then do a global pooling, namely resetkernel=(height, width)
.Three pooling options are supported by
pool_type
:- avg: average pooling
- max: max pooling
- sum: sum pooling
1-D pooling is special case of 2-D pooling with weight=1 and kernel[1]=1.
For 3-D pooling, an additional depth dimension is added before height. Namely the input data will have shape (batch_size, channel, depth, height, width).
Defined in src/operator/pooling_v1.cc:L104
Parameters: - data (Symbol) – Input data to the pooling operator.
- global_pool (boolean, optional, default=0) – Ignore kernel size, do global pooling based on current input feature map.
- kernel (Shape(tuple), required) – pooling kernel size: (y, x) or (d, y, x)
- pool_type ({'avg', 'max', 'sum'}, required) – Pooling type to be applied.
- pooling_convention ({'full', 'valid'},optional, default='valid') – Pooling convention to be applied.
- stride (Shape(tuple), optional, default=[]) – stride: for pooling (y, x) or (d, y, x)
- pad (Shape(tuple), optional, default=[]) – pad for pooling: (y, x) or (d, y, x)
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
RNN
(data=None, parameters=None, state=None, state_cell=None, state_size=_Null, num_layers=_Null, bidirectional=_Null, mode=_Null, p=_Null, state_outputs=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies a recurrent layer to input.
Parameters: - data (Symbol) – Input data to RNN
- parameters (Symbol) – Vector of all RNN trainable parameters concatenated
- state (Symbol) – initial hidden state of the RNN
- state_cell (Symbol) – initial cell state for LSTM networks (only for LSTM)
- state_size (int (non-negative), required) – size of the state for each layer
- num_layers (int (non-negative), required) – number of stacked layers
- bidirectional (boolean, optional, default=0) – whether to use bidirectional recurrent layers
- mode ({'gru', 'lstm', 'rnn_relu', 'rnn_tanh'}, required) – the type of RNN to compute
- p (float, optional, default=0) – Dropout probability, fraction of the input that gets dropped out at training time
- state_outputs (boolean, optional, default=0) – Whether to have the states as symbol outputs.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
ROIPooling
(data=None, rois=None, pooled_size=_Null, spatial_scale=_Null, name=None, attr=None, out=None, **kwargs)¶ Performs region of interest(ROI) pooling on the input array.
ROI pooling is a variant of a max pooling layer, in which the output size is fixed and region of interest is a parameter. Its purpose is to perform max pooling on the inputs of non-uniform sizes to obtain fixed-size feature maps. ROI pooling is a neural-net layer mostly used in training a Fast R-CNN network for object detection.
This operator takes a 4D feature map as an input array and region proposals as rois, then it pools over sub-regions of input and produces a fixed-sized output array regardless of the ROI size.
To crop the feature map accordingly, you can resize the bounding box coordinates by changing the parameters rois and spatial_scale.
The cropped feature maps are pooled by standard max pooling operation to a fixed size output indicated by a pooled_size parameter. batch_size will change to the number of region bounding boxes after ROIPooling.
The size of each region of interest doesn’t have to be perfectly divisible by the number of pooling sections(pooled_size).
Example:
x = [[[[ 0., 1., 2., 3., 4., 5.], [ 6., 7., 8., 9., 10., 11.], [ 12., 13., 14., 15., 16., 17.], [ 18., 19., 20., 21., 22., 23.], [ 24., 25., 26., 27., 28., 29.], [ 30., 31., 32., 33., 34., 35.], [ 36., 37., 38., 39., 40., 41.], [ 42., 43., 44., 45., 46., 47.]]]] // region of interest i.e. bounding box coordinates. y = [[0,0,0,4,4]] // returns array of shape (2,2) according to the given roi with max pooling. ROIPooling(x, y, (2,2), 1.0) = [[[[ 14., 16.], [ 26., 28.]]]] // region of interest is changed due to the change in `spacial_scale` parameter. ROIPooling(x, y, (2,2), 0.7) = [[[[ 7., 9.], [ 19., 21.]]]]
Defined in src/operator/roi_pooling.cc:L287
Parameters: - data (Symbol) – The input array to the pooling operator, a 4D Feature maps
- rois (Symbol) – Bounding box coordinates, a 2D array of [[batch_index, x1, y1, x2, y2]], where (x1, y1) and (x2, y2) are top left and bottom right corners of designated region of interest. batch_index indicates the index of corresponding image in the input array
- pooled_size (Shape(tuple), required) – ROI pooling output shape (h,w)
- spatial_scale (float, required) – Ratio of input feature map height (or w) to raw image height (or w). Equals the reciprocal of total stride in convolutional layers
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Reshape
(data=None, shape=_Null, reverse=_Null, target_shape=_Null, keep_highest=_Null, name=None, attr=None, out=None, **kwargs)¶ Reshapes the input array.
Note
Reshape
is deprecated, usereshape
Given an array and a shape, this function returns a copy of the array in the new shape. The shape is a tuple of integers such as (2,3,4).The size of the new shape should be same as the size of the input array.
Example:
reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]]
Some dimensions of the shape can take special values from the set {0, -1, -2, -3, -4}. The significance of each is explained below:
0
copy this dimension from the input to the output shape.Example:
- input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4)
-1
infers the dimension of the output shape by using the remainder of the input dimensions keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1.Example:
- input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape = (2,3,4), shape=(-1,), output shape = (24,)
-2
copy all/remainder of the input dimensions to the output shape.Example:
- input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1)
-3
use the product of two consecutive dimensions of the input shape as the output dimension.Example:
- input shape = (2,3,4), shape = (-3,4), output shape = (6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20) - input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input shape = (2,3,4), shape = (-3,-2), output shape = (6,4)
-4
split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1).Example:
- input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4)
If the argument reverse is set to 1, then the special values are inferred from right to left.
Example:
- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5) - with reverse=1, output shape will be (50,4).
Defined in src/operator/tensor/matrix_op.cc:L106
Parameters: - data (Symbol) – Input data to reshape.
- shape (Shape(tuple), optional, default=[]) – The target shape
- reverse (boolean, optional, default=0) – If true then the special values are inferred from right to left
- target_shape (Shape(tuple), optional, default=[]) – (Deprecated! Use
shape
instead.) Target new shape. One and only one dim can be 0, in which case it will be inferred from the rest of dims - keep_highest (boolean, optional, default=0) – (Deprecated! Use
shape
instead.) Whether keep the highest dim unchanged.If set to true, then the first dim in target_shape is ignored,and always fixed as input - name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SVMOutput
(data=None, label=None, margin=_Null, regularization_coefficient=_Null, use_linear=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes support vector machine based transformation of the input.
This tutorial demonstrates using SVM as output layer for classification instead of softmax: https://github.com/dmlc/mxnet/tree/master/example/svm_mnist.
Parameters: - data (Symbol) – Input data for SVM transformation.
- label (Symbol) – Class label for the input data.
- margin (float, optional, default=1) – The loss function penalizes outputs that lie outside this margin. Default margin is 1.
- regularization_coefficient (float, optional, default=1) – Regularization parameter for the SVM. This balances the tradeoff between coefficient size and error.
- use_linear (boolean, optional, default=0) – Whether to use L1-SVM objective. L2-SVM objective is used by default.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SequenceLast
(data=None, sequence_length=None, use_sequence_length=_Null, name=None, attr=None, out=None, **kwargs)¶ Takes the last element of a sequence.
This function takes an n-dimensional input array of the form [max_sequence_length, batch_size, other_feature_dims] and returns a (n-1)-dimensional array of the form [batch_size, other_feature_dims].
Parameter sequence_length is used to handle variable-length sequences. sequence_length should be an input array of positive ints of dimension [batch_size]. To use this parameter, set use_sequence_length to True, otherwise each example in the batch is assumed to have the max sequence length.
Note
Alternatively, you can also use take operator.
Example:
x = [[[ 1., 2., 3.], [ 4., 5., 6.], [ 7., 8., 9.]], [[ 10., 11., 12.], [ 13., 14., 15.], [ 16., 17., 18.]], [[ 19., 20., 21.], [ 22., 23., 24.], [ 25., 26., 27.]]] // returns last sequence when sequence_length parameter is not used SequenceLast(x) = [[ 19., 20., 21.], [ 22., 23., 24.], [ 25., 26., 27.]] // sequence_length y is used SequenceLast(x, y=[1,1,1], use_sequence_length=True) = [[ 1., 2., 3.], [ 4., 5., 6.], [ 7., 8., 9.]] // sequence_length y is used SequenceLast(x, y=[1,2,3], use_sequence_length=True) = [[ 1., 2., 3.], [ 13., 14., 15.], [ 25., 26., 27.]]
Defined in src/operator/sequence_last.cc:L92
Parameters: - data (Symbol) – n-dimensional input array of the form [max_sequence_length, batch_size, other_feature_dims] where n>2
- sequence_length (Symbol) – vector of sequence lengths of the form [batch_size]
- use_sequence_length (boolean, optional, default=0) – If set to true, this layer takes in an extra input parameter sequence_length to specify variable length sequence
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SequenceMask
(data=None, sequence_length=None, use_sequence_length=_Null, value=_Null, name=None, attr=None, out=None, **kwargs)¶ Sets all elements outside the sequence to a constant value.
This function takes an n-dimensional input array of the form [max_sequence_length, batch_size, other_feature_dims] and returns an array of the same shape.
Parameter sequence_length is used to handle variable-length sequences. sequence_length should be an input array of positive ints of dimension [batch_size]. To use this parameter, set use_sequence_length to True, otherwise each example in the batch is assumed to have the max sequence length and this operator works as the identity operator.
Example:
x = [[[ 1., 2., 3.], [ 4., 5., 6.]], [[ 7., 8., 9.], [ 10., 11., 12.]], [[ 13., 14., 15.], [ 16., 17., 18.]]] // Batch 1 B1 = [[ 1., 2., 3.], [ 7., 8., 9.], [ 13., 14., 15.]] // Batch 2 B2 = [[ 4., 5., 6.], [ 10., 11., 12.], [ 16., 17., 18.]] // works as identity operator when sequence_length parameter is not used SequenceMask(x) = [[[ 1., 2., 3.], [ 4., 5., 6.]], [[ 7., 8., 9.], [ 10., 11., 12.]], [[ 13., 14., 15.], [ 16., 17., 18.]]] // sequence_length [1,1] means 1 of each batch will be kept // and other rows are masked with default mask value = 0 SequenceMask(x, y=[1,1], use_sequence_length=True) = [[[ 1., 2., 3.], [ 4., 5., 6.]], [[ 0., 0., 0.], [ 0., 0., 0.]], [[ 0., 0., 0.], [ 0., 0., 0.]]] // sequence_length [2,3] means 2 of batch B1 and 3 of batch B2 will be kept // and other rows are masked with value = 1 SequenceMask(x, y=[2,3], use_sequence_length=True, value=1) = [[[ 1., 2., 3.], [ 4., 5., 6.]], [[ 7., 8., 9.], [ 10., 11., 12.]], [[ 1., 1., 1.], [ 16., 17., 18.]]]
Defined in src/operator/sequence_mask.cc:L114
Parameters: - data (Symbol) – n-dimensional input array of the form [max_sequence_length, batch_size, other_feature_dims] where n>2
- sequence_length (Symbol) – vector of sequence lengths of the form [batch_size]
- use_sequence_length (boolean, optional, default=0) – If set to true, this layer takes in an extra input parameter sequence_length to specify variable length sequence
- value (float, optional, default=0) – The value to be used as a mask.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SequenceReverse
(data=None, sequence_length=None, use_sequence_length=_Null, name=None, attr=None, out=None, **kwargs)¶ Reverses the elements of each sequence.
This function takes an n-dimensional input array of the form [max_sequence_length, batch_size, other_feature_dims] and returns an array of the same shape.
Parameter sequence_length is used to handle variable-length sequences. sequence_length should be an input array of positive ints of dimension [batch_size]. To use this parameter, set use_sequence_length to True, otherwise each example in the batch is assumed to have the max sequence length.
Example:
x = [[[ 1., 2., 3.], [ 4., 5., 6.]], [[ 7., 8., 9.], [ 10., 11., 12.]], [[ 13., 14., 15.], [ 16., 17., 18.]]] // Batch 1 B1 = [[ 1., 2., 3.], [ 7., 8., 9.], [ 13., 14., 15.]] // Batch 2 B2 = [[ 4., 5., 6.], [ 10., 11., 12.], [ 16., 17., 18.]] // returns reverse sequence when sequence_length parameter is not used SequenceReverse(x) = [[[ 13., 14., 15.], [ 16., 17., 18.]], [[ 7., 8., 9.], [ 10., 11., 12.]], [[ 1., 2., 3.], [ 4., 5., 6.]]] // sequence_length [2,2] means 2 rows of // both batch B1 and B2 will be reversed. SequenceReverse(x, y=[2,2], use_sequence_length=True) = [[[ 7., 8., 9.], [ 10., 11., 12.]], [[ 1., 2., 3.], [ 4., 5., 6.]], [[ 13., 14., 15.], [ 16., 17., 18.]]] // sequence_length [2,3] means 2 of batch B2 and 3 of batch B3 // will be reversed. SequenceReverse(x, y=[2,3], use_sequence_length=True) = [[[ 7., 8., 9.], [ 16., 17., 18.]], [[ 1., 2., 3.], [ 10., 11., 12.]], [[ 13., 14, 15.], [ 4., 5., 6.]]]
Defined in src/operator/sequence_reverse.cc:L113
Parameters: - data (Symbol) – n-dimensional input array of the form [max_sequence_length, batch_size, other dims] where n>2
- sequence_length (Symbol) – vector of sequence lengths of the form [batch_size]
- use_sequence_length (boolean, optional, default=0) – If set to true, this layer takes in an extra input parameter sequence_length to specify variable length sequence
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SliceChannel
(data=None, num_outputs=_Null, axis=_Null, squeeze_axis=_Null, name=None, attr=None, out=None, **kwargs)¶ Splits an array along a particular axis into multiple sub-arrays.
Note
SliceChannel
is deprecated. Usesplit
instead.Note that num_outputs should evenly divide the length of the axis along which to split the array.
