Predict with pre-trained models¶
This tutorial explains how to recognize objects in an image with a pre-trained model, and how to perform feature extraction.
Prerequisites¶
To complete this tutorial, we need:
- MXNet. See the instructions for your operating system in Setup and Installation
- Python Requests, Matplotlib and Jupyter Notebook.
$ pip install requests matplotlib jupyter opencv-python
Loading¶
We first download a pre-trained ResNet 152 layer that is trained on the full ImageNet dataset with over 10 million images and 10 thousand classes. A pre-trained model contains two parts, a json file containing the model definition and a binary file containing the parameters. In addition, there may be a text file for the labels.
import mxnet as mx
path='http://data.mxnet.io/models/imagenet-11k/'
[mx.test_utils.download(path+'resnet-152/resnet-152-symbol.json'),
mx.test_utils.download(path+'resnet-152/resnet-152-0000.params'),
mx.test_utils.download(path+'synset.txt')]
Next, we load the downloaded model. Note: If GPU is available, we can replace all
occurrences of mx.cpu()
with mx.gpu()
to accelerate the computation.
sym, arg_params, aux_params = mx.model.load_checkpoint('resnet-152', 0)
mod = mx.mod.Module(symbol=sym, context=mx.cpu(), label_names=None)
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))],
label_shapes=mod._label_shapes)
mod.set_params(arg_params, aux_params, allow_missing=True)
with open('synset.txt', 'r') as f:
labels = [l.rstrip() for l in f]
Predicting¶
We first define helper functions for downloading an image and performing the prediction:
%matplotlib inline
import matplotlib.pyplot as plt
import cv2
import numpy as np
# define a simple data batch
from collections import namedtuple
Batch = namedtuple('Batch', ['data'])
def get_image(url, show=False):
# download and show the image
fname = mx.test_utils.download(url)
img = cv2.cvtColor(cv2.imread(fname), cv2.COLOR_BGR2RGB)
if img is None:
return None
if show:
plt.imshow(img)
plt.axis('off')
# convert into format (batch, RGB, width, height)
img = cv2.resize(img, (224, 224))
img = np.swapaxes(img, 0, 2)
img = np.swapaxes(img, 1, 2)
img = img[np.newaxis, :]
return img
def predict(url):
img = get_image(url, show=True)
# compute the predict probabilities
mod.forward(Batch([mx.nd.array(img)]))
prob = mod.get_outputs()[0].asnumpy()
# print the top-5
prob = np.squeeze(prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
print('probability=%f, class=%s' %(prob[i], labels[i]))
Now, we can perform prediction with any downloadable URL:
predict('http://writm.com/wp-content/uploads/2016/08/Cat-hd-wallpapers.jpg')
predict('http://thenotoriouspug.com/wp-content/uploads/2015/01/Pug-Cookie-1920x1080-1024x576.jpg')
Feature extraction¶
By feature extraction, we mean presenting the input images by the output of an internal layer rather than the last softmax layer. These outputs, which can be viewed as the feature of the raw input image, can then be used by other applications such as object detection.
We can use the get_internals
method to get all internal layers from a
Symbol.
# list the last 10 layers
all_layers = sym.get_internals()
all_layers.list_outputs()[-10:]
An often used layer for feature extraction is the one before the last fully
connected layer. For ResNet, and also Inception, it is the flattened layer with
name flatten0
which reshapes the 4-D convolutional layer output into 2-D for
the fully connected layer. The following source code extracts a new Symbol which
outputs the flattened layer and creates a model.
fe_sym = all_layers['flatten0_output']
fe_mod = mx.mod.Module(symbol=fe_sym, context=mx.cpu(), label_names=None)
fe_mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))])
fe_mod.set_params(arg_params, aux_params)
We can now invoke forward
to obtain the features:
img = get_image('http://writm.com/wp-content/uploads/2016/08/Cat-hd-wallpapers.jpg')
fe_mod.forward(Batch([mx.nd.array(img)]))
features = fe_mod.get_outputs()[0].asnumpy()
print(features)
assert features.shape == (1, 2048)