28 #ifndef MXNET_TENSOR_BLOB_H_ 29 #define MXNET_TENSOR_BLOB_H_ 31 #include <dmlc/logging.h> 32 #include <dmlc/json.h> 33 #include <dlpack/dlpack.h> 39 #if MXNET_USE_MKL2017 == 1 40 #include <mkl_memory.h> 70 #if MKL_EXPERIMENTAL == 1 71 std::shared_ptr<MKLMemHolder> Mkl_mem_;
76 type_flag_(mshadow::DataType<
real_t>::kFlag) {
77 #if MKL_EXPERIMENTAL == 1 80 SetDLTensor(cpu::kDevMask, 0);
89 template<
typename DType>
91 : dptr_(dptr), shape_(shape),
92 type_flag_(mshadow::DataType<DType>::kFlag) {
93 #if MKL_EXPERIMENTAL == 1 96 SetDLTensor(dev_mask,
dev_id);
107 : dptr_(dptr), shape_(shape), type_flag_(type_flag) {
108 #if MKL_EXPERIMENTAL == 1 111 SetDLTensor(dev_mask,
dev_id);
120 template<
typename Device,
int dim,
typename DType>
121 TBlob(
const mshadow::Tensor<Device, dim, DType> &src) {
132 template<
typename Device,
int dim,
typename DType>
136 type_flag_ = mshadow::DataType<DType>::kFlag;
137 SetDLTensor(Device::kDevMask, -1);
138 #if MKL_EXPERIMENTAL == 1 155 CHECK_EQ(this->shape_.Size(), shape.Size()) <<
"Shape size mismatch " 156 << this->shape_.
Size() <<
" v.s. " << shape.Size();
167 template<
typename Device,
typename DType>
169 mshadow::Stream<Device> *stream = NULL)
const {
170 CHECK(Device::kDevMask == this->
dev_mask())
171 <<
"TBlob.get: device type do not match specified type";
172 CHECK(mshadow::DataType<DType>::kFlag == type_flag_)
173 <<
"TBlob.get_with_shape: data type do not match specified type." 174 <<
"Expected: " << type_flag_ <<
" v.s. given " << mshadow::DataType<DType>::kFlag;
175 #if MKL_EXPERIMENTAL == 1 176 if (Mkl_mem_ !=
nullptr) {
177 Mkl_mem_->check_and_prv_to_cpu(dptr_);
180 return mshadow::Tensor<Device, 2, DType>(
static_cast<DType*
>(
dptr_),
182 shape_[shape_.ndim() - 1],
192 template<
typename Device,
typename DType>
194 mshadow::Stream<Device> *stream = NULL)
const {
195 return this->get_with_shape<Device, 1, DType>(
196 mshadow::Shape1(shape_.Size()), stream);
200 return shape_.ndim();
212 return shape_.Size();
215 template<
typename DType>
217 CHECK(mshadow::DataType<DType>::kFlag == type_flag_)
218 <<
"TBlob.get_with_shape: data type do not match specified type." 219 <<
"Expected: " << type_flag_ <<
" v.s. given " << mshadow::DataType<DType>::kFlag;
220 #if MKL_EXPERIMENTAL == 1 221 if (Mkl_mem_ !=
nullptr) {
222 Mkl_mem_->check_and_prv_to_cpu(dptr_);
225 return static_cast<DType*
>(
dptr_);
229 return dltensor_.ctx.device_type;
233 return dltensor_.ctx.device_id;
252 template<
typename Device,
int dim,
typename DType>
253 inline mshadow::Tensor<Device, dim, DType>
get(mshadow::Stream<Device> *stream = NULL)
const {
254 CHECK(Device::kDevMask == this->
dev_mask())
255 <<
"TBlob.get: device type do not match specified type";
256 return mshadow::Tensor<Device, dim, DType>(dptr<DType>(),
257 shape_.get<dim>(), shape_[shape_.ndim() - 1], stream);
269 template<
typename Device,
int dim,
typename DType>
271 const mshadow::Shape<dim> &shape,
272 mshadow::Stream<Device> *stream = NULL)
const {
273 CHECK(Device::kDevMask == this->
dev_mask())
274 <<
"TBlob.get: device type do not match specified type";
275 CHECK_EQ(this->
CheckContiguous(),
true) <<
"TBlob.get_reshape: must be contiguous";