Example:
x = [[[ 1.] [ 2.]] [[ 3.] [ 4.]] [[ 5.] [ 6.]]] x.shape = (3, 2, 1) y = split(x, axis=1, num_outputs=2) // a list of 2 arrays with shape (3, 1, 1) y = [[[ 1.]] [[ 3.]] [[ 5.]]] [[[ 2.]] [[ 4.]] [[ 6.]]] y[0].shape = (3, 1, 1) z = split(x, axis=0, num_outputs=3) // a list of 3 arrays with shape (1, 2, 1) z = [[[ 1.] [ 2.]]] [[[ 3.] [ 4.]]] [[[ 5.] [ 6.]]] z[0].shape = (1, 2, 1)
squeeze_axis=1 removes the axis with length 1 from the shapes of the output arrays. Note that setting squeeze_axis to
1
removes axis with length 1 only along the axis which it is split. Also squeeze_axis can be set to true only ifinput.shape[axis] == num_outputs
.Example:
z = split(x, axis=0, num_outputs=3, squeeze_axis=1) // a list of 3 arrays with shape (2, 1) z = [[ 1.] [ 2.]] [[ 3.] [ 4.]] [[ 5.] [ 6.]] z[0].shape = (2 ,1 )
Defined in src/operator/slice_channel.cc:L107
Parameters: - data (Symbol) – The input
- num_outputs (int, required) – Number of splits. Note that this should evenly divide the length of the axis.
- axis (int, optional, default='1') – Axis along which to split.
- squeeze_axis (boolean, optional, default=0) – If true, Removes the axis with length 1 from the shapes of the output arrays. Note that setting squeeze_axis to
true
removes axis with length 1 only along the axis which it is split. Also squeeze_axis can be set totrue
only ifinput.shape[axis] == num_outputs
. - name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
Softmax
(data=None, grad_scale=_Null, ignore_label=_Null, multi_output=_Null, use_ignore=_Null, preserve_shape=_Null, normalization=_Null, out_grad=_Null, smooth_alpha=_Null, name=None, attr=None, out=None, **kwargs)¶ Please use SoftmaxOutput.
Note
This operator has been renamed to SoftmaxOutput, which computes the gradient of cross-entropy loss w.r.t softmax output. To just compute softmax output, use the softmax operator.
Defined in src/operator/softmax_output.cc:L138
Parameters: - data (Symbol) – Input array.
- grad_scale (float, optional, default=1) – Scales the gradient by a float factor.
- ignore_label (float, optional, default=-1) – The instances whose labels == ignore_label will be ignored during backward, if use_ignore is set to
true
). - multi_output (boolean, optional, default=0) – If set to
true
, the softmax function will be computed along axis1
. This is applied when the shape of input array differs from the shape of label array. - use_ignore (boolean, optional, default=0) – If set to
true
, the ignore_label value will not contribute to the backward gradient. - preserve_shape (boolean, optional, default=0) – If set to
true
, the softmax function will be computed along the last axis (-1
). - normalization ({'batch', 'null', 'valid'},optional, default='null') – Normalizes the gradient.
- out_grad (boolean, optional, default=0) – Multiplies gradient with output gradient element-wise.
- smooth_alpha (float, optional, default=0) – Constant for computing a label smoothed version of cross-entropyfor the backwards pass. This constant gets subtracted from theone-hot encoding of the gold label and distributed uniformly toall other labels.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SoftmaxActivation
(data=None, mode=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies softmax activation to input. This is intended for internal layers.
Note
This operator has been deprecated, please use softmax.
If mode =
instance
, this operator will compute a softmax for each instance in the batch. This is the default mode.If mode =
channel
, this operator will compute a k-class softmax at each position of each instance, where k =num_channel
. This mode can only be used when the input array has at least 3 dimensions. This can be used for fully convolutional network, image segmentation, etc.Example:
>>> input_array = mx.nd.array([[3., 0.5, -0.5, 2., 7.], >>> [2., -.4, 7., 3., 0.2]]) >>> softmax_act = mx.nd.SoftmaxActivation(input_array) >>> print softmax_act.asnumpy() [[ 1.78322066e-02 1.46375655e-03 5.38485940e-04 6.56010211e-03 9.73605454e-01] [ 6.56221947e-03 5.95310994e-04 9.73919690e-01 1.78379621e-02 1.08472735e-03]]
Defined in src/operator/softmax_activation.cc:L67
Parameters: - data (Symbol) – Input array to activation function.
- mode ({'channel', 'instance'},optional, default='instance') – Specifies how to compute the softmax. If set to
instance
, it computes softmax for each instance. If set tochannel
, It computes cross channel softmax for each position of each instance. - name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SoftmaxOutput
(data=None, label=None, grad_scale=_Null, ignore_label=_Null, multi_output=_Null, use_ignore=_Null, preserve_shape=_Null, normalization=_Null, out_grad=_Null, smooth_alpha=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the gradient of cross entropy loss with respect to softmax output.
This operator computes the gradient in two steps. The cross entropy loss does not actually need to be computed.
- Applies softmax function on the input array.
- Computes and returns the gradient of cross entropy loss w.r.t. the softmax output.
The softmax function, cross entropy loss and gradient is given by:
Softmax Function:
\[\text{softmax}(x)_i = \frac{exp(x_i)}{\sum_j exp(x_j)}\]Cross Entropy Function:
\[\text{CE(label, output)} = - \sum_i \text{label}_i \log(\text{output}_i)\]The gradient of cross entropy loss w.r.t softmax output:
\[\text{gradient} = \text{output} - \text{label}\]
During forward propagation, the softmax function is computed for each instance in the input array.
For general N-D input arrays with shape \((d_1, d_2, ..., d_n)\). The size is \(s=d_1 \cdot d_2 \cdot \cdot \cdot d_n\). We can use the parameters preserve_shape and multi_output to specify the way to compute softmax:
- By default, preserve_shape is
false
. This operator will reshape the input array into a 2-D array with shape \((d_1, \frac{s}{d_1})\) and then compute the softmax function for each row in the reshaped array, and afterwards reshape it back to the original shape \((d_1, d_2, ..., d_n)\). - If preserve_shape is
true
, the softmax function will be computed along the last axis (axis =-1
). - If multi_output is
true
, the softmax function will be computed along the second axis (axis =1
).
- By default, preserve_shape is
During backward propagation, the gradient of cross-entropy loss w.r.t softmax output array is computed. The provided label can be a one-hot label array or a probability label array.
If the parameter use_ignore is
true
, ignore_label can specify input instances with a particular label to be ignored during backward propagation. This has no effect when softmax `output` has same shape as `label`.Example:
data = [[1,2,3,4],[2,2,2,2],[3,3,3,3],[4,4,4,4]] label = [1,0,2,3] ignore_label = 1 SoftmaxOutput(data=data, label = label,\ multi_output=true, use_ignore=true,\ ignore_label=ignore_label) ## forward softmax output [[ 0.0320586 0.08714432 0.23688284 0.64391428] [ 0.25 0.25 0.25 0.25 ] [ 0.25 0.25 0.25 0.25 ] [ 0.25 0.25 0.25 0.25 ]] ## backward gradient output [[ 0. 0. 0. 0. ] [-0.75 0.25 0.25 0.25] [ 0.25 0.25 -0.75 0.25] [ 0.25 0.25 0.25 -0.75]] ## notice that the first row is all 0 because label[0] is 1, which is equal to ignore_label.
The parameter grad_scale can be used to rescale the gradient, which is often used to give each loss function different weights.
This operator also supports various ways to normalize the gradient by normalization, The normalization is applied if softmax output has different shape than the labels. The normalization mode can be set to the followings:
'null'
: do nothing.'batch'
: divide the gradient by the batch size.'valid'
: divide the gradient by the number of instances which are not ignored.
Defined in src/operator/softmax_output.cc:L123
Parameters: - data (Symbol) – Input array.
- label (Symbol) – Ground truth label.
- grad_scale (float, optional, default=1) – Scales the gradient by a float factor.
- ignore_label (float, optional, default=-1) – The instances whose labels == ignore_label will be ignored during backward, if use_ignore is set to
true
). - multi_output (boolean, optional, default=0) – If set to
true
, the softmax function will be computed along axis1
. This is applied when the shape of input array differs from the shape of label array. - use_ignore (boolean, optional, default=0) – If set to
true
, the ignore_label value will not contribute to the backward gradient. - preserve_shape (boolean, optional, default=0) – If set to
true
, the softmax function will be computed along the last axis (-1
). - normalization ({'batch', 'null', 'valid'},optional, default='null') – Normalizes the gradient.
- out_grad (boolean, optional, default=0) – Multiplies gradient with output gradient element-wise.
- smooth_alpha (float, optional, default=0) – Constant for computing a label smoothed version of cross-entropyfor the backwards pass. This constant gets subtracted from theone-hot encoding of the gold label and distributed uniformly toall other labels.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SpatialTransformer
(data=None, loc=None, target_shape=_Null, transform_type=_Null, sampler_type=_Null, name=None, attr=None, out=None, **kwargs)¶ Applies a spatial transformer to input feature map.
Parameters: - data (Symbol) – Input data to the SpatialTransformerOp.
- loc (Symbol) – localisation net, the output dim should be 6 when transform_type is affine. You shold initialize the weight and bias with identity tranform.
- target_shape (Shape(tuple), optional, default=[0,0]) – output shape(h, w) of spatial transformer: (y, x)
- transform_type ({'affine'}, required) – transformation type
- sampler_type ({'bilinear'}, required) – sampling type
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
SwapAxis
(data=None, dim1=_Null, dim2=_Null, name=None, attr=None, out=None, **kwargs)¶ Interchanges two axes of an array.
Examples:
x = [[1, 2, 3]]) swapaxes(x, 0, 1) = [[ 1], [ 2], [ 3]] x = [[[ 0, 1], [ 2, 3]], [[ 4, 5], [ 6, 7]]] // (2,2,2) array swapaxes(x, 0, 2) = [[[ 0, 4], [ 2, 6]], [[ 1, 5], [ 3, 7]]]
Defined in src/operator/swapaxis.cc:L70
Parameters: - data (Symbol) – Input array.
- dim1 (int (non-negative), optional, default=0) – the first axis to be swapped.
- dim2 (int (non-negative), optional, default=0) – the second axis to be swapped.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
UpSampling
(*data, **kwargs)¶ Performs nearest neighbor/bilinear up sampling to inputs. This function support variable length of positional input.
Parameters: - data (Symbol[]) – Array of tensors to upsample
- scale (int (non-negative), required) – Up sampling scale
- num_filter (int (non-negative), optional, default=0) – Input filter. Only used by bilinear sample_type.
- sample_type ({'bilinear', 'nearest'}, required) – upsampling method
- multi_input_mode ({'concat', 'sum'},optional, default='concat') – How to handle multiple input. concat means concatenate upsampled images along the channel dimension. sum means add all images together, only available for nearest neighbor upsampling.
- workspace (long (non-negative), optional, default=512) – Tmp workspace for deconvolution (MB)
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
abs
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise absolute value of the input.
Example:
abs([-2, 0, 3]) = [2, 0, 3]
The storage type of
abs
output depends upon the input storage type:- abs(default) = default
- abs(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L386
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
adam_update
(weight=None, grad=None, mean=None, var=None, lr=_Null, beta1=_Null, beta2=_Null, epsilon=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, name=None, attr=None, out=None, **kwargs)¶ Update function for Adam optimizer. Adam is seen as a generalization of AdaGrad.
Adam update consists of the following steps, where g represents gradient and m, v are 1st and 2nd order moment estimates (mean and variance).
\[\begin{split}g_t = \nabla J(W_{t-1})\\ m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t\\ v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2\\ W_t = W_{t-1} - \alpha \frac{ m_t }{ \sqrt{ v_t } + \epsilon }\end{split}\]It updates the weights using:
m = beta1*m + (1-beta1)*grad v = beta2*v + (1-beta2)*(grad**2) w += - learning_rate * m / (sqrt(v) + epsilon)
If w, m and v are all of
row_sparse
storage type, only the row slices whose indices appear in grad.indices are updated (for w, m and v):for row in grad.indices: m[row] = beta1*m[row] + (1-beta1)*grad[row] v[row] = beta2*v[row] + (1-beta2)*(grad[row]**2) w[row] += - learning_rate * m[row] / (sqrt(v[row]) + epsilon)
Defined in src/operator/optimizer_op.cc:L175
Parameters: - weight (Symbol) – Weight
- grad (Symbol) – Gradient
- mean (Symbol) – Moving mean
- var (Symbol) – Moving variance
- lr (float, required) – Learning rate
- beta1 (float, optional, default=0.9) – The decay rate for the 1st moment estimates.
- beta2 (float, optional, default=0.999) – The decay rate for the 2nd moment estimates.
- epsilon (float, optional, default=1e-08) – A small constant for numerical stability.
- wd (float, optional, default=0) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.
- rescale_grad (float, optional, default=1) – Rescale gradient to grad = rescale_grad*grad.
- clip_gradient (float, optional, default=-1) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
add_n
(*args, **kwargs)¶ Adds all input arguments element-wise.
\[add\_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n\]add_n
is potentially more efficient than callingadd
by n times.The storage type of
add_n
output depends on storage types of inputs- add_n(row_sparse, row_sparse, ..) = row_sparse
- otherwise,
add_n
generates output with default storage
Defined in src/operator/tensor/elemwise_sum.cc:L123 This function support variable length of positional input.
Parameters: - args (Symbol[]) – Positional input arguments
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
arccos
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise inverse cosine of the input array.
The input should be in range [-1, 1]. The output is in the closed interval \([0, \pi]\)
\[arccos([-1, -.707, 0, .707, 1]) = [\pi, 3\pi/4, \pi/2, \pi/4, 0]\]The storage type of
arccos
output is always denseDefined in src/operator/tensor/elemwise_unary_op_trig.cc:L123
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
arccosh
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns the element-wise inverse hyperbolic cosine of the input array, computed element-wise.
The storage type of
arccosh
output is always denseDefined in src/operator/tensor/elemwise_unary_op_trig.cc:L264
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
arcsin
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise inverse sine of the input array.
The input should be in the range [-1, 1]. The output is in the closed interval of [\(-\pi/2\), \(\pi/2\)].
\[arcsin([-1, -.707, 0, .707, 1]) = [-\pi/2, -\pi/4, 0, \pi/4, \pi/2]\]The storage type of
arcsin
output depends upon the input storage type:- arcsin(default) = default
- arcsin(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L104
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
arcsinh
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns the element-wise inverse hyperbolic sine of the input array, computed element-wise.
