# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
# pylint: disable=
"""Dataset container."""
__all__ = ['Dataset', 'SimpleDataset', 'ArrayDataset',
'RecordFileDataset']
import os
from ... import recordio, ndarray
[docs]class Dataset(object):
"""Abstract dataset class. All datasets should have this interface.
Subclasses need to override `__getitem__`, which returns the i-th
element, and `__len__`, which returns the total number elements.
.. note:: An mxnet or numpy array can be directly used as a dataset.
"""
def __getitem__(self, idx):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
[docs]class SimpleDataset(Dataset):
"""Simple Dataset wrapper for lists and arrays.
Parameters
----------
data : dataset-like object
Any object that implements `len()` and `[]`.
"""
def __init__(self, data):
self._data = data
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
return self._data[idx]
class _LazyTransformDataset(Dataset):
"""Lazily transformed dataset."""
def __init__(self, data, fn):
self._data = data
self._fn = fn
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
item = self._data[idx]
if isinstance(item, tuple):
return self._fn(*item)
return self._fn(item)
[docs]class ArrayDataset(Dataset):
"""A dataset that combines multiple dataset-like objects, e.g.
Datasets, lists, arrays, etc.
The i-th sample is defined as `(x1[i], x2[i], ...)`.
Parameters
----------
*args : one or more dataset-like objects
The data arrays.
"""
def __init__(self, *args):
assert len(args) > 0, "Needs at least 1 arrays"
self._length = len(args[0])
self._data = []
for i, data in enumerate(args):
assert len(data) == self._length, \
"All arrays must have the same length; array[0] has length %d " \
"while array[%d] has %d." % (self._length, i+1, len(data))
if isinstance(data, ndarray.NDArray) and len(data.shape) == 1:
data = data.asnumpy()
self._data.append(data)
def __getitem__(self, idx):
if len(self._data) == 1:
return self._data[0][idx]
else:
return tuple(data[idx] for data in self._data)
def __len__(self):
return self._length
[docs]class RecordFileDataset(Dataset):
"""A dataset wrapping over a RecordIO (.rec) file.
Each sample is a string representing the raw content of an record.
Parameters
----------
filename : str
Path to rec file.
"""
def __init__(self, filename):
self.idx_file = os.path.splitext(filename)[0] + '.idx'
self.filename = filename
self._record = recordio.MXIndexedRecordIO(self.idx_file, self.filename, 'r')
def __getitem__(self, idx):
return self._record.read_idx(self._record.keys[idx])
def __len__(self):
return len(self._record.keys)
class _DownloadedDataset(Dataset):
"""Base class for MNIST, cifar10, etc."""
def __init__(self, root, transform):
super(_DownloadedDataset, self).__init__()
self._transform = transform
self._data = None
self._label = None
root = os.path.expanduser(root)
self._root = root
if not os.path.isdir(root):
os.makedirs(root)
self._get_data()
def __getitem__(self, idx):
if self._transform is not None:
return self._transform(self._data[idx], self._label[idx])
return self._data[idx], self._label[idx]
def __len__(self):
return len(self._label)
def _get_data(self):
raise NotImplementedError