276 CHECK_EQ(this->shape_.Size(), shape.Size())
277 <<
"TBlob.get_with_shape: new and old shape do not match total elements";
278 return mshadow::Tensor<Device, dim, DType>(dptr<DType>(), shape,
279 shape[dim - 1], stream);
290 template<
typename Device,
typename DType>
292 int axis, mshadow::Stream<Device> *stream = NULL)
const {
293 return this->get_with_shape<Device, 3, DType>(
294 this->shape_.FlatTo3D(axis), stream);
306 template<
typename Device,
typename DType>
308 int axis_begin,
int axis_end,
309 mshadow::Stream<Device> *stream = NULL)
const {
310 return this->get_with_shape<Device, 3, DType>(
311 this->shape_.FlatTo3D(axis_begin, axis_end), stream);
322 template<
typename Device,
int dim,
typename DType>
323 inline mshadow::Tensor<Device, dim, DType>
FlatToKD(
324 mshadow::Stream<Device> *stream = NULL)
const {
325 mshadow::Shape<dim> shape;
328 for (
int i = 0; i < dim -
ndim(); ++i) {
332 for (
int i = 0; i <
ndim() - dim + 1; ++i) {
333 shape[0] *= shape_[i];
337 shape[i -
ndim() + dim] = shape_[i];
339 return this->get_with_shape<Device, dim, DType>(shape, stream);
343 static DLDataType DTypeTransform(
int type_flag) {
344 static std::unordered_map<int, DLDataType>
345 MSHADOW_DTYPE_TO_DLPACK_DTYPE = {
353 return MSHADOW_DTYPE_TO_DLPACK_DTYPE[type_flag];
357 dltensor_.data =
dptr_;
358 dltensor_.ctx = DLContext{
static_cast<DLDeviceType
>(
dev_mask), dev_id};
359 dltensor_.ndim = shape_.ndim();
360 dltensor_.dtype = DTypeTransform(type_flag_);
361 dltensor_.shape = shape_.data();
362 dltensor_.strides = NULL;
363 dltensor_.byte_offset = 0;
378 namespace parameter {
382 :
public FieldEntryBase<FieldEntry<mxnet::TShape>, mxnet::TShape> {
388 virtual void Check(
void *head)
const {
391 if (expect_ndim_ != 0 && v.ndim() != expect_ndim_) {
392 std::ostringstream os;
393 os <<
"value " << v <<
"for Parameter " << this->key_
394 <<
" has wrong dimensions, expected dimension=" << expect_ndim_;
395 throw dmlc::ParamError(os.str());
397 if (enforce_nonzero_) {
400 std::ostringstream os;
401 os <<
"value " << v <<
"for Parameter " << this->key_
402 <<
" is invalid, the input shape must be nonzero in all dimensions";
403 throw dmlc::ParamError(os.str());
409 this->enforce_nonzero_ =
true;
419 bool enforce_nonzero_;
427 #endif // MXNET_TENSOR_BLOB_H_ TBlob & operator=(const mshadow::Tensor< Device, dim, DType > &src)
assignment from tensor
Definition: tensor_blob.h:133
DMLC_DECLARE_TYPE_NAME(nnvm::Tuple< dmlc::optional< int >>,"Shape(tuple)")
TShape shape_
shape of the tensor
Definition: tensor_blob.h:65
FieldEntry< mxnet::TShape > & set_expect_ndim(mxnet::index_t ndim)
Definition: tensor_blob.h:412
namespace of mxnet
Definition: base.h:127
mshadow::default_real_t real_t
data type that will be used to store ndarray
Definition: base.h:135
TBlob(void)
storing mkl chunk buffer blob, use for experimental only
Definition: tensor_blob.h:74
Definition: tensor_blob.h:381
int type_flag_
type flag of the tensor blob
Definition: tensor_blob.h:67
mshadow::Tensor< Device, dim, DType > get_with_shape(const mshadow::Shape< dim > &shape, mshadow::Stream< Device > *stream=NULL) const
fetch a tensor in given shape If size do not match the stored size, an error will be issued ...