The storage type of
arcsinh
output depends upon the input storage type:- arcsinh(default) = default
- arcsinh(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L250
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
arctan
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise inverse tangent of the input array.
The output is in the closed interval \([-\pi/2, \pi/2]\)
\[arctan([-1, 0, 1]) = [-\pi/4, 0, \pi/4]\]The storage type of
arctan
output depends upon the input storage type:- arctan(default) = default
- arctan(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L144
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
arctanh
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns the element-wise inverse hyperbolic tangent of the input array, computed element-wise.
The storage type of
arctanh
output depends upon the input storage type:- arctanh(default) = default
- arctanh(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L281
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
argmax
(data=None, axis=_Null, keepdims=_Null, name=None, attr=None, out=None, **kwargs)¶ Returns indices of the maximum values along an axis.
In the case of multiple occurrences of maximum values, the indices corresponding to the first occurrence are returned.
Examples:
x = [[ 0., 1., 2.], [ 3., 4., 5.]] // argmax along axis 0 argmax(x, axis=0) = [ 1., 1., 1.] // argmax along axis 1 argmax(x, axis=1) = [ 2., 2.] // argmax along axis 1 keeping same dims as an input array argmax(x, axis=1, keepdims=True) = [[ 2.], [ 2.]]
Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L52
Parameters: - data (Symbol) – The input
- axis (int or None, optional, default='None') – The axis along which to perform the reduction. Negative values means indexing from right to left.
Requires axis to be set as int, because global reduction is not supported yet.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axis is left in the result as dimension with size one.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
argmax_channel
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns argmax indices of each channel from the input array.
The result will be an NDArray of shape (num_channel,).
In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned.
Examples:
x = [[ 0., 1., 2.], [ 3., 4., 5.]] argmax_channel(x) = [ 2., 2.]
Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L97
Parameters: - data (Symbol) – The input array
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
argmin
(data=None, axis=_Null, keepdims=_Null, name=None, attr=None, out=None, **kwargs)¶ Returns indices of the minimum values along an axis.
In the case of multiple occurrences of minimum values, the indices corresponding to the first occurrence are returned.
Examples:
x = [[ 0., 1., 2.], [ 3., 4., 5.]] // argmin along axis 0 argmin(x, axis=0) = [ 0., 0., 0.] // argmin along axis 1 argmin(x, axis=1) = [ 0., 0.] // argmin along axis 1 keeping same dims as an input array argmin(x, axis=1, keepdims=True) = [[ 0.], [ 0.]]
Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L77
Parameters: - data (Symbol) – The input
- axis (int or None, optional, default='None') – The axis along which to perform the reduction. Negative values means indexing from right to left.
Requires axis to be set as int, because global reduction is not supported yet.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axis is left in the result as dimension with size one.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
argsort
(data=None, axis=_Null, is_ascend=_Null, name=None, attr=None, out=None, **kwargs)¶ Returns the indices that would sort an input array along the given axis.
This function performs sorting along the given axis and returns an array of indices having same shape as an input array that index data in sorted order.
Examples:
x = [[ 0.3, 0.2, 0.4], [ 0.1, 0.3, 0.2]] // sort along axis -1 argsort(x) = [[ 1., 0., 2.], [ 0., 2., 1.]] // sort along axis 0 argsort(x, axis=0) = [[ 1., 0., 1.] [ 0., 1., 0.]] // flatten and then sort argsort(x) = [ 3., 1., 5., 0., 4., 2.]
Defined in src/operator/tensor/ordering_op.cc:L176
Parameters: - data (Symbol) – The input array
- axis (int or None, optional, default='-1') – Axis along which to sort the input tensor. If not given, the flattened array is used. Default is -1.
- is_ascend (boolean, optional, default=1) – Whether to sort in ascending or descending order.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
batch_dot
(lhs=None, rhs=None, transpose_a=_Null, transpose_b=_Null, name=None, attr=None, out=None, **kwargs)¶ Batchwise dot product.
batch_dot
is used to compute dot product ofx
andy
whenx
andy
are data in batch, namely 3D arrays in shape of (batch_size, :, :).For example, given
x
with shape (batch_size, n, m) andy
with shape (batch_size, m, k), the result array will have shape (batch_size, n, k), which is computed by:batch_dot(x,y)[i,:,:] = dot(x[i,:,:], y[i,:,:])
Defined in src/operator/tensor/dot.cc:L109
Parameters: - lhs (Symbol) – The first input
- rhs (Symbol) – The second input
- transpose_a (boolean, optional, default=0) – If true then transpose the first input before dot.
- transpose_b (boolean, optional, default=0) – If true then transpose the second input before dot.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
batch_take
(a=None, indices=None, name=None, attr=None, out=None, **kwargs)¶ Takes elements from a data batch.
Note
batch_take is deprecated. Use pick instead.
Given an input array of shape
(d0, d1)
and indices of shape(i0,)
, the result will be an output array of shape(i0,)
with:output[i] = input[i, indices[i]]
Examples:
x = [[ 1., 2.], [ 3., 4.], [ 5., 6.]] // takes elements with specified indices batch_take(x, [0,1,0]) = [ 1. 4. 5.]
Defined in src/operator/tensor/indexing_op.cc:L421
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_add
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise sum of the input arrays with broadcasting.
broadcast_plus is an alias to the function broadcast_add.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_add(x, y) = [[ 1., 1., 1.], [ 2., 2., 2.]] broadcast_plus(x, y) = [[ 1., 1., 1.], [ 2., 2., 2.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L51
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_axes
(data=None, axis=_Null, size=_Null, name=None, attr=None, out=None, **kwargs)¶ Broadcasts the input array over particular axes.
Broadcasting is allowed on axes with size 1, such as from (2,1,3,1) to (2,8,3,9). Elements will be duplicated on the broadcasted axes.
Example:
// given x of shape (1,2,1) x = [[[ 1.], [ 2.]]] // broadcast x on on axis 2 broadcast_axis(x, axis=2, size=3) = [[[ 1., 1., 1.], [ 2., 2., 2.]]] // broadcast x on on axes 0 and 2 broadcast_axis(x, axis=(0,2), size=(2,3)) = [[[ 1., 1., 1.], [ 2., 2., 2.]], [[ 1., 1., 1.], [ 2., 2., 2.]]]
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L207
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) – The axes to perform the broadcasting.
- size (Shape(tuple), optional, default=[]) – Target sizes of the broadcasting axes.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_axis
(data=None, axis=_Null, size=_Null, name=None, attr=None, out=None, **kwargs)¶ Broadcasts the input array over particular axes.
Broadcasting is allowed on axes with size 1, such as from (2,1,3,1) to (2,8,3,9). Elements will be duplicated on the broadcasted axes.
Example:
// given x of shape (1,2,1) x = [[[ 1.], [ 2.]]] // broadcast x on on axis 2 broadcast_axis(x, axis=2, size=3) = [[[ 1., 1., 1.], [ 2., 2., 2.]]] // broadcast x on on axes 0 and 2 broadcast_axis(x, axis=(0,2), size=(2,3)) = [[[ 1., 1., 1.], [ 2., 2., 2.]], [[ 1., 1., 1.], [ 2., 2., 2.]]]
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L207
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) – The axes to perform the broadcasting.
- size (Shape(tuple), optional, default=[]) – Target sizes of the broadcasting axes.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_div
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise division of the input arrays with broadcasting.
Example:
x = [[ 6., 6., 6.], [ 6., 6., 6.]] y = [[ 2.], [ 3.]] broadcast_div(x, y) = [[ 3., 3., 3.], [ 2., 2., 2.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L157
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_equal
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns the result of element-wise equal to (==) comparison operation with broadcasting.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_equal(x, y) = [[ 0., 0., 0.], [ 1., 1., 1.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L46
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_greater
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns the result of element-wise greater than (>) comparison operation with broadcasting.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_greater(x, y) = [[ 1., 1., 1.], [ 0., 0., 0.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L82
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_greater_equal
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns the result of element-wise greater than or equal to (>=) comparison operation with broadcasting.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_greater_equal(x, y) = [[ 1., 1., 1.], [ 1., 1., 1.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L100
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_hypot
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns the hypotenuse of a right angled triangle, given its “legs” with broadcasting.
It is equivalent to doing \(sqrt(x_1^2 + x_2^2)\).
Example:
x = [[ 3., 3., 3.]] y = [[ 4.], [ 4.]] broadcast_hypot(x, y) = [[ 5., 5., 5.], [ 5., 5., 5.]] z = [[ 0.], [ 4.]] broadcast_hypot(x, z) = [[ 3., 3., 3.], [ 5., 5., 5.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L156
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_lesser
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns the result of element-wise lesser than (<) comparison operation with broadcasting.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_lesser(x, y) = [[ 0., 0., 0.], [ 0., 0., 0.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L118
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_lesser_equal
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns the result of element-wise lesser than or equal to (<=) comparison operation with broadcasting.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_lesser_equal(x, y) = [[ 0., 0., 0.], [ 1., 1., 1.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L136
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_maximum
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise maximum of the input arrays with broadcasting.
This function compares two input arrays and returns a new array having the element-wise maxima.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_maximum(x, y) = [[ 1., 1., 1.], [ 1., 1., 1.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L80
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_minimum
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise minimum of the input arrays with broadcasting.
This function compares two input arrays and returns a new array having the element-wise minima.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_maximum(x, y) = [[ 0., 0., 0.], [ 1., 1., 1.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L115
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_minus
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise difference of the input arrays with broadcasting.
broadcast_minus is an alias to the function broadcast_sub.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_sub(x, y) = [[ 1., 1., 1.], [ 0., 0., 0.]] broadcast_minus(x, y) = [[ 1., 1., 1.], [ 0., 0., 0.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L90
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_mod
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise modulo of the input arrays with broadcasting.
Example:
x = [[ 8., 8., 8.], [ 8., 8., 8.]] y = [[ 2.], [ 3.]] broadcast_mod(x, y) = [[ 0., 0., 0.], [ 2., 2., 2.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L190
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_mul
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise product of the input arrays with broadcasting.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_mul(x, y) = [[ 0., 0., 0.], [ 1., 1., 1.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L123
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_not_equal
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns the result of element-wise not equal to (!=) comparison operation with broadcasting.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_not_equal(x, y) = [[ 1., 1., 1.], [ 0., 0., 0.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L64
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_plus
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise sum of the input arrays with broadcasting.
broadcast_plus is an alias to the function broadcast_add.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_add(x, y) = [[ 1., 1., 1.], [ 2., 2., 2.]] broadcast_plus(x, y) = [[ 1., 1., 1.], [ 2., 2., 2.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L51
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_power
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns result of first array elements raised to powers from second array, element-wise with broadcasting.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_power(x, y) = [[ 2., 2., 2.], [ 4., 4., 4.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L45
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_sub
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise difference of the input arrays with broadcasting.
broadcast_minus is an alias to the function broadcast_sub.
Example:
x = [[ 1., 1., 1.], [ 1., 1., 1.]] y = [[ 0.], [ 1.]] broadcast_sub(x, y) = [[ 1., 1., 1.], [ 0., 0., 0.]] broadcast_minus(x, y) = [[ 1., 1., 1.], [ 0., 0., 0.]]
Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L90
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
broadcast_to
(data=None, shape=_Null, name=None, attr=None, out=None, **kwargs)¶ Broadcasts the input array to a new shape.
Broadcasting is a mechanism that allows NDArrays to perform arithmetic operations with arrays of different shapes efficiently without creating multiple copies of arrays. Also see, Broadcasting for more explanation.
Broadcasting is allowed on axes with size 1, such as from (2,1,3,1) to (2,8,3,9). Elements will be duplicated on the broadcasted axes.
For example:
broadcast_to([[1,2,3]], shape=(2,3)) = [[ 1., 2., 3.], [ 1., 2., 3.]])
The dimension which you do not want to change can also be kept as 0 which means copy the original value. So with shape=(2,0), we will obtain the same result as in the above example.
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L231
Parameters: - data (Symbol) – The input
- shape (Shape(tuple), optional, default=[]) – The shape of the desired array. We can set the dim to zero if it’s same as the original. E.g A = broadcast_to(B, shape=(10, 0, 0)) has the same meaning as A = broadcast_axis(B, axis=0, size=10).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
cast
(data=None, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Casts all elements of the input to a new type.
Note
Cast
is deprecated. Usecast
instead.Example:
cast([0.9, 1.3], dtype='int32') = [0, 1] cast([1e20, 11.1], dtype='float16') = [inf, 11.09375] cast([300, 11.1, 10.9, -1, -3], dtype='uint8') = [44, 11, 10, 255, 253]
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L311
Parameters: - data (Symbol) – The input.
- dtype ({'float16', 'float32', 'float64', 'int32', 'uint8'}, required) – Output data type.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
cast_storage
(data=None, stype=_Null, name=None, attr=None, out=None, **kwargs)¶ Casts tensor storage type to the new type.
When an NDArray with default storage type is cast to csr or row_sparse storage, the result is compact, which means:
- for csr, zero values will not be retained
- for row_sparse, row slices of all zeros will not be retained
The storage type of
cast_storage
output depends on stype parameter:- cast_storage(csr, ‘default’) = default
- cast_storage(row_sparse, ‘default’) = default
- cast_storage(default, ‘csr’) = csr
- cast_storage(default, ‘row_sparse’) = row_sparse
Example:
dense = [[ 0., 1., 0.], [ 2., 0., 3.], [ 0., 0., 0.], [ 0., 0., 0.]] # cast to row_sparse storage type rsp = cast_storage(dense, 'row_sparse') rsp.indices = [0, 1] rsp.values = [[ 0., 1., 0.], [ 2., 0., 3.]] # cast to csr storage type csr = cast_storage(dense, 'csr') csr.indices = [1, 0, 2] csr.values = [ 1., 2., 3.] csr.indptr = [0, 1, 3, 3, 3]
Defined in src/operator/tensor/cast_storage.cc:L69
Parameters: - data (Symbol) – The input.
- stype ({'csr', 'default', 'row_sparse'}, required) – Output storage type.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
cbrt
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise cube-root value of the input.
\[cbrt(x) = \sqrt[3]{x}\]Example:
cbrt([1, 8, -125]) = [1, 2, -5]
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L597
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
ceil
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise ceiling of the input.
The ceil of the scalar x is the smallest integer i, such that i >= x.
Example:
ceil([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-2., -1., 2., 2., 3.]
The storage type of
ceil
output depends upon the input storage type:- ceil(default) = default
- ceil(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L463
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
choose_element_0index
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Choose one element from each line(row for python, column for R/Julia) in lhs according to index indicated by rhs. This function assume rhs uses 0-based index.
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
clip
(data=None, a_min=_Null, a_max=_Null, name=None, attr=None, out=None, **kwargs)¶ Clips (limits) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges. Clipping
x
between a_min and a_x would be:clip(x, a_min, a_max) = max(min(x, a_max), a_min))
Example:
x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] clip(x,1,8) = [ 1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]
The storage type of
clip
output depends on storage types of inputs and the a_min, a_max parameter values:- clip(default) = default
- clip(row_sparse, a_min <= 0, a_max >= 0) = row_sparse
- clip(csr, a_min <= 0, a_max >= 0) = csr
- clip(row_sparse, a_min < 0, a_max < 0) = default
- clip(row_sparse, a_min > 0, a_max > 0) = default
- clip(csr, a_min < 0, a_max < 0) = csr
- clip(csr, a_min > 0, a_max > 0) = csr
Defined in src/operator/tensor/matrix_op.cc:L424
Parameters: - data (Symbol) – Input array.
- a_min (float, required) – Minimum value
- a_max (float, required) – Maximum value
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
concat
(*data, **kwargs)¶ Joins input arrays along a given axis.
Note
Concat is deprecated. Use concat instead.
The dimensions of the input arrays should be the same except the axis along which they will be concatenated. The dimension of the output array along the concatenated axis will be equal to the sum of the corresponding dimensions of the input arrays.
Example:
x = [[1,1],[2,2]] y = [[3,3],[4,4],[5,5]] z = [[6,6], [7,7],[8,8]] concat(x,y,z,dim=0) = [[ 1., 1.], [ 2., 2.], [ 3., 3.], [ 4., 4.], [ 5., 5.], [ 6., 6.], [ 7., 7.], [ 8., 8.]] Note that you cannot concat x,y,z along dimension 1 since dimension 0 is not the same for all the input arrays. concat(y,z,dim=1) = [[ 3., 3., 6., 6.], [ 4., 4., 7., 7.], [ 5., 5., 8., 8.]]
Defined in src/operator/concat.cc:L104 This function support variable length of positional input.
Parameters: - data (Symbol[]) – List of arrays to concatenate
- dim (int, optional, default='1') – the dimension to be concated.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
cos
(data=None, name=None, attr=None, out=None, **kwargs)¶ Computes the element-wise cosine of the input array.
The input should be in radians (\(2\pi\) rad equals 360 degrees).
\[cos([0, \pi/4, \pi/2]) = [1, 0.707, 0]\]The storage type of
cos
output is always denseDefined in src/operator/tensor/elemwise_unary_op_trig.cc:L63
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
cosh
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns the hyperbolic cosine of the input array, computed element-wise.
\[cosh(x) = 0.5\times(exp(x) + exp(-x))\]The storage type of
cosh
output is always denseDefined in src/operator/tensor/elemwise_unary_op_trig.cc:L216
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
crop
(data=None, begin=_Null, end=_Null, step=_Null, name=None, attr=None, out=None, **kwargs)¶ Slices a region of the array.
Note
crop
is deprecated. Useslice
instead.This function returns a sliced array between the indices given by begin and end with the corresponding step.
For an input array of
shape=(d_0, d_1, ..., d_n-1)
, slice operation withbegin=(b_0, b_1...b_m-1)
,end=(e_0, e_1, ..., e_m-1)
, andstep=(s_0, s_1, ..., s_m-1)
, where m <= n, results in an array with the shape(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-1)
.The resulting array’s k-th dimension contains elements from the k-th dimension of the input array starting from index
b_k
(inclusive) with steps_k
until reachinge_k
(exclusive).If the k-th elements are None in the sequence of begin, end, and step, the following rule will be used to set default values. If s_k is None, set s_k=1. If s_k > 0, set b_k=0, e_k=d_k; else, set b_k=d_k-1, e_k=-1.
The storage type of
slice
output depends on storage types of inputs- slice(csr) = csr
- otherwise,
slice
generates output with default storage
Note
When input data storage type is csr, it only supports
step=(), or step=(None,), or step=(1,) to generate a csr output. For other step parameter values, it falls back to slicing a dense tensor.
Example:
x = [[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]] slice(x, begin=(0,1), end=(2,4)) = [[ 2., 3., 4.], [ 6., 7., 8.]] slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.], [5., 7.], [1., 3.]]
Defined in src/operator/tensor/matrix_op.cc:L297
Parameters: - data (Symbol) – Source input
- begin (Shape(tuple), required) – starting indices for the slice operation, supports negative indices.
- end (Shape(tuple), required) – ending indices for the slice operation, supports negative indices.
- step (Shape(tuple), optional, default=[]) – step for the slice operation, supports negative values.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
degrees
(data=None, name=None, attr=None, out=None, **kwargs)¶ Converts each element of the input array from radians to degrees.
\[degrees([0, \pi/2, \pi, 3\pi/2, 2\pi]) = [0, 90, 180, 270, 360]\]The storage type of
degrees
output depends upon the input storage type:- degrees(default) = default
- degrees(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L163
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
dot
(lhs=None, rhs=None, transpose_a=_Null, transpose_b=_Null, name=None, attr=None, out=None, **kwargs)¶ Dot product of two arrays.
dot
‘s behavior depends on the input array dimensions:1-D arrays: inner product of vectors
2-D arrays: matrix multiplication
N-D arrays: a sum product over the last axis of the first input and the first axis of the second input
For example, given 3-D
x
with shape (n,m,k) andy
with shape (k,r,s), the result array will have shape (n,m,r,s). It is computed by:dot(x,y)[i,j,a,b] = sum(x[i,j,:]*y[:,a,b])
Example:
x = reshape([0,1,2,3,4,5,6,7], shape=(2,2,2)) y = reshape([7,6,5,4,3,2,1,0], shape=(2,2,2)) dot(x,y)[0,0,1,1] = 0 sum(x[0,0,:]*y[:,1,1]) = 0
The storage type of
dot
output depends on storage types of inputs and transpose options:- dot(csr, default) = default
- dot(csr.T, default) = row_sparse
- dot(csr, row_sparse) = default
- otherwise,
dot
generates output with default storage
Defined in src/operator/tensor/dot.cc:L61
Parameters: - lhs (Symbol) – The first input
- rhs (Symbol) – The second input
- transpose_a (boolean, optional, default=0) – If true then transpose the first input before dot.
- transpose_b (boolean, optional, default=0) – If true then transpose the second input before dot.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
elemwise_add
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Adds arguments element-wise.
The storage type of
elemwise_add
output depends on storage types of inputs- elemwise_add(row_sparse, row_sparse) = row_sparse
- elemwise_add(csr, csr) = csr
- otherwise,
elemwise_add
generates output with default storage
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
elemwise_div
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Divides arguments element-wise.
The storage type of
elemwise_div
output is always denseParameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
elemwise_mul
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Multiplies arguments element-wise.
The storage type of
elemwise_mul
output depends on storage types of inputs- elemwise_mul(default, default) = default
- elemwise_mul(row_sparse, row_sparse) = row_sparse
- elemwise_mul(default, row_sparse) = default
- elemwise_mul(row_sparse, default) = default
- elemwise_mul(csr, csr) = csr
- otherwise,
elemwise_mul
generates output with default storage
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
elemwise_sub
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Subtracts arguments element-wise.
The storage type of
elemwise_sub
output depends on storage types of inputs- elemwise_sub(row_sparse, row_sparse) = row_sparse
- elemwise_sub(csr, csr) = csr
- otherwise,
elemwise_sub
generates output with default storage
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
exp
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise exponential value of the input.
\[exp(x) = e^x \approx 2.718^x\]Example:
exp([0, 1, 2]) = [1., 2.71828175, 7.38905621]
The storage type of
exp
output is always denseDefined in src/operator/tensor/elemwise_unary_op_basic.cc:L637
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
expand_dims
(data=None, axis=_Null, name=None, attr=None, out=None, **kwargs)¶ Inserts a new axis of size 1 into the array shape
For example, given
x
with shape(2,3,4)
, thenexpand_dims(x, axis=1)
will return a new array with shape(2,1,3,4)
.Defined in src/operator/tensor/matrix_op.cc:L231
Parameters: - data (Symbol) – Source input
- axis (int, required) – Position where new axis is to be inserted. Suppose that the input NDArray‘s dimension is ndim, the range of the inserted axis is [-ndim, ndim]
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
expm1
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns
exp(x) - 1
computed element-wise on the input.This function provides greater precision than
exp(x) - 1
for small values ofx
.The storage type of
expm1
output depends upon the input storage type:- expm1(default) = default
- expm1(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L716
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
fill_element_0index
(lhs=None, mhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Fill one element of each line(row for python, column for R/Julia) in lhs according to index indicated by rhs and values indicated by mhs. This function assume rhs uses 0-based index.
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
fix
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise rounded value to the nearest integer towards zero of the input.
Example:
fix([-2.1, -1.9, 1.9, 2.1]) = [-2., -1., 1., 2.]
The storage type of
fix
output depends upon the input storage type:- fix(default) = default
- fix(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L517
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
flatten
(data=None, name=None, attr=None, out=None, **kwargs)¶ Flattens the input array into a 2-D array by collapsing the higher dimensions.
Note
Flatten is deprecated. Use flatten instead.
For an input array with shape
(d1, d2, ..., dk)
, flatten operation reshapes the input array into an output array of shape(d1, d2*...*dk)
.Example:
x = [[ [1,2,3], [4,5,6], [7,8,9] ], [ [1,2,3], [4,5,6], [7,8,9] ]], flatten(x) = [[ 1., 2., 3., 4., 5., 6., 7., 8., 9.], [ 1., 2., 3., 4., 5., 6., 7., 8., 9.]]
Defined in src/operator/tensor/matrix_op.cc:L150
Parameters: - data (Symbol) – Input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
flip
(data=None, axis=_Null, name=None, attr=None, out=None, **kwargs)¶ Reverses the order of elements along given axis while preserving array shape.
Note: reverse and flip are equivalent. We use reverse in the following examples.
Examples:
x = [[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.]] reverse(x, axis=0) = [[ 5., 6., 7., 8., 9.], [ 0., 1., 2., 3., 4.]] reverse(x, axis=1) = [[ 4., 3., 2., 1., 0.], [ 9., 8., 7., 6., 5.]]
Defined in src/operator/tensor/matrix_op.cc:L600
Parameters: - data (Symbol) – Input data array
- axis (Shape(tuple), required) – The axis which to reverse elements.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
floor
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise floor of the input.
The floor of the scalar x is the largest integer i, such that i <= x.
Example:
floor([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-3., -2., 1., 1., 2.]
The storage type of
floor
output depends upon the input storage type:- floor(default) = default
- floor(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L481
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
ftrl_update
(weight=None, grad=None, z=None, n=None, lr=_Null, lamda1=_Null, beta=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, name=None, attr=None, out=None, **kwargs)¶ Update function for Ftrl optimizer. Referenced from Ad Click Prediction: a View from the Trenches, available at http://dl.acm.org/citation.cfm?id=2488200.
It updates the weights using:
rescaled_grad = clip(grad * rescale_grad, clip_gradient) z += rescaled_grad - (sqrt(n + rescaled_grad**2) - sqrt(n)) * weight / learning_rate n += rescaled_grad**2 w = (sign(z) * lamda1 - z) / ((beta + sqrt(n)) / learning_rate + wd) * (abs(z) > lamda1)
If w, z and n are all of
row_sparse
storage type, only the row slices whose indices appear in grad.indices are updated (for w, z and n):for row in grad.indices: rescaled_grad[row] = clip(grad[row] * rescale_grad, clip_gradient) z[row] += rescaled_grad[row] - (sqrt(n[row] + rescaled_grad[row]**2) - sqrt(n[row])) * weight[row] / learning_rate n[row] += rescaled_grad[row]**2 w[row] = (sign(z[row]) * lamda1 - z[row]) / ((beta + sqrt(n[row])) / learning_rate + wd) * (abs(z[row]) > lamda1)
Defined in src/operator/optimizer_op.cc:L308
Parameters: - weight (Symbol) – Weight
- grad (Symbol) – Gradient
- z (Symbol) – z
- n (Symbol) – Square of grad
- lr (float, required) – Learning rate
- lamda1 (float, optional, default=0.01) – The L1 regularization coefficient.
- beta (float, optional, default=1) – Per-Coordinate Learning Rate beta.
- wd (float, optional, default=0) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.
- rescale_grad (float, optional, default=1) – Rescale gradient to grad = rescale_grad*grad.
- clip_gradient (float, optional, default=-1) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
gamma
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns the gamma function (extension of the factorial function to the reals), computed element-wise on the input array.
The storage type of
gamma
output is always denseParameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
gammaln
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise log of the absolute value of the gamma function of the input.
The storage type of
gammaln
output is always denseParameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
gather_nd
(data=None, indices=None, name=None, attr=None, out=None, **kwargs)¶ Gather elements or slices from data and store to a tensor whose shape is defined by indices.
Given data with shape (X_0, X_1, ..., X_{N-1}) and indices with shape (M, Y_0, ..., Y_{K-1}), the output will have shape (Y_0, ..., Y_{K-1}, X_M, ..., X_{N-1}), where M <= N. If M == N, output shape will simply be (Y_0, ..., Y_{K-1}).
The elements in output is defined as follows:
output[y_0, ..., y_{K-1}, x_M, ..., x_{N-1}] = data[indices[0, y_0, ..., y_{K-1}], ..., indices[M-1, y_0, ..., y_{K-1}], x_M, ..., x_{N-1}]
Examples:
data = [[0, 1], [2, 3]] indices = [[1, 1, 0], [0, 1, 0]] gather_nd(data, indices) = [2, 3, 0]
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
identity
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns a copy of the input.