Definition: tensor_blob.h:270
nnvm::TShape TShape
Shape data structure used to record shape information.
Definition: base.h:137
FieldEntry< mxnet::TShape > & enforce_nonzero()
Definition: tensor_blob.h:408
FieldEntryBase< FieldEntry< mxnet::TShape >, mxnet::TShape > Parent
Definition: tensor_blob.h:386
mshadow::Tensor< Device, 1, DType > FlatTo1D(mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to 1 dimension, collapse all the dimensions together.
Definition: tensor_blob.h:193
Symbol max(const std::string &symbol_name, Symbol data, Shape axis=Shape(), bool keepdims=false, bool exclude=false)
Definition: op.h:2253
index_t size(index_t idx) const
return size of i-th dimension, start counting from highest dimension
Definition: tensor_blob.h:207
void * dptr_
pointer to the data
Definition: tensor_blob.h:63
Definition: ndarray.h:1287
DType * dptr() const
get pointer in dtype
Definition: tensor_blob.h:216
int ndim(void) const
return number of dimension of the tensor inside
Definition: tensor_blob.h:199
TBlob(const mshadow::Tensor< Device, dim, DType > &src)
constructor from tensor
Definition: tensor_blob.h:121
const DLTensor & dltensor() const
return the corresponding DLTensor
Definition: tensor_blob.h:239
mshadow::Tensor< Device, 3, DType > FlatTo3D(int axis_begin, int axis_end, mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to 3 dimension, collapse the dimension: [0, axis_begin), [axis_begin, axis_end], (axis_end, ndim).
Definition: tensor_blob.h:307
mshadow::Tensor< Device, dim, DType > FlatToKD(mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to specified number of dimensions, collapse the highest dimensions or pad with hig...
Definition: tensor_blob.h:323
mshadow::Tensor< Device, 2, DType > FlatTo2D(mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to 2 dimension, collapse the higher dimensions together
Definition: tensor_blob.h:168
virtual void Check(void *head) const
Definition: tensor_blob.h:388
index_t Size(void) const
total number of elements in the tensor
Definition: tensor_blob.h:211
bool CheckContiguous(void) const
Definition: tensor_blob.h:146
TBlob(DType *dptr, const TShape &shape, int dev_mask, int dev_id=-1)
constructor that construct TBlob from contiguous memory
Definition: tensor_blob.h:90
mshadow::Tensor< Device, 3, DType > FlatTo3D(int axis, mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to 3 dimension, collapse the dimension before and after specified axis...
Definition: tensor_blob.h:291
mshadow::index_t index_t
index type usually use unsigned
Definition: base.h:133
TBlob(void *dptr, const TShape &shape, int dev_mask, int type_flag, int dev_id=-1)
constructor that construct TBlob from contiguous memory
Definition: tensor_blob.h:106
TBlob reshape(const TShape &shape) const
reshape to shape
Definition: tensor_blob.h:154
FieldEntry()
Definition: tensor_blob.h:384
ndarray interface
Definition: ndarray.h:79
int dev_mask() const
device mask of the corresponding device
Definition: tensor_blob.h:228
tensor blob class that can be used to hold tensor of any dimension, any device and any data type...
Definition: tensor_blob.h:59
int dev_id() const
device index of the corresponding device
Definition: tensor_blob.h:232