From:src/operator/tensor/elemwise_unary_op_basic.cc:112
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_gelqf
(A=None, name=None, attr=None, out=None, **kwargs)¶ LQ factorization for general matrix. Input is a tensor A of dimension n >= 2.
If n=2, we compute the LQ factorization (LAPACK gelqf, followed by orglq). A must have shape (x, y) with x <= y, and must have full rank =x. The LQ factorization consists of L with shape (x, x) and Q with shape (x, y), so that:
A = L * QHere, L is lower triangular (upper triangle equal to zero) with nonzero diagonal, and Q is row-orthonormal, meaning that
Q * QTis equal to the identity matrix of shape (x, x).
If n>2, gelqf is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Examples:
// Single LQ factorization A = [[1., 2., 3.], [4., 5., 6.]] Q, L = gelqf(A) Q = [[-0.26726124, -0.53452248, -0.80178373], [0.87287156, 0.21821789, -0.43643578]] L = [[-3.74165739, 0.], [-8.55235974, 1.96396101]] // Batch LQ factorization A = [[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]] Q, L = gelqf(A) Q = [[[-0.26726124, -0.53452248, -0.80178373], [0.87287156, 0.21821789, -0.43643578]], [[-0.50257071, -0.57436653, -0.64616234], [0.7620735, 0.05862104, -0.64483142]]] L = [[[-3.74165739, 0.], [-8.55235974, 1.96396101]], [[-13.92838828, 0.], [-19.09768702, 0.52758934]]]
Defined in src/operator/tensor/la_op.cc:L529
Parameters: - A (Symbol) – Tensor of input matrices to be factorized
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_gemm
(A=None, B=None, C=None, transpose_a=_Null, transpose_b=_Null, alpha=_Null, beta=_Null, name=None, attr=None, out=None, **kwargs)¶ Performs general matrix multiplication and accumulation. Input are tensors A, B, C, each of dimension n >= 2 and having the same shape on the leading n-2 dimensions.
If n=2, the BLAS3 function gemm is performed:
out = alpha * op(A) * op(B) + beta * CHere, alpha and beta are scalar parameters, and op() is either the identity or matrix transposition (depending on transpose_a, transpose_b).
If n>2, gemm is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Examples:
// Single matrix multiply-add A = [[1.0, 1.0], [1.0, 1.0]] B = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]] C = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] gemm(A, B, C, transpose_b=True, alpha=2.0, beta=10.0) = [[14.0, 14.0, 14.0], [14.0, 14.0, 14.0]] // Batch matrix multiply-add A = [[[1.0, 1.0]], [[0.1, 0.1]]] B = [[[1.0, 1.0]], [[0.1, 0.1]]] C = [[[10.0]], [[0.01]]] gemm(A, B, C, transpose_b=True, alpha=2.0 , beta=10.0) = [[[104.0]], [[0.14]]]
Defined in src/operator/tensor/la_op.cc:L69
Parameters: - A (Symbol) – Tensor of input matrices
- B (Symbol) – Tensor of input matrices
- C (Symbol) – Tensor of input matrices
- transpose_a (boolean, optional, default=0) – Multiply with transposed of first input (A).
- transpose_b (boolean, optional, default=0) – Multiply with transposed of second input (B).
- alpha (double, optional, default=1) – Scalar factor multiplied with A*B.
- beta (double, optional, default=1) – Scalar factor multiplied with C.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_gemm2
(A=None, B=None, transpose_a=_Null, transpose_b=_Null, alpha=_Null, name=None, attr=None, out=None, **kwargs)¶ Performs general matrix multiplication. Input are tensors A, B, each of dimension n >= 2 and having the same shape on the leading n-2 dimensions.
If n=2, the BLAS3 function gemm is performed:
out = alpha * op(A) * op(B)Here alpha is a scalar parameter and op() is either the identity or the matrix transposition (depending on transpose_a, transpose_b).
If n>2, gemm is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Examples:
// Single matrix multiply A = [[1.0, 1.0], [1.0, 1.0]] B = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]] gemm2(A, B, transpose_b=True, alpha=2.0) = [[4.0, 4.0, 4.0], [4.0, 4.0, 4.0]] // Batch matrix multiply A = [[[1.0, 1.0]], [[0.1, 0.1]]] B = [[[1.0, 1.0]], [[0.1, 0.1]]] gemm2(A, B, transpose_b=True, alpha=2.0) = [[[4.0]], [[0.04 ]]]
Defined in src/operator/tensor/la_op.cc:L128
Parameters: - A (Symbol) – Tensor of input matrices
- B (Symbol) – Tensor of input matrices
- transpose_a (boolean, optional, default=0) – Multiply with transposed of first input (A).
- transpose_b (boolean, optional, default=0) – Multiply with transposed of second input (B).
- alpha (double, optional, default=1) – Scalar factor multiplied with A*B.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_potrf
(A=None, name=None, attr=None, out=None, **kwargs)¶ Performs Cholesky factorization of a symmetric positive-definite matrix. Input is a tensor A of dimension n >= 2.
If n=2, the Cholesky factor L of the symmetric, positive definite matrix A is computed. L is lower triangular (entries of upper triangle are all zero), has positive diagonal entries, and:
A = L * LTIf n>2, potrf is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Examples:
// Single matrix factorization A = [[4.0, 1.0], [1.0, 4.25]] potrf(A) = [[2.0, 0], [0.5, 2.0]] // Batch matrix factorization A = [[[4.0, 1.0], [1.0, 4.25]], [[16.0, 4.0], [4.0, 17.0]]] potrf(A) = [[[2.0, 0], [0.5, 2.0]], [[4.0, 0], [1.0, 4.0]]]
Defined in src/operator/tensor/la_op.cc:L178
Parameters: - A (Symbol) – Tensor of input matrices to be decomposed
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_potri
(A=None, name=None, attr=None, out=None, **kwargs)¶ Performs matrix inversion from a Cholesky factorization. Input is a tensor A of dimension n >= 2.
If n=2, A is a lower triangular matrix (entries of upper triangle are all zero) with positive diagonal. We compute:
out = A-T * A-1In other words, if A is the Cholesky factor of a symmetric positive definite matrix B (obtained by potrf), then
out = B-1If n>2, potri is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Note
Use this operator only if you are certain you need the inverse of B, and cannot use the Cholesky factor A (potrf), together with backsubstitution (trsm). The latter is numerically much safer, and also cheaper.
Examples:
// Single matrix inverse A = [[2.0, 0], [0.5, 2.0]] potri(A) = [[0.26563, -0.0625], [-0.0625, 0.25]] // Batch matrix inverse A = [[[2.0, 0], [0.5, 2.0]], [[4.0, 0], [1.0, 4.0]]] potri(A) = [[[0.26563, -0.0625], [-0.0625, 0.25]], [[0.06641, -0.01562], [-0.01562, 0,0625]]]
Defined in src/operator/tensor/la_op.cc:L236
Parameters: - A (Symbol) – Tensor of lower triangular matrices
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_sumlogdiag
(A=None, name=None, attr=None, out=None, **kwargs)¶ Computes the sum of the logarithms of the diagonal elements of a square matrix. Input is a tensor A of dimension n >= 2.
If n=2, A must be square with positive diagonal entries. We sum the natural logarithms of the diagonal elements, the result has shape (1,).
If n>2, sumlogdiag is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Examples:
// Single matrix reduction A = [[1.0, 1.0], [1.0, 7.0]] sumlogdiag(A) = [1.9459] // Batch matrix reduction A = [[[1.0, 1.0], [1.0, 7.0]], [[3.0, 0], [0, 17.0]]] sumlogdiag(A) = [1.9459, 3.9318]
Defined in src/operator/tensor/la_op.cc:L405
Parameters: - A (Symbol) – Tensor of square matrices
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_syrk
(A=None, transpose=_Null, alpha=_Null, name=None, attr=None, out=None, **kwargs)¶ Multiplication of matrix with its transpose. Input is a tensor A of dimension n >= 2.
If n=2, the operator performs the BLAS3 function syrk:
out = alpha * A * ATif transpose=False, or
out = alpha * AT * Aif transpose=True.
If n>2, syrk is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Examples:
// Single matrix multiply A = [[1., 2., 3.], [4., 5., 6.]] syrk(A, alpha=1., transpose=False) = [[14., 32.], [32., 77.]] syrk(A, alpha=1., transpose=True) = [[17., 22., 27.], [22., 29., 36.], [27., 36., 45.]] // Batch matrix multiply A = [[[1., 1.]], [[0.1, 0.1]]] syrk(A, alpha=2., transpose=False) = [[[4.]], [[0.04]]]
Defined in src/operator/tensor/la_op.cc:L461
Parameters: - A (Symbol) – Tensor of input matrices
- transpose (boolean, optional, default=0) – Use transpose of input matrix.
- alpha (double, optional, default=1) – Scalar factor to be applied to the result.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_trmm
(A=None, B=None, transpose=_Null, rightside=_Null, alpha=_Null, name=None, attr=None, out=None, **kwargs)¶ Performs multiplication with a lower triangular matrix. Input are tensors A, B, each of dimension n >= 2 and having the same shape on the leading n-2 dimensions.
If n=2, A must be lower triangular. The operator performs the BLAS3 function trmm:
out = alpha * op(A) * Bif rightside=False, or
out = alpha * B * op(A)if rightside=True. Here, alpha is a scalar parameter, and op() is either the identity or the matrix transposition (depending on transpose).
If n>2, trmm is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Examples:
// Single triangular matrix multiply A = [[1.0, 0], [1.0, 1.0]] B = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] trmm(A, B, alpha=2.0) = [[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]] // Batch triangular matrix multiply A = [[[1.0, 0], [1.0, 1.0]], [[1.0, 0], [1.0, 1.0]]] B = [[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]] trmm(A, B, alpha=2.0) = [[[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]], [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]]
Defined in src/operator/tensor/la_op.cc:L293
Parameters: - A (Symbol) – Tensor of lower triangular matrices
- B (Symbol) – Tensor of matrices
- transpose (boolean, optional, default=0) – Use transposed of the triangular matrix
- rightside (boolean, optional, default=0) – Multiply triangular matrix from the right to non-triangular one.
- alpha (double, optional, default=1) – Scalar factor to be applied to the result.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
linalg_trsm
(A=None, B=None, transpose=_Null, rightside=_Null, alpha=_Null, name=None, attr=None, out=None, **kwargs)¶ Solves matrix equation involving a lower triangular matrix. Input are tensors A, B, each of dimension n >= 2 and having the same shape on the leading n-2 dimensions.
If n=2, A must be lower triangular. The operator performs the BLAS3 function trsm, solving for out in:
op(A) * out = alpha * Bif rightside=False, or
out * op(A) = alpha * Bif rightside=True. Here, alpha is a scalar parameter, and op() is either the identity or the matrix transposition (depending on transpose).
If n>2, trsm is performed separately on the trailing two dimensions for all inputs (batch mode).
Note
The operator supports float32 and float64 data types only.
Examples:
// Single matrix solve A = [[1.0, 0], [1.0, 1.0]] B = [[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]] trsm(A, B, alpha=0.5) = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] // Batch matrix solve A = [[[1.0, 0], [1.0, 1.0]], [[1.0, 0], [1.0, 1.0]]] B = [[[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]], [[4.0, 4.0, 4.0], [8.0, 8.0, 8.0]]] trsm(A, B, alpha=0.5) = [[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[2.0, 2.0, 2.0], [2.0, 2.0, 2.0]]]
Defined in src/operator/tensor/la_op.cc:L356
Parameters: - A (Symbol) – Tensor of lower triangular matrices
- B (Symbol) – Tensor of matrices
- transpose (boolean, optional, default=0) – Use transposed of the triangular matrix
- rightside (boolean, optional, default=0) – Multiply triangular matrix from the right to non-triangular one.
- alpha (double, optional, default=1) – Scalar factor to be applied to the result.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
log
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise Natural logarithmic value of the input.
The natural logarithm is logarithm in base e, so that
log(exp(x)) = x
The storage type of
log
output is always denseDefined in src/operator/tensor/elemwise_unary_op_basic.cc:L649
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
log10
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise Base-10 logarithmic value of the input.
10**log10(x) = x
The storage type of
log10
output is always denseDefined in src/operator/tensor/elemwise_unary_op_basic.cc:L661
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
log1p
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise
log(1 + x)
value of the input.This function is more accurate than
log(1 + x)
for smallx
so that \(1+x\approx 1\)The storage type of
log1p
output depends upon the input storage type:- log1p(default) = default
- log1p(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L698
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
log2
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise Base-2 logarithmic value of the input.
2**log2(x) = x
The storage type of
log2
output is always denseDefined in src/operator/tensor/elemwise_unary_op_basic.cc:L673
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
log_softmax
(data=None, axis=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the log softmax of the input. This is equivalent to computing softmax followed by log.
Examples:
>>> x = mx.nd.array([1, 2, .1]) >>> mx.nd.log_softmax(x).asnumpy() array([-1.41702998, -0.41702995, -2.31702995], dtype=float32) >>> x = mx.nd.array( [[1, 2, .1],[.1, 2, 1]] ) >>> mx.nd.log_softmax(x, axis=0).asnumpy() array([[-0.34115392, -0.69314718, -1.24115396], [-1.24115396, -0.69314718, -0.34115392]], dtype=float32)
Parameters: - data (Symbol) – The input array.
- axis (int, optional, default='-1') – The axis along which to compute softmax.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
make_loss
(data=None, name=None, attr=None, out=None, **kwargs)¶ Make your own loss function in network construction.
This operator accepts a customized loss function symbol as a terminal loss and the symbol should be an operator with no backward dependency. The output of this function is the gradient of loss with respect to the input data.
For example, if you are a making a cross entropy loss function. Assume
out
is the predicted output andlabel
is the true label, then the cross entropy can be defined as:cross_entropy = label * log(out) + (1 - label) * log(1 - out) loss = make_loss(cross_entropy)
We will need to use
make_loss
when we are creating our own loss function or we want to combine multiple loss functions. Also we may want to stop some variables’ gradients from backpropagation. See more detail inBlockGrad
orstop_gradient
.The storage type of
make_loss
output depends upon the input storage type:- make_loss(default) = default
- make_loss(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L200
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
max
(data=None, axis=_Null, keepdims=_Null, exclude=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the max of array elements over given axes.
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L160
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) –
The axis or axes along which to perform the reduction.
The default, axis=(), will compute over all elements into a scalar array with shape (1,).If axis is int, a reduction is performed on a particular axis.
If axis is a tuple of ints, a reduction is performed on all the axes specified in the tuple.
If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Negative values means indexing from right to left.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axes are left in the result as dimension with size one.
- exclude (boolean, optional, default=0) – Whether to perform reduction on axis that are NOT in axis instead.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
max_axis
(data=None, axis=_Null, keepdims=_Null, exclude=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the max of array elements over given axes.
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L160
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) –
The axis or axes along which to perform the reduction.
The default, axis=(), will compute over all elements into a scalar array with shape (1,).If axis is int, a reduction is performed on a particular axis.
If axis is a tuple of ints, a reduction is performed on all the axes specified in the tuple.
If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Negative values means indexing from right to left.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axes are left in the result as dimension with size one.
- exclude (boolean, optional, default=0) – Whether to perform reduction on axis that are NOT in axis instead.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
mean
(data=None, axis=_Null, keepdims=_Null, exclude=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the mean of array elements over given axes.
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L101
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) –
The axis or axes along which to perform the reduction.
The default, axis=(), will compute over all elements into a scalar array with shape (1,).If axis is int, a reduction is performed on a particular axis.
If axis is a tuple of ints, a reduction is performed on all the axes specified in the tuple.
If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Negative values means indexing from right to left.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axes are left in the result as dimension with size one.
- exclude (boolean, optional, default=0) – Whether to perform reduction on axis that are NOT in axis instead.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
min
(data=None, axis=_Null, keepdims=_Null, exclude=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the min of array elements over given axes.
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L174
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) –
The axis or axes along which to perform the reduction.
The default, axis=(), will compute over all elements into a scalar array with shape (1,).If axis is int, a reduction is performed on a particular axis.
If axis is a tuple of ints, a reduction is performed on all the axes specified in the tuple.
If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Negative values means indexing from right to left.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axes are left in the result as dimension with size one.
- exclude (boolean, optional, default=0) – Whether to perform reduction on axis that are NOT in axis instead.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
min_axis
(data=None, axis=_Null, keepdims=_Null, exclude=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the min of array elements over given axes.
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L174
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) –
The axis or axes along which to perform the reduction.
The default, axis=(), will compute over all elements into a scalar array with shape (1,).If axis is int, a reduction is performed on a particular axis.
If axis is a tuple of ints, a reduction is performed on all the axes specified in the tuple.
If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Negative values means indexing from right to left.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axes are left in the result as dimension with size one.
- exclude (boolean, optional, default=0) – Whether to perform reduction on axis that are NOT in axis instead.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
mp_sgd_mom_update
(weight=None, grad=None, mom=None, weight32=None, lr=_Null, momentum=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, name=None, attr=None, out=None, **kwargs)¶ Updater function for multi-precision sgd optimizer
Parameters: - weight (Symbol) – Weight
- grad (Symbol) – Gradient
- mom (Symbol) – Momentum
- weight32 (Symbol) – Weight32
- lr (float, required) – Learning rate
- momentum (float, optional, default=0) – The decay rate of momentum estimates at each epoch.
- wd (float, optional, default=0) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.
- rescale_grad (float, optional, default=1) – Rescale gradient to grad = rescale_grad*grad.
- clip_gradient (float, optional, default=-1) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
mp_sgd_update
(weight=None, grad=None, weight32=None, lr=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, name=None, attr=None, out=None, **kwargs)¶ Updater function for multi-precision sgd optimizer
Parameters: - weight (Symbol) – Weight
- grad (Symbol) – gradient
- weight32 (Symbol) – Weight32
- lr (float, required) – Learning rate
- wd (float, optional, default=0) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.
- rescale_grad (float, optional, default=1) – Rescale gradient to grad = rescale_grad*grad.
- clip_gradient (float, optional, default=-1) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
nanprod
(data=None, axis=_Null, keepdims=_Null, exclude=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the product of array elements over given axes treating Not a Numbers (
NaN
) as one.Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L146
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) –
The axis or axes along which to perform the reduction.
The default, axis=(), will compute over all elements into a scalar array with shape (1,).If axis is int, a reduction is performed on a particular axis.
If axis is a tuple of ints, a reduction is performed on all the axes specified in the tuple.
If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Negative values means indexing from right to left.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axes are left in the result as dimension with size one.
- exclude (boolean, optional, default=0) – Whether to perform reduction on axis that are NOT in axis instead.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
nansum
(data=None, axis=_Null, keepdims=_Null, exclude=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the sum of array elements over given axes treating Not a Numbers (
NaN
) as zero.Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L131
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) –
The axis or axes along which to perform the reduction.
The default, axis=(), will compute over all elements into a scalar array with shape (1,).If axis is int, a reduction is performed on a particular axis.
If axis is a tuple of ints, a reduction is performed on all the axes specified in the tuple.
If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Negative values means indexing from right to left.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axes are left in the result as dimension with size one.
- exclude (boolean, optional, default=0) – Whether to perform reduction on axis that are NOT in axis instead.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
negative
(data=None, name=None, attr=None, out=None, **kwargs)¶ Numerical negative of the argument, element-wise.
The storage type of
negative
output depends upon the input storage type:- negative(default) = default
- negative(row_sparse) = row_sparse
- negative(csr) = csr
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
norm
(data=None, name=None, attr=None, out=None, **kwargs)¶ Flattens the input array and then computes the l2 norm.
Examples:
x = [[1, 2], [3, 4]] norm(x) = [5.47722578]
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L257
Parameters: - data (Symbol) – Source input
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
normal
(loc=_Null, scale=_Null, shape=_Null, ctx=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Draw random samples from a normal (Gaussian) distribution.
Note
The existing alias
normal
is deprecated.Samples are distributed according to a normal distribution parametrized by loc (mean) and scale (standard deviation).
Example:
normal(loc=0, scale=1, shape=(2,2)) = [[ 1.89171135, -1.16881478], [-1.23474145, 1.55807114]]
Defined in src/operator/random/sample_op.cc:L85
Parameters: - loc (float, optional, default=0) – Mean of the distribution.
- scale (float, optional, default=1) – Standard deviation of the distribution.
- shape (Shape(tuple), optional, default=[]) – Shape of the output.
- ctx (string, optional, default='') – Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
one_hot
(indices=None, depth=_Null, on_value=_Null, off_value=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Returns a one-hot array.
The locations represented by indices take value on_value, while all other locations take value off_value.
one_hot operation with indices of shape
(i0, i1)
and depth ofd
would result in an output array of shape(i0, i1, d)
with:output[i,j,:] = off_value output[i,j,indices[i,j]] = on_value
Examples:
one_hot([1,0,2,0], 3) = [[ 0. 1. 0.] [ 1. 0. 0.] [ 0. 0. 1.] [ 1. 0. 0.]] one_hot([1,0,2,0], 3, on_value=8, off_value=1, dtype='int32') = [[1 8 1] [8 1 1] [1 1 8] [8 1 1]] one_hot([[1,0],[1,0],[2,0]], 3) = [[[ 0. 1. 0.] [ 1. 0. 0.]] [[ 0. 1. 0.] [ 1. 0. 0.]] [[ 0. 0. 1.] [ 1. 0. 0.]]]
Defined in src/operator/tensor/indexing_op.cc:L467
Parameters: - indices (Symbol) – array of locations where to set on_value
- depth (int, required) – Depth of the one hot dimension.
- on_value (double, optional, default=1) – The value assigned to the locations represented by indices.
- off_value (double, optional, default=0) – The value assigned to the locations not represented by indices.
- dtype ({'float16', 'float32', 'float64', 'int32', 'uint8'},optional, default='float32') – DType of the output
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
ones_like
(data=None, name=None, attr=None, out=None, **kwargs)¶ Return an array of ones with the same shape and type as the input array.
Examples:
x = [[ 0., 0., 0.], [ 0., 0., 0.]] ones_like(x) = [[ 1., 1., 1.], [ 1., 1., 1.]]
Parameters: - data (Symbol) – The input
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
pad
(data=None, mode=_Null, pad_width=_Null, constant_value=_Null, name=None, attr=None, out=None, **kwargs)¶ Pads an input array with a constant or edge values of the array.
Note
Pad is deprecated. Use pad instead.
Note
Current implementation only supports 4D and 5D input arrays with padding applied only on axes 1, 2 and 3. Expects axes 4 and 5 in pad_width to be zero.
This operation pads an input array with either a constant_value or edge values along each axis of the input array. The amount of padding is specified by pad_width.
pad_width is a tuple of integer padding widths for each axis of the format
(before_1, after_1, ... , before_N, after_N)
. The pad_width should be of length2*N
whereN
is the number of dimensions of the array.For dimension
N
of the input array,before_N
andafter_N
indicates how many values to add before and after the elements of the array along dimensionN
. The widths of the higher two dimensionsbefore_1
,after_1
,before_2
,after_2
must be 0.Example:
x = [[[[ 1. 2. 3.] [ 4. 5. 6.]] [[ 7. 8. 9.] [ 10. 11. 12.]]] [[[ 11. 12. 13.] [ 14. 15. 16.]] [[ 17. 18. 19.] [ 20. 21. 22.]]]] pad(x,mode="edge", pad_width=(0,0,0,0,1,1,1,1)) = [[[[ 1. 1. 2. 3. 3.] [ 1. 1. 2. 3. 3.] [ 4. 4. 5. 6. 6.] [ 4. 4. 5. 6. 6.]] [[ 7. 7. 8. 9. 9.] [ 7. 7. 8. 9. 9.] [ 10. 10. 11. 12. 12.] [ 10. 10. 11. 12. 12.]]] [[[ 11. 11. 12. 13. 13.] [ 11. 11. 12. 13. 13.] [ 14. 14. 15. 16. 16.] [ 14. 14. 15. 16. 16.]] [[ 17. 17. 18. 19. 19.] [ 17. 17. 18. 19. 19.] [ 20. 20. 21. 22. 22.] [ 20. 20. 21. 22. 22.]]]] pad(x, mode="constant", constant_value=0, pad_width=(0,0,0,0,1,1,1,1)) = [[[[ 0. 0. 0. 0. 0.] [ 0. 1. 2. 3. 0.] [ 0. 4. 5. 6. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0. 0. 0. 0.] [ 0. 7. 8. 9. 0.] [ 0. 10. 11. 12. 0.] [ 0. 0. 0. 0. 0.]]] [[[ 0. 0. 0. 0. 0.] [ 0. 11. 12. 13. 0.] [ 0. 14. 15. 16. 0.] [ 0. 0. 0. 0. 0.]] [[ 0. 0. 0. 0. 0.] [ 0. 17. 18. 19. 0.] [ 0. 20. 21. 22. 0.] [ 0. 0. 0. 0. 0.]]]]
Defined in src/operator/pad.cc:L766
Parameters: - data (Symbol) – An n-dimensional input array.
- mode ({'constant', 'edge', 'reflect'}, required) – Padding type to use. “constant” pads with constant_value “edge” pads using the edge values of the input array “reflect” pads by reflecting values with respect to the edges.
- pad_width (Shape(tuple), required) – Widths of the padding regions applied to the edges of each axis. It is a tuple of integer padding widths for each axis of the format
(before_1, after_1, ... , before_N, after_N)
. It should be of length2*N
whereN
is the number of dimensions of the array.This is equivalent to pad_width in numpy.pad, but flattened. - constant_value (double, optional, default=0) – The value used for padding when mode is “constant”.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
pick
(data=None, index=None, axis=_Null, keepdims=_Null, name=None, attr=None, out=None, **kwargs)¶ Picks elements from an input array according to the input indices along the given axis.
Given an input array of shape
(d0, d1)
and indices of shape(i0,)
, the result will be an output array of shape(i0,)
with:output[i] = input[i, indices[i]]
By default, if any index mentioned is too large, it is replaced by the index that addresses the last element along an axis (the clip mode).
This function supports n-dimensional input and (n-1)-dimensional indices arrays.
Examples:
x = [[ 1., 2.], [ 3., 4.], [ 5., 6.]] // picks elements with specified indices along axis 0 pick(x, y=[0,1], 0) = [ 1., 4.] // picks elements with specified indices along axis 1 pick(x, y=[0,1,0], 1) = [ 1., 4., 5.] y = [[ 1.], [ 0.], [ 2.]] // picks elements with specified indices along axis 1 and dims are maintained pick(x,y, 1, keepdims=True) = [[ 2.], [ 3.], [ 6.]]
Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L145
Parameters: - data (Symbol) – The input array
- index (Symbol) – The index array
- axis (int or None, optional, default='None') – The axis along which to perform the reduction. Negative values means indexing from right to left.
Requires axis to be set as int, because global reduction is not supported yet.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axis is left in the result as dimension with size one.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
prod
(data=None, axis=_Null, keepdims=_Null, exclude=_Null, name=None, attr=None, out=None, **kwargs)¶ Computes the product of array elements over given axes.
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L116
Parameters: - data (Symbol) – The input
- axis (Shape(tuple), optional, default=[]) –
The axis or axes along which to perform the reduction.
The default, axis=(), will compute over all elements into a scalar array with shape (1,).If axis is int, a reduction is performed on a particular axis.
If axis is a tuple of ints, a reduction is performed on all the axes specified in the tuple.
If exclude is true, reduction will be performed on the axes that are NOT in axis instead.
Negative values means indexing from right to left.
- keepdims (boolean, optional, default=0) – If this is set to True, the reduced axes are left in the result as dimension with size one.
- exclude (boolean, optional, default=0) – Whether to perform reduction on axis that are NOT in axis instead.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
radians
(data=None, name=None, attr=None, out=None, **kwargs)¶ Converts each element of the input array from degrees to radians.
\[radians([0, 90, 180, 270, 360]) = [0, \pi/2, \pi, 3\pi/2, 2\pi]\]The storage type of
radians
output depends upon the input storage type:- radians(default) = default
- radians(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L182
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
random_exponential
(lam=_Null, shape=_Null, ctx=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Draw random samples from an exponential distribution.
Samples are distributed according to an exponential distribution parametrized by lambda (rate).
Example:
exponential(lam=4, shape=(2,2)) = [[ 0.0097189 , 0.08999364], [ 0.04146638, 0.31715935]]
Defined in src/operator/random/sample_op.cc:L115
Parameters: - lam (float, optional, default=1) – Lambda parameter (rate) of the exponential distribution.
- shape (Shape(tuple), optional, default=[]) – Shape of the output.
- ctx (string, optional, default='') – Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
random_gamma
(alpha=_Null, beta=_Null, shape=_Null, ctx=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Draw random samples from a gamma distribution.
Samples are distributed according to a gamma distribution parametrized by alpha (shape) and beta (scale).
Example:
gamma(alpha=9, beta=0.5, shape=(2,2)) = [[ 7.10486984, 3.37695289], [ 3.91697288, 3.65933681]]
Defined in src/operator/random/sample_op.cc:L100
Parameters: - alpha (float, optional, default=1) – Alpha parameter (shape) of the gamma distribution.
- beta (float, optional, default=1) – Beta parameter (scale) of the gamma distribution.
- shape (Shape(tuple), optional, default=[]) – Shape of the output.
- ctx (string, optional, default='') – Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
random_generalized_negative_binomial
(mu=_Null, alpha=_Null, shape=_Null, ctx=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Draw random samples from a generalized negative binomial distribution.
Samples are distributed according to a generalized negative binomial distribution parametrized by mu (mean) and alpha (dispersion). alpha is defined as 1/k where k is the failure limit of the number of unsuccessful experiments (generalized to real numbers). Samples will always be returned as a floating point data type.
Example:
generalized_negative_binomial(mu=2.0, alpha=0.3, shape=(2,2)) = [[ 2., 1.], [ 6., 4.]]
Defined in src/operator/random/sample_op.cc:L168
Parameters: - mu (float, optional, default=1) – Mean of the negative binomial distribution.
- alpha (float, optional, default=1) – Alpha (dispersion) parameter of the negative binomial distribution.
- shape (Shape(tuple), optional, default=[]) – Shape of the output.
- ctx (string, optional, default='') – Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
random_negative_binomial
(k=_Null, p=_Null, shape=_Null, ctx=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Draw random samples from a negative binomial distribution.
Samples are distributed according to a negative binomial distribution parametrized by k (limit of unsuccessful experiments) and p (failure probability in each experiment). Samples will always be returned as a floating point data type.
Example:
negative_binomial(k=3, p=0.4, shape=(2,2)) = [[ 4., 7.], [ 2., 5.]]
Defined in src/operator/random/sample_op.cc:L149
Parameters: - k (int, optional, default='1') – Limit of unsuccessful experiments.
- p (float, optional, default=1) – Failure probability in each experiment.
- shape (Shape(tuple), optional, default=[]) – Shape of the output.
- ctx (string, optional, default='') – Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
random_normal
(loc=_Null, scale=_Null, shape=_Null, ctx=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Draw random samples from a normal (Gaussian) distribution.
Note
The existing alias
normal
is deprecated.Samples are distributed according to a normal distribution parametrized by loc (mean) and scale (standard deviation).
Example:
normal(loc=0, scale=1, shape=(2,2)) = [[ 1.89171135, -1.16881478], [-1.23474145, 1.55807114]]
Defined in src/operator/random/sample_op.cc:L85
Parameters: - loc (float, optional, default=0) – Mean of the distribution.
- scale (float, optional, default=1) – Standard deviation of the distribution.
- shape (Shape(tuple), optional, default=[]) – Shape of the output.
- ctx (string, optional, default='') – Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
random_poisson
(lam=_Null, shape=_Null, ctx=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Draw random samples from a Poisson distribution.
Samples are distributed according to a Poisson distribution parametrized by lambda (rate). Samples will always be returned as a floating point data type.
Example:
poisson(lam=4, shape=(2,2)) = [[ 5., 2.], [ 4., 6.]]
Defined in src/operator/random/sample_op.cc:L132
Parameters: - lam (float, optional, default=1) – Lambda parameter (rate) of the Poisson distribution.
- shape (Shape(tuple), optional, default=[]) – Shape of the output.
- ctx (string, optional, default='') – Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
random_uniform
(low=_Null, high=_Null, shape=_Null, ctx=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Draw random samples from a uniform distribution.
Note
The existing alias
uniform
is deprecated.Samples are uniformly distributed over the half-open interval [low, high) (includes low, but excludes high).
Example:
uniform(low=0, high=1, shape=(2,2)) = [[ 0.60276335, 0.85794562], [ 0.54488319, 0.84725171]]
Defined in src/operator/random/sample_op.cc:L66
Parameters: - low (float, optional, default=0) – Lower bound of the distribution.
- high (float, optional, default=1) – Upper bound of the distribution.
- shape (Shape(tuple), optional, default=[]) – Shape of the output.
- ctx (string, optional, default='') – Context of output, in format [cpu|gpu|cpu_pinned](n). Only used for imperative calls.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
rcbrt
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise inverse cube-root value of the input.
\[rcbrt(x) = 1/\sqrt[3]{x}\]Example:
rcbrt([1,8,-125]) = [1.0, 0.5, -0.2]
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L614
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
reciprocal
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns the reciprocal of the argument, element-wise.
Calculates 1/x.
Example:
reciprocal([-2, 1, 3, 1.6.0, 0.2]) = [-0.5, 1.0, 0.33333334, 0.625, 5.0]
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L364
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
relu
(data=None, name=None, attr=None, out=None, **kwargs)¶ Computes rectified linear.
\[max(features, 0)\]The storage type of
relu
output depends upon the input storage type:- relu(default) = default
- relu(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L84
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
repeat
(data=None, repeats=_Null, axis=_Null, name=None, attr=None, out=None, **kwargs)¶ Repeats elements of an array.
By default,
repeat
flattens the input array into 1-D and then repeats the elements:x = [[ 1, 2], [ 3, 4]] repeat(x, repeats=2) = [ 1., 1., 2., 2., 3., 3., 4., 4.]
The parameter
axis
specifies the axis along which to perform repeat:repeat(x, repeats=2, axis=1) = [[ 1., 1., 2., 2.], [ 3., 3., 4., 4.]] repeat(x, repeats=2, axis=0) = [[ 1., 2.], [ 1., 2.], [ 3., 4.], [ 3., 4.]] repeat(x, repeats=2, axis=-1) = [[ 1., 1., 2., 2.], [ 3., 3., 4., 4.]]
Defined in src/operator/tensor/matrix_op.cc:L498
Parameters: - data (Symbol) – Input data array
- repeats (int, required) – The number of repetitions for each element.
- axis (int or None, optional, default='None') – The axis along which to repeat values. The negative numbers are interpreted counting from the backward. By default, use the flattened input array, and return a flat output array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
reshape
(data=None, shape=_Null, reverse=_Null, target_shape=_Null, keep_highest=_Null, name=None, attr=None, out=None, **kwargs)¶ Reshapes the input array.
Note
Reshape
is deprecated, usereshape
Given an array and a shape, this function returns a copy of the array in the new shape. The shape is a tuple of integers such as (2,3,4).The size of the new shape should be same as the size of the input array.
Example:
reshape([1,2,3,4], shape=(2,2)) = [[1,2], [3,4]]
Some dimensions of the shape can take special values from the set {0, -1, -2, -3, -4}. The significance of each is explained below:
0
copy this dimension from the input to the output shape.Example:
- input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4)
-1
infers the dimension of the output shape by using the remainder of the input dimensions keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1.Example:
- input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape = (2,3,4), shape=(-1,), output shape = (24,)
-2
copy all/remainder of the input dimensions to the output shape.Example:
- input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1)
-3
use the product of two consecutive dimensions of the input shape as the output dimension.Example:
- input shape = (2,3,4), shape = (-3,4), output shape = (6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20) - input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input shape = (2,3,4), shape = (-3,-2), output shape = (6,4)
-4
split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1).Example:
- input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4)
If the argument reverse is set to 1, then the special values are inferred from right to left.
Example:
- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output shape would be (40,5) - with reverse=1, output shape will be (50,4).
Defined in src/operator/tensor/matrix_op.cc:L106
Parameters: - data (Symbol) – Input data to reshape.
- shape (Shape(tuple), optional, default=[]) – The target shape
- reverse (boolean, optional, default=0) – If true then the special values are inferred from right to left
- target_shape (Shape(tuple), optional, default=[]) – (Deprecated! Use
shape
instead.) Target new shape. One and only one dim can be 0, in which case it will be inferred from the rest of dims - keep_highest (boolean, optional, default=0) – (Deprecated! Use
shape
instead.) Whether keep the highest dim unchanged.If set to true, then the first dim in target_shape is ignored,and always fixed as input - name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
reshape_like
(lhs=None, rhs=None, name=None, attr=None, out=None, **kwargs)¶ Reshape lhs to have the same shape as rhs.
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
reverse
(data=None, axis=_Null, name=None, attr=None, out=None, **kwargs)¶ Reverses the order of elements along given axis while preserving array shape.
Note: reverse and flip are equivalent. We use reverse in the following examples.
Examples:
x = [[ 0., 1., 2., 3., 4.], [ 5., 6., 7., 8., 9.]] reverse(x, axis=0) = [[ 5., 6., 7., 8., 9.], [ 0., 1., 2., 3., 4.]] reverse(x, axis=1) = [[ 4., 3., 2., 1., 0.], [ 9., 8., 7., 6., 5.]]
Defined in src/operator/tensor/matrix_op.cc:L600
Parameters: - data (Symbol) – Input data array
- axis (Shape(tuple), required) – The axis which to reverse elements.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
rint
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise rounded value to the nearest integer of the input.
Note
- For input
n.5
rint
returnsn
whileround
returnsn+1
. - For input
-n.5
bothrint
andround
returns-n-1
.
Example:
rint([-1.5, 1.5, -1.9, 1.9, 2.1]) = [-2., 1., -2., 2., 2.]
The storage type of
rint
output depends upon the input storage type:- rint(default) = default
- rint(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L445
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type: - For input
-
mxnet.symbol.
rmsprop_update
(weight=None, grad=None, n=None, lr=_Null, gamma1=_Null, epsilon=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, clip_weights=_Null, name=None, attr=None, out=None, **kwargs)¶ Update function for RMSProp optimizer.
RMSprop is a variant of stochastic gradient descent where the gradients are divided by a cache which grows with the sum of squares of recent gradients?
RMSProp is similar to AdaGrad, a popular variant of SGD which adaptively tunes the learning rate of each parameter. AdaGrad lowers the learning rate for each parameter monotonically over the course of training. While this is analytically motivated for convex optimizations, it may not be ideal for non-convex problems. RMSProp deals with this heuristically by allowing the learning rates to rebound as the denominator decays over time.
Define the Root Mean Square (RMS) error criterion of the gradient as \(RMS[g]_t = \sqrt{E[g^2]_t + \epsilon}\), where \(g\) represents gradient and \(E[g^2]_t\) is the decaying average over past squared gradient.
The \(E[g^2]_t\) is given by:
\[E[g^2]_t = \gamma * E[g^2]_{t-1} + (1-\gamma) * g_t^2\]The update step is
\[\theta_{t+1} = \theta_t - \frac{\eta}{RMS[g]_t} g_t\]The RMSProp code follows the version in http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf Tieleman & Hinton, 2012.
Hinton suggests the momentum term \(\gamma\) to be 0.9 and the learning rate \(\eta\) to be 0.001.
Defined in src/operator/optimizer_op.cc:L229
Parameters: - weight (Symbol) – Weight
- grad (Symbol) – Gradient
- n (Symbol) – n
- lr (float, required) – Learning rate
- gamma1 (float, optional, default=0.95) – The decay rate of momentum estimates.
- epsilon (float, optional, default=1e-08) – A small constant for numerical stability.
- wd (float, optional, default=0) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.
- rescale_grad (float, optional, default=1) – Rescale gradient to grad = rescale_grad*grad.
- clip_gradient (float, optional, default=-1) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).
- clip_weights (float, optional, default=-1) – Clip weights to the range of [-clip_weights, clip_weights] If clip_weights <= 0, weight clipping is turned off. weights = max(min(weights, clip_weights), -clip_weights).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
rmspropalex_update
(weight=None, grad=None, n=None, g=None, delta=None, lr=_Null, gamma1=_Null, gamma2=_Null, epsilon=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, clip_weights=_Null, name=None, attr=None, out=None, **kwargs)¶ Update function for RMSPropAlex optimizer.
RMSPropAlex is non-centered version of RMSProp.
Define \(E[g^2]_t\) is the decaying average over past squared gradient and \(E[g]_t\) is the decaying average over past gradient.
\[\begin{split}E[g^2]_t = \gamma_1 * E[g^2]_{t-1} + (1 - \gamma_1) * g_t^2\\ E[g]_t = \gamma_1 * E[g]_{t-1} + (1 - \gamma_1) * g_t\\ \Delta_t = \gamma_2 * \Delta_{t-1} - \frac{\eta}{\sqrt{E[g^2]_t - E[g]_t^2 + \epsilon}} g_t\\\end{split}\]The update step is
\[\theta_{t+1} = \theta_t + \Delta_t\]The RMSPropAlex code follows the version in http://arxiv.org/pdf/1308.0850v5.pdf Eq(38) - Eq(45) by Alex Graves, 2013.
Graves suggests the momentum term \(\gamma_1\) to be 0.95, \(\gamma_2\) to be 0.9 and the learning rate \(\eta\) to be 0.0001.
Defined in src/operator/optimizer_op.cc:L268
Parameters: - weight (Symbol) – Weight
- grad (Symbol) – Gradient
- n (Symbol) – n
- g (Symbol) – g
- delta (Symbol) – delta
- lr (float, required) – Learning rate
- gamma1 (float, optional, default=0.95) – Decay rate.
- gamma2 (float, optional, default=0.9) – Decay rate.
- epsilon (float, optional, default=1e-08) – A small constant for numerical stability.
- wd (float, optional, default=0) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.
- rescale_grad (float, optional, default=1) – Rescale gradient to grad = rescale_grad*grad.
- clip_gradient (float, optional, default=-1) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).
- clip_weights (float, optional, default=-1) – Clip weights to the range of [-clip_weights, clip_weights] If clip_weights <= 0, weight clipping is turned off. weights = max(min(weights, clip_weights), -clip_weights).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
round
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise rounded value to the nearest integer of the input.
Example:
round([-1.5, 1.5, -1.9, 1.9, 2.1]) = [-2., 2., -2., 2., 2.]
The storage type of
round
output depends upon the input storage type:- round(default) = default
- round(row_sparse) = row_sparse
Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L424
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
rsqrt
(data=None, name=None, attr=None, out=None, **kwargs)¶ Returns element-wise inverse square-root value of the input.
\[rsqrt(x) = 1/\sqrt{x}\]Example:
rsqrt([4,9,16]) = [0.5, 0.33333334, 0.25]
The storage type of
rsqrt
output is always denseDefined in src/operator/tensor/elemwise_unary_op_basic.cc:L580
Parameters: - data (Symbol) – The input array.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sample_exponential
(lam=None, shape=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Concurrent sampling from multiple exponential distributions with parameters lambda (rate).
The parameters of the distributions are provided as an input array. Let [s] be the shape of the input array, n be the dimension of [s], [t] be the shape specified as the parameter of the operator, and m be the dimension of [t]. Then the output will be a (n+m)-dimensional array with shape [s]x[t].
For any valid n-dimensional index i with respect to the input array, output[i] will be an m-dimensional array that holds randomly drawn samples from the distribution which is parameterized by the input value at index i. If the shape parameter of the operator is not set, then one sample will be drawn per distribution and the output array has the same shape as the input array.
Examples:
lam = [ 1.0, 8.5 ] // Draw a single sample for each distribution sample_exponential(lam) = [ 0.51837951, 0.09994757] // Draw a vector containing two samples for each distribution sample_exponential(lam, shape=(2)) = [[ 0.51837951, 0.19866663], [ 0.09994757, 0.50447971]]
Defined in src/operator/random/multisample_op.cc:L284
Parameters: - lam (Symbol) – Lambda (rate) parameters of the distributions.
- shape (Shape(tuple), optional, default=[]) – Shape to be sampled from each random distribution.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sample_gamma
(alpha=None, beta=None, shape=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Concurrent sampling from multiple gamma distributions with parameters alpha (shape) and beta (scale).
The parameters of the distributions are provided as input arrays. Let [s] be the shape of the input arrays, n be the dimension of [s], [t] be the shape specified as the parameter of the operator, and m be the dimension of [t]. Then the output will be a (n+m)-dimensional array with shape [s]x[t].
For any valid n-dimensional index i with respect to the input arrays, output[i] will be an m-dimensional array that holds randomly drawn samples from the distribution which is parameterized by the input values at index i. If the shape parameter of the operator is not set, then one sample will be drawn per distribution and the output array has the same shape as the input arrays.
Examples:
alpha = [ 0.0, 2.5 ] beta = [ 1.0, 0.7 ] // Draw a single sample for each distribution sample_gamma(alpha, beta) = [ 0. , 2.25797319] // Draw a vector containing two samples for each distribution sample_gamma(alpha, beta, shape=(2)) = [[ 0. , 0. ], [ 2.25797319, 1.70734084]]
Defined in src/operator/random/multisample_op.cc:L282
Parameters: - alpha (Symbol) – Alpha (shape) parameters of the distributions.
- shape (Shape(tuple), optional, default=[]) – Shape to be sampled from each random distribution.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- beta (Symbol) – Beta (scale) parameters of the distributions.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sample_generalized_negative_binomial
(mu=None, alpha=None, shape=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Concurrent sampling from multiple generalized negative binomial distributions with parameters mu (mean) and alpha (dispersion).
The parameters of the distributions are provided as input arrays. Let [s] be the shape of the input arrays, n be the dimension of [s], [t] be the shape specified as the parameter of the operator, and m be the dimension of [t]. Then the output will be a (n+m)-dimensional array with shape [s]x[t].
For any valid n-dimensional index i with respect to the input arrays, output[i] will be an m-dimensional array that holds randomly drawn samples from the distribution which is parameterized by the input values at index i. If the shape parameter of the operator is not set, then one sample will be drawn per distribution and the output array has the same shape as the input arrays.
Samples will always be returned as a floating point data type.
Examples:
mu = [ 2.0, 2.5 ] alpha = [ 1.0, 0.1 ] // Draw a single sample for each distribution sample_generalized_negative_binomial(mu, alpha) = [ 0., 3.] // Draw a vector containing two samples for each distribution sample_generalized_negative_binomial(mu, alpha, shape=(2)) = [[ 0., 3.], [ 3., 1.]]
Defined in src/operator/random/multisample_op.cc:L293
Parameters: - mu (Symbol) – Means of the distributions.
- shape (Shape(tuple), optional, default=[]) – Shape to be sampled from each random distribution.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- alpha (Symbol) – Alpha (dispersion) parameters of the distributions.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sample_multinomial
(data=None, shape=_Null, get_prob=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Concurrent sampling from multiple multinomial distributions.
data is an n dimensional array whose last dimension has length k, where k is the number of possible outcomes of each multinomial distribution. This operator will draw shape samples from each distribution. If shape is empty one sample will be drawn from each distribution.
If get_prob is true, a second array containing log likelihood of the drawn samples will also be returned. This is usually used for reinforcement learning where you can provide reward as head gradient for this array to estimate gradient.
Note that the input distribution must be normalized, i.e. data must sum to 1 along its last axis.
Examples:
probs = [[0, 0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1, 0]] // Draw a single sample for each distribution sample_multinomial(probs) = [3, 0] // Draw a vector containing two samples for each distribution sample_multinomial(probs, shape=(2)) = [[4, 2], [0, 0]] // requests log likelihood sample_multinomial(probs, get_prob=True) = [2, 1], [0.2, 0.3]
Parameters: - data (Symbol) – Distribution probabilities. Must sum to one on the last axis.
- shape (Shape(tuple), optional, default=[]) – Shape to be sampled from each random distribution.
- get_prob (boolean, optional, default=0) – Whether to also return the log probability of sampled result. This is usually used for differentiating through stochastic variables, e.g. in reinforcement learning.
- dtype ({'int32'},optional, default='int32') – DType of the output in case this can’t be inferred. Only support int32 for now.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sample_negative_binomial
(k=None, p=None, shape=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Concurrent sampling from multiple negative binomial distributions with parameters k (failure limit) and p (failure probability).
The parameters of the distributions are provided as input arrays. Let [s] be the shape of the input arrays, n be the dimension of [s], [t] be the shape specified as the parameter of the operator, and m be the dimension of [t]. Then the output will be a (n+m)-dimensional array with shape [s]x[t].
For any valid n-dimensional index i with respect to the input arrays, output[i] will be an m-dimensional array that holds randomly drawn samples from the distribution which is parameterized by the input values at index i. If the shape parameter of the operator is not set, then one sample will be drawn per distribution and the output array has the same shape as the input arrays.
Samples will always be returned as a floating point data type.
Examples:
k = [ 20, 49 ] p = [ 0.4 , 0.77 ] // Draw a single sample for each distribution sample_negative_binomial(k, p) = [ 15., 16.] // Draw a vector containing two samples for each distribution sample_negative_binomial(k, p, shape=(2)) = [[ 15., 50.], [ 16., 12.]]
Defined in src/operator/random/multisample_op.cc:L289
Parameters: - k (Symbol) – Limits of unsuccessful experiments.
- shape (Shape(tuple), optional, default=[]) – Shape to be sampled from each random distribution.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- p (Symbol) – Failure probabilities in each experiment.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sample_normal
(mu=None, sigma=None, shape=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Concurrent sampling from multiple normal distributions with parameters mu (mean) and sigma (standard deviation).
The parameters of the distributions are provided as input arrays. Let [s] be the shape of the input arrays, n be the dimension of [s], [t] be the shape specified as the parameter of the operator, and m be the dimension of [t]. Then the output will be a (n+m)-dimensional array with shape [s]x[t].
For any valid n-dimensional index i with respect to the input arrays, output[i] will be an m-dimensional array that holds randomly drawn samples from the distribution which is parameterized by the input values at index i. If the shape parameter of the operator is not set, then one sample will be drawn per distribution and the output array has the same shape as the input arrays.
Examples:
mu = [ 0.0, 2.5 ] sigma = [ 1.0, 3.7 ] // Draw a single sample for each distribution sample_normal(mu, sigma) = [-0.56410581, 0.95934606] // Draw a vector containing two samples for each distribution sample_normal(mu, sigma, shape=(2)) = [[-0.56410581, 0.2928229 ], [ 0.95934606, 4.48287058]]
Defined in src/operator/random/multisample_op.cc:L279
Parameters: - mu (Symbol) – Means of the distributions.
- shape (Shape(tuple), optional, default=[]) – Shape to be sampled from each random distribution.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- sigma (Symbol) – Standard deviations of the distributions.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sample_poisson
(lam=None, shape=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Concurrent sampling from multiple Poisson distributions with parameters lambda (rate).
The parameters of the distributions are provided as an input array. Let [s] be the shape of the input array, n be the dimension of [s], [t] be the shape specified as the parameter of the operator, and m be the dimension of [t]. Then the output will be a (n+m)-dimensional array with shape [s]x[t].
For any valid n-dimensional index i with respect to the input array, output[i] will be an m-dimensional array that holds randomly drawn samples from the distribution which is parameterized by the input value at index i. If the shape parameter of the operator is not set, then one sample will be drawn per distribution and the output array has the same shape as the input array.
Samples will always be returned as a floating point data type.
Examples:
lam = [ 1.0, 8.5 ] // Draw a single sample for each distribution sample_poisson(lam) = [ 0., 13.] // Draw a vector containing two samples for each distribution sample_poisson(lam, shape=(2)) = [[ 0., 4.], [ 13., 8.]]
Defined in src/operator/random/multisample_op.cc:L286
Parameters: - lam (Symbol) – Lambda (rate) parameters of the distributions.
- shape (Shape(tuple), optional, default=[]) – Shape to be sampled from each random distribution.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sample_uniform
(low=None, high=None, shape=_Null, dtype=_Null, name=None, attr=None, out=None, **kwargs)¶ Concurrent sampling from multiple uniform distributions on the intervals given by [low,high).
The parameters of the distributions are provided as input arrays. Let [s] be the shape of the input arrays, n be the dimension of [s], [t] be the shape specified as the parameter of the operator, and m be the dimension of [t]. Then the output will be a (n+m)-dimensional array with shape [s]x[t].
For any valid n-dimensional index i with respect to the input arrays, output[i] will be an m-dimensional array that holds randomly drawn samples from the distribution which is parameterized by the input values at index i. If the shape parameter of the operator is not set, then one sample will be drawn per distribution and the output array has the same shape as the input arrays.
Examples:
low = [ 0.0, 2.5 ] high = [ 1.0, 3.7 ] // Draw a single sample for each distribution sample_uniform(low, high) = [ 0.40451524, 3.18687344] // Draw a vector containing two samples for each distribution sample_uniform(low, high, shape=(2)) = [[ 0.40451524, 0.18017688], [ 3.18687344, 3.68352246]]
Defined in src/operator/random/multisample_op.cc:L277
Parameters: - low (Symbol) – Lower bounds of the distributions.
- shape (Shape(tuple), optional, default=[]) – Shape to be sampled from each random distribution.
- dtype ({'None', 'float16', 'float32', 'float64'},optional, default='None') – DType of the output in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
- high (Symbol) – Upper bounds of the distributions.
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
scatter_nd
(data=None, indices=None, shape=_Null, name=None, attr=None, out=None, **kwargs)¶ Scatters data into a new tensor according to indices.
Given data with shape (Y_0, ..., Y_{K-1}, X_M, ..., X_{N-1}) and indices with shape (M, Y_0, ..., Y_{K-1}), the output will have shape (X_0, X_1, ..., X_{N-1}), where M <= N. If M == N, data shape should simply be (Y_0, ..., Y_{K-1}).
The elements in output is defined as follows:
output[indices[0, y_0, ..., y_{K-1}], ..., indices[M-1, y_0, ..., y_{K-1}], x_M, ..., x_{N-1}] = data[y_0, ..., y_{K-1}, x_M, ..., x_{N-1}]
all other entries in output are 0.
Warning
If the indices have duplicates, the result will be non-deterministic and the gradient of scatter_nd will not be correct!!
Examples:
data = [2, 3, 0] indices = [[1, 1, 0], [0, 1, 0]] shape = (2, 2) scatter_nd(data, indices, shape) = [[0, 0], [2, 3]]
Parameters: Returns: The result symbol.
Return type:
-
mxnet.symbol.
sgd_mom_update
(weight=None, grad=None, mom=None, lr=_Null, momentum=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, name=None, attr=None, out=None, **kwargs)¶ Momentum update function for Stochastic Gradient Descent (SDG) optimizer.
Momentum update has better convergence rates on neural networks. Mathematically it looks like below:
\[\begin{split}v_1 = \alpha * \nabla J(W_0)\\ v_t = \gamma v_{t-1} - \alpha * \nabla J(W_{t-1})\\ W_t = W_{t-1} + v_t\end{split}\]It updates the weights using:
v = momentum * v - learning_rate * gradient weight += v
Where the parameter
momentum
is the decay rate of momentum estimates at each epoch.If weight and momentum are both of
row_sparse
storage type, only the row slices whose indices appear in grad.indices are updated (for both weight and momentum):for row in gradient.indices: v[row] = momentum[row] * v[row] - learning_rate * gradient[row] weight[row] += v[row]
Defined in src/operator/optimizer_op.cc:L93
Parameters: - weight (Symbol) – Weight
- grad (Symbol) – Gradient
- mom (Symbol) – Momentum
- lr (float, required) – Learning rate
- momentum (float, optional, default=0) – The decay rate of momentum estimates at each epoch.
- wd (float, optional, default=0) – Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight.
- rescale_grad (float, optional, default=1) – Rescale gradient to grad = rescale_grad*grad.
- clip_gradient (float, optional, default=-1) – Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient).
- name (string, optional.) – Name of the resulting symbol.
Returns: The result symbol.
Return type:
-
mxnet.symbol.
sgd_update
(weight=None, grad=None, lr=_Null, wd=_Null, rescale_grad=_Null, clip_gradient=_Null, name=None, attr=None, out=None, **kwargs)¶ Update function for Stochastic Gradient Descent (SDG) optimizer.
It updates the weights using: