Source code for mxnet.rnn.rnn_cell

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=no-member, invalid-name, protected-access, no-self-use
# pylint: disable=too-many-branches, too-many-arguments, no-self-use
# pylint: disable=too-many-lines
"""Definition of various recurrent neural network cells."""
from __future__ import print_function

import warnings
import functools

from .. import symbol, init, ndarray
from ..base import string_types, numeric_types


def _cells_state_shape(cells):
    return sum([c.state_shape for c in cells], [])

def _cells_state_info(cells):
    return sum([c.state_info for c in cells], [])

def _cells_begin_state(cells, **kwargs):
    return sum([c.begin_state(**kwargs) for c in cells], [])

def _cells_unpack_weights(cells, args):
    for cell in cells:
        args = cell.unpack_weights(args)
    return args

def _cells_pack_weights(cells, args):
    for cell in cells:
        args = cell.pack_weights(args)
    return args

def _normalize_sequence(length, inputs, layout, merge, in_layout=None):
    assert inputs is not None, \
        "unroll(inputs=None) has been deprecated. " \
        "Please create input variables outside unroll."

    axis = layout.find('T')
    in_axis = in_layout.find('T') if in_layout is not None else axis
    if isinstance(inputs, symbol.Symbol):
        if merge is False:
            assert len(inputs.list_outputs()) == 1, \
                "unroll doesn't allow grouped symbol as input. Please convert " \
                "to list with list(inputs) first or let unroll handle splitting."
            inputs = list(symbol.split(inputs, axis=in_axis, num_outputs=length,
                                       squeeze_axis=1))
    else:
        assert length is None or len(inputs) == length
        if merge is True:
            inputs = [symbol.expand_dims(i, axis=axis) for i in inputs]
            inputs = symbol.Concat(*inputs, dim=axis)
            in_axis = axis

    if isinstance(inputs, symbol.Symbol) and axis != in_axis:
        inputs = symbol.swapaxes(inputs, dim0=axis, dim1=in_axis)

    return inputs, axis


[docs]class RNNParams(object): """Container for holding variables. Used by RNN cells for parameter sharing between cells. Parameters ---------- prefix : str Names of all variables created by this container will be prepended with prefix. """ def __init__(self, prefix=''): self._prefix = prefix self._params = {}
[docs] def get(self, name, **kwargs): """Get the variable given a name if one exists or create a new one if missing. Parameters ---------- name : str name of the variable **kwargs : more arguments that's passed to symbol.Variable """ name = self._prefix + name if name not in self._params: self._params[name] = symbol.Variable(name, **kwargs) return self._params[name]
[docs]class BaseRNNCell(object): """Abstract base class for RNN cells Parameters ---------- prefix : str, optional Prefix for names of layers (this prefix is also used for names of weights if `params` is None i.e. if `params` are being created and not reused) params : RNNParams, default None. Container for weight sharing between cells. A new RNNParams container is created if `params` is None. """ def __init__(self, prefix='', params=None): if params is None: params = RNNParams(prefix) self._own_params = True else: self._own_params = False self._prefix = prefix self._params = params self._modified = False self.reset()
[docs] def reset(self): """Reset before re-using the cell for another graph.""" self._init_counter = -1 self._counter = -1 if hasattr(self, '_cells'): for cell in self._cells: cell.reset()
[docs] def __call__(self, inputs, states): """Unroll the RNN for one time step. Parameters ---------- inputs : sym.Variable input symbol, 2D, batch * num_units states : list of sym.Variable RNN state from previous step or the output of begin_state(). Returns ------- output : Symbol Symbol corresponding to the output from the RNN when unrolling for a single time step. states : nested list of Symbol The new state of this RNN after this unrolling. The type of this symbol is same as the output of begin_state(). This can be used as input state to the next time step of this RNN. See Also -------- begin_state: This function can provide the states for the first time step. unroll: This function unrolls an RNN for a given number of (>=1) time steps. """ raise NotImplementedError()
@property def params(self): """Parameters of this cell""" self._own_params = False return self._params @property def state_info(self): """shape and layout information of states""" raise NotImplementedError() @property def state_shape(self): """shape(s) of states""" return [ele['shape'] for ele in self.state_info] @property def _gate_names(self): """name(s) of gates""" return ()
[docs] def begin_state(self, func=symbol.zeros, **kwargs): """Initial state for this cell. Parameters ---------- func : callable, default symbol.zeros Function for creating initial state. Can be symbol.zeros, symbol.uniform, symbol.Variable etc. Use symbol.Variable if you want to directly feed input as states. **kwargs : more keyword arguments passed to func. For example mean, std, dtype, etc. Returns ------- states : nested list of Symbol Starting states for the first RNN step. """ assert not self._modified, \ "After applying modifier cells (e.g. DropoutCell) the base " \ "cell cannot be called directly. Call the modifier cell instead." states = [] for info in self.state_info: self._init_counter += 1 if info is None: state = func(name='%sbegin_state_%d'%(self._prefix, self._init_counter), **kwargs) else: kwargs.update(info) state = func(name='%sbegin_state_%d'%(self._prefix, self._init_counter), **kwargs) states.append(state) return states
[docs] def unpack_weights(self, args): """Unpack fused weight matrices into separate weight matrices. For example, say you use a module object `mod` to run a network that has an lstm cell. In `mod.get_params()[0]`, the lstm parameters are all represented as a single big vector. `cell.unpack_weights(mod.get_params()[0])` will unpack this vector into a dictionary of more readable lstm parameters - c, f, i, o gates for i2h (input to hidden) and h2h (hidden to hidden) weights. Parameters ---------- args : dict of str -> NDArray Dictionary containing packed weights. usually from `Module.get_params()[0]`. Returns ------- args : dict of str -> NDArray Dictionary with unpacked weights associated with this cell. See Also -------- pack_weights: Performs the reverse operation of this function. """ args = args.copy() if not self._gate_names: return args h = self._num_hidden for group_name in ['i2h', 'h2h']: weight = args.pop('%s%s_weight'%(self._prefix, group_name)) bias = args.pop('%s%s_bias' % (self._prefix, group_name)) for j, gate in enumerate(self._gate_names): wname = '%s%s%s_weight' % (self._prefix, group_name, gate) args[wname] = weight[j*h:(j+1)*h].copy() bname = '%s%s%s_bias' % (self._prefix, group_name, gate) args[bname] = bias[j*h:(j+1)*h].copy() return args
[docs] def pack_weights(self, args): """Pack separate weight matrices into a single packed weight. Parameters ---------- args : dict of str -> NDArray Dictionary containing unpacked weights. Returns ------- args : dict of str -> NDArray Dictionary with packed weights associated with this cell. """ args = args.copy() if not self._gate_names: return args for group_name in ['i2h', 'h2h']: weight = [] bias = [] for gate in self._gate_names: wname = '%s%s%s_weight'%(self._prefix, group_name, gate) weight.append(args.pop(wname)) bname = '%s%s%s_bias'%(self._prefix, group_name, gate) bias.append(args.pop(bname)) args['%s%s_weight'%(self._prefix, group_name)] = ndarray.concatenate(weight) args['%s%s_bias'%(self._prefix, group_name)] = ndarray.concatenate(bias) return args
[docs] def unroll(self, length, inputs, begin_state=None, layout='NTC', merge_outputs=None): """Unroll an RNN cell across time steps. Parameters ---------- length : int Number of steps to unroll. inputs : Symbol, list of Symbol, or None If `inputs` is a single Symbol (usually the output of Embedding symbol), it should have shape (batch_size, length, ...) if layout == 'NTC', or (length, batch_size, ...) if layout == 'TNC'. If `inputs` is a list of symbols (usually output of previous unroll), they should all have shape (batch_size, ...). begin_state : nested list of Symbol, default None Input states created by `begin_state()` or output state of another cell. Created from `begin_state()` if None. layout : str, optional `layout` of input symbol. Only used if inputs is a single Symbol. merge_outputs : bool, optional If False, return outputs as a list of Symbols. If True, concatenate output across time steps and return a single symbol with shape (batch_size, length, ...) if layout == 'NTC', or (length, batch_size, ...) if layout == 'TNC'. If None, output whatever is faster. Returns ------- outputs : list of Symbol or Symbol Symbol (if `merge_outputs` is True) or list of Symbols (if `merge_outputs` is False) corresponding to the output from the RNN from this unrolling. states : nested list of Symbol The new state of this RNN after this unrolling. The type of this symbol is same as the output of begin_state(). """ self.reset() inputs, _ = _normalize_sequence(length, inputs, layout, False) if begin_state is None: begin_state = self.begin_state() states = begin_state outputs = [] for i in range(length): output, states = self(inputs[i], states) outputs.append(output) outputs, _ = _normalize_sequence(length, outputs, layout, merge_outputs) return outputs, states
#pylint: disable=no-self-use def _get_activation(self, inputs, activation, **kwargs): """Get activation function. Convert if is string""" if isinstance(activation, string_types): return symbol.Activation(inputs, act_type=activation, **kwargs) else: return activation(inputs, **kwargs)
[docs]class RNNCell(BaseRNNCell): """Simple recurrent neural network cell. Parameters ---------- num_hidden : int Number of units in output symbol. activation : str or Symbol, default 'tanh' Type of activation function. Options are 'relu' and 'tanh'. prefix : str, default 'rnn_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, num_hidden, activation='tanh', prefix='rnn_', params=None): super(RNNCell, self).__init__(prefix=prefix, params=params) self._num_hidden = num_hidden self._activation = activation self._iW = self.params.get('i2h_weight') self._iB = self.params.get('i2h_bias') self._hW = self.params.get('h2h_weight') self._hB = self.params.get('h2h_bias') @property def state_info(self): return [{'shape': (0, self._num_hidden), '__layout__': 'NC'}] @property def _gate_names(self): return ('',) def __call__(self, inputs, states): self._counter += 1 name = '%st%d_'%(self._prefix, self._counter) i2h = symbol.FullyConnected(data=inputs, weight=self._iW, bias=self._iB, num_hidden=self._num_hidden, name='%si2h'%name) h2h = symbol.FullyConnected(data=states[0], weight=self._hW, bias=self._hB, num_hidden=self._num_hidden, name='%sh2h'%name) output = self._get_activation(i2h + h2h, self._activation, name='%sout'%name) return output, [output]
[docs]class LSTMCell(BaseRNNCell): """Long-Short Term Memory (LSTM) network cell. Parameters ---------- num_hidden : int Number of units in output symbol. prefix : str, default 'lstm_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. forget_bias : bias added to forget gate, default 1.0. Jozefowicz et al. 2015 recommends setting this to 1.0 """ def __init__(self, num_hidden, prefix='lstm_', params=None, forget_bias=1.0): super(LSTMCell, self).__init__(prefix=prefix, params=params) self._num_hidden = num_hidden self._iW = self.params.get('i2h_weight') self._hW = self.params.get('h2h_weight') # we add the forget_bias to i2h_bias, this adds the bias to the forget gate activation self._iB = self.params.get('i2h_bias', init=init.LSTMBias(forget_bias=forget_bias)) self._hB = self.params.get('h2h_bias') @property def state_info(self): return [{'shape': (0, self._num_hidden), '__layout__': 'NC'}, {'shape': (0, self._num_hidden), '__layout__': 'NC'}] @property def _gate_names(self): return ['_i', '_f', '_c', '_o'] def __call__(self, inputs, states): self._counter += 1 name = '%st%d_'%(self._prefix, self._counter) i2h = symbol.FullyConnected(data=inputs, weight=self._iW, bias=self._iB, num_hidden=self._num_hidden*4, name='%si2h'%name) h2h = symbol.FullyConnected(data=states[0], weight=self._hW, bias=self._hB, num_hidden=self._num_hidden*4, name='%sh2h'%name) gates = i2h + h2h slice_gates = symbol.SliceChannel(gates, num_outputs=4, name="%sslice"%name) in_gate = symbol.Activation(slice_gates[0], act_type="sigmoid", name='%si'%name) forget_gate = symbol.Activation(slice_gates[1], act_type="sigmoid", name='%sf'%name) in_transform = symbol.Activation(slice_gates[2], act_type="tanh", name='%sc'%name) out_gate = symbol.Activation(slice_gates[3], act_type="sigmoid", name='%so'%name) next_c = symbol._internal._plus(forget_gate * states[1], in_gate * in_transform, name='%sstate'%name) next_h = symbol._internal._mul(out_gate, symbol.Activation(next_c, act_type="tanh"), name='%sout'%name) return next_h, [next_h, next_c]
[docs]class GRUCell(BaseRNNCell): """Gated Rectified Unit (GRU) network cell. Note: this is an implementation of the cuDNN version of GRUs (slight modification compared to Cho et al. 2014). Parameters ---------- num_hidden : int Number of units in output symbol. prefix : str, default 'gru_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, num_hidden, prefix='gru_', params=None): super(GRUCell, self).__init__(prefix=prefix, params=params) self._num_hidden = num_hidden self._iW = self.params.get("i2h_weight") self._iB = self.params.get("i2h_bias") self._hW = self.params.get("h2h_weight") self._hB = self.params.get("h2h_bias") @property def state_info(self): return [{'shape': (0, self._num_hidden), '__layout__': 'NC'}] @property def _gate_names(self): return ['_r', '_z', '_o'] def __call__(self, inputs, states): # pylint: disable=too-many-locals self._counter += 1 seq_idx = self._counter name = '%st%d_' % (self._prefix, seq_idx) prev_state_h = states[0] i2h = symbol.FullyConnected(data=inputs, weight=self._iW, bias=self._iB, num_hidden=self._num_hidden * 3, name="%s_i2h" % name) h2h = symbol.FullyConnected(data=prev_state_h, weight=self._hW, bias=self._hB, num_hidden=self._num_hidden * 3, name="%s_h2h" % name) i2h_r, i2h_z, i2h = symbol.SliceChannel(i2h, num_outputs=3, name="%s_i2h_slice" % name) h2h_r, h2h_z, h2h = symbol.SliceChannel(h2h, num_outputs=3, name="%s_h2h_slice" % name) reset_gate = symbol.Activation(i2h_r + h2h_r, act_type="sigmoid", name="%s_r_act" % name) update_gate = symbol.Activation(i2h_z + h2h_z, act_type="sigmoid", name="%s_z_act" % name) next_h_tmp = symbol.Activation(i2h + reset_gate * h2h, act_type="tanh", name="%s_h_act" % name) next_h = symbol._internal._plus((1. - update_gate) * next_h_tmp, update_gate * prev_state_h, name='%sout' % name) return next_h, [next_h]
[docs]class FusedRNNCell(BaseRNNCell): """Fusing RNN layers across time step into one kernel. Improves speed but is less flexible. Currently only supported if using cuDNN on GPU. Parameters ---------- num_hidden : int Number of units in output symbol. num_layers : int, default 1 Number of layers in the cell. mode : str, default 'lstm' Type of RNN. options are 'rnn_relu', 'rnn_tanh', 'lstm', 'gru'. bidirectional : bool, default False Whether to use bidirectional unroll. The output dimension size is doubled if bidrectional. dropout : float, default 0. Fraction of the input that gets dropped out during training time. get_next_state : bool, default False Whether to return the states that can be used as starting states next time. forget_bias : bias added to forget gate, default 1.0. Jozefowicz et al. 2015 recommends setting this to 1.0 prefix : str, default '$mode_' such as 'lstm_' Prefix for names of layers (this prefix is also used for names of weights if `params` is None i.e. if `params` are being created and not reused) params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, num_hidden, num_layers=1, mode='lstm', bidirectional=False, dropout=0., get_next_state=False, forget_bias=1.0, prefix=None, params=None): if prefix is None: prefix = '%s_'%mode super(FusedRNNCell, self).__init__(prefix=prefix, params=params) self._num_hidden = num_hidden self._num_layers = num_layers self._mode = mode self._bidirectional = bidirectional self._dropout = dropout self._get_next_state = get_next_state self._directions = ['l', 'r'] if bidirectional else ['l'] initializer = init.FusedRNN(None, num_hidden, num_layers, mode, bidirectional, forget_bias) self._parameter = self.params.get('parameters', init=initializer) @property def state_info(self): b = self._bidirectional + 1 n = (self._mode == 'lstm') + 1 return [{'shape': (b*self._num_layers, 0, self._num_hidden), '__layout__': 'LNC'} for _ in range(n)] @property def _gate_names(self): return {'rnn_relu': [''], 'rnn_tanh': [''], 'lstm': ['_i', '_f', '_c', '_o'], 'gru': ['_r', '_z', '_o']}[self._mode] @property def _num_gates(self): return len(self._gate_names) def _slice_weights(self, arr, li, lh): """slice fused rnn weights""" args = {} gate_names = self._gate_names directions = self._directions b = len(directions) p = 0 for layer in range(self._num_layers): for direction in directions: for gate in gate_names: name = '%s%s%d_i2h%s_weight'%(self._prefix, direction, layer, gate) if layer > 0: size = b*lh*lh args[name] = arr[p:p+size].reshape((lh, b*lh)) else: size = li*lh args[name] = arr[p:p+size].reshape((lh, li)) p += size for gate in gate_names: name = '%s%s%d_h2h%s_weight'%(self._prefix, direction, layer, gate) size = lh**2 args[name] = arr[p:p+size].reshape((lh, lh)) p += size for layer in range(self._num_layers): for direction in directions: for gate in gate_names: name = '%s%s%d_i2h%s_bias'%(self._prefix, direction, layer, gate) args[name] = arr[p:p+lh] p += lh for gate in gate_names: name = '%s%s%d_h2h%s_bias'%(self._prefix, direction, layer, gate) args[name] = arr[p:p+lh] p += lh assert p == arr.size, "Invalid parameters size for FusedRNNCell" return args def unpack_weights(self, args): args = args.copy() arr = args.pop(self._parameter.name) b = len(self._directions) m = self._num_gates h = self._num_hidden num_input = arr.size//b//h//m - (self._num_layers - 1)*(h+b*h+2) - h - 2 nargs = self._slice_weights(arr, num_input, self._num_hidden) args.update({name: nd.copy() for name, nd in nargs.items()}) return args def pack_weights(self, args): args = args.copy() b = self._bidirectional + 1 m = self._num_gates c = self._gate_names h = self._num_hidden w0 = args['%sl0_i2h%s_weight'%(self._prefix, c[0])] num_input = w0.shape[1] total = (num_input+h+2)*h*m*b + (self._num_layers-1)*m*h*(h+b*h+2)*b arr = ndarray.zeros((total,), ctx=w0.context, dtype=w0.dtype) for name, nd in self._slice_weights(arr, num_input, h).items(): nd[:] = args.pop(name) args[self._parameter.name] = arr return args def __call__(self, inputs, states): raise NotImplementedError("FusedRNNCell cannot be stepped. Please use unroll") def unroll(self, length, inputs, begin_state=None, layout='NTC', merge_outputs=None): self.reset() inputs, axis = _normalize_sequence(length, inputs, layout, True) if axis == 1: warnings.warn("NTC layout detected. Consider using " "TNC for FusedRNNCell for faster speed") inputs = symbol.swapaxes(inputs, dim1=0, dim2=1) else: assert axis == 0, "Unsupported layout %s"%layout if begin_state is None: begin_state = self.begin_state() states = begin_state if self._mode == 'lstm': states = {'state': states[0], 'state_cell': states[1]} # pylint: disable=redefined-variable-type else: states = {'state': states[0]} rnn = symbol.RNN(data=inputs, parameters=self._parameter, state_size=self._num_hidden, num_layers=self._num_layers, bidirectional=self._bidirectional, p=self._dropout, state_outputs=self._get_next_state, mode=self._mode, name=self._prefix+'rnn', **states) attr = {'__layout__' : 'LNC'} if not self._get_next_state: outputs, states = rnn, [] elif self._mode == 'lstm': rnn[1]._set_attr(**attr) rnn[2]._set_attr(**attr) outputs, states = rnn[0], [rnn[1], rnn[2]] else: rnn[1]._set_attr(**attr) outputs, states = rnn[0], [rnn[1]] if axis == 1: outputs = symbol.swapaxes(outputs, dim1=0, dim2=1) outputs, _ = _normalize_sequence(length, outputs, layout, merge_outputs) return outputs, states
[docs] def unfuse(self): """Unfuse the fused RNN in to a stack of rnn cells. Returns ------- cell : SequentialRNNCell unfused cell that can be used for stepping, and can run on CPU. """ stack = SequentialRNNCell() get_cell = {'rnn_relu': lambda cell_prefix: RNNCell(self._num_hidden, activation='relu', prefix=cell_prefix), 'rnn_tanh': lambda cell_prefix: RNNCell(self._num_hidden, activation='tanh', prefix=cell_prefix), 'lstm': lambda cell_prefix: LSTMCell(self._num_hidden, prefix=cell_prefix), 'gru': lambda cell_prefix: GRUCell(self._num_hidden, prefix=cell_prefix)}[self._mode] for i in range(self._num_layers): if self._bidirectional: stack.add(BidirectionalCell( get_cell('%sl%d_'%(self._prefix, i)), get_cell('%sr%d_'%(self._prefix, i)), output_prefix='%sbi_l%d_'%(self._prefix, i))) else: stack.add(get_cell('%sl%d_'%(self._prefix, i))) if self._dropout > 0 and i != self._num_layers - 1: stack.add(DropoutCell(self._dropout, prefix='%s_dropout%d_'%(self._prefix, i))) return stack
[docs]class SequentialRNNCell(BaseRNNCell): """Sequantially stacking multiple RNN cells. Parameters ---------- params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, params=None): super(SequentialRNNCell, self).__init__(prefix='', params=params) self._override_cell_params = params is not None self._cells = []
[docs] def add(self, cell): """Append a cell into the stack. Parameters ---------- cell : BaseRNNCell The cell to be appended. During unroll, previous cell's output (or raw inputs if no previous cell) is used as the input to this cell. """ self._cells.append(cell) if self._override_cell_params: assert cell._own_params, \ "Either specify params for SequentialRNNCell " \ "or child cells, not both." cell.params._params.update(self.params._params) self.params._params.update(cell.params._params)
@property def state_info(self): return _cells_state_info(self._cells) def begin_state(self, **kwargs): # pylint: disable=arguments-differ assert not self._modified, \ "After applying modifier cells (e.g. ZoneoutCell) the base " \ "cell cannot be called directly. Call the modifier cell instead." return _cells_begin_state(self._cells, **kwargs) def unpack_weights(self, args): return _cells_unpack_weights(self._cells, args) def pack_weights(self, args): return _cells_pack_weights(self._cells, args) def __call__(self, inputs, states): self._counter += 1 next_states = [] p = 0 for cell in self._cells: assert not isinstance(cell, BidirectionalCell) n = len(cell.state_info) state = states[p:p+n] p += n inputs, state = cell(inputs, state) next_states.append(state) return inputs, sum(next_states, []) def unroll(self, length, inputs, begin_state=None, layout='NTC', merge_outputs=None): self.reset() num_cells = len(self._cells) if begin_state is None: begin_state = self.begin_state() p = 0 next_states = [] for i, cell in enumerate(self._cells): n = len(cell.state_info) states = begin_state[p:p+n] p += n inputs, states = cell.unroll(length, inputs=inputs, begin_state=states, layout=layout, merge_outputs=None if i < num_cells-1 else merge_outputs) next_states.extend(states) return inputs, next_states
[docs]class DropoutCell(BaseRNNCell): """Apply dropout on input. Parameters ---------- dropout : float Percentage of elements to drop out, which is 1 - percentage to retain. prefix : str, default 'dropout_' Prefix for names of layers (this prefix is also used for names of weights if `params` is None i.e. if `params` are being created and not reused) params : RNNParams, default None Container for weight sharing between cells. Created if None. """ def __init__(self, dropout, prefix='dropout_', params=None): super(DropoutCell, self).__init__(prefix, params) assert isinstance(dropout, numeric_types), "dropout probability must be a number" self.dropout = dropout @property def state_info(self): return [] def __call__(self, inputs, states): if self.dropout > 0: inputs = symbol.Dropout(data=inputs, p=self.dropout) return inputs, states def unroll(self, length, inputs, begin_state=None, layout='NTC', merge_outputs=None): self.reset() inputs, _ = _normalize_sequence(length, inputs, layout, merge_outputs) if isinstance(inputs, symbol.Symbol): return self(inputs, []) else: return super(DropoutCell, self).unroll( length, inputs, begin_state=begin_state, layout=layout, merge_outputs=merge_outputs)
class ModifierCell(BaseRNNCell): """Base class for modifier cells. A modifier cell takes a base cell, apply modifications on it (e.g. Zoneout), and returns a new cell. After applying modifiers the base cell should no longer be called directly. The modifer cell should be used instead. """ def __init__(self, base_cell): super(ModifierCell, self).__init__() base_cell._modified = True self.base_cell = base_cell @property def params(self): self._own_params = False return self.base_cell.params @property def state_info(self): return self.base_cell.state_info def begin_state(self, init_sym=symbol.zeros, **kwargs): # pylint: disable=arguments-differ assert not self._modified, \ "After applying modifier cells (e.g. DropoutCell) the base " \ "cell cannot be called directly. Call the modifier cell instead." self.base_cell._modified = False begin = self.base_cell.begin_state(init_sym, **kwargs) self.base_cell._modified = True return begin def unpack_weights(self, args): return self.base_cell.unpack_weights(args) def pack_weights(self, args): return self.base_cell.pack_weights(args) def __call__(self, inputs, states): raise NotImplementedError
[docs]class ZoneoutCell(ModifierCell): """Apply Zoneout on base cell. Parameters ---------- base_cell : BaseRNNCell Cell on whose states to perform zoneout. zoneout_outputs : float, default 0. Fraction of the output that gets dropped out during training time. zoneout_states : float, default 0. Fraction of the states that gets dropped out during training time. """ def __init__(self, base_cell, zoneout_outputs=0., zoneout_states=0.): assert not isinstance(base_cell, FusedRNNCell), \ "FusedRNNCell doesn't support zoneout. " \ "Please unfuse first." assert not isinstance(base_cell, BidirectionalCell), \ "BidirectionalCell doesn't support zoneout since it doesn't support step. " \ "Please add ZoneoutCell to the cells underneath instead." assert not isinstance(base_cell, SequentialRNNCell) or not base_cell._bidirectional, \ "Bidirectional SequentialRNNCell doesn't support zoneout. " \ "Please add ZoneoutCell to the cells underneath instead." super(ZoneoutCell, self).__init__(base_cell) self.zoneout_outputs = zoneout_outputs self.zoneout_states = zoneout_states self.prev_output = None def reset(self): super(ZoneoutCell, self).reset() self.prev_output = None def __call__(self, inputs, states): cell, p_outputs, p_states = self.base_cell, self.zoneout_outputs, self.zoneout_states next_output, next_states = cell(inputs, states) mask = lambda p, like: symbol.Dropout(symbol.ones_like(like), p=p) prev_output = self.prev_output if self.prev_output is not None else symbol.zeros((0, 0)) output = (symbol.where(mask(p_outputs, next_output), next_output, prev_output) if p_outputs != 0. else next_output) states = ([symbol.where(mask(p_states, new_s), new_s, old_s) for new_s, old_s in zip(next_states, states)] if p_states != 0. else next_states) self.prev_output = output return output, states
[docs]class ResidualCell(ModifierCell): """Adds residual connection as described in Wu et al, 2016 (https://arxiv.org/abs/1609.08144). Output of the cell is output of the base cell plus input. Parameters ---------- base_cell : BaseRNNCell Cell on whose outputs to add residual connection. """ def __init__(self, base_cell): super(ResidualCell, self).__init__(base_cell) def __call__(self, inputs, states): output, states = self.base_cell(inputs, states) output = symbol.elemwise_add(output, inputs, name="%s_plus_residual" % output.name) return output, states def unroll(self, length, inputs, begin_state=None, layout='NTC', merge_outputs=None): self.reset() self.base_cell._modified = False outputs, states = self.base_cell.unroll(length, inputs=inputs, begin_state=begin_state, layout=layout, merge_outputs=merge_outputs) self.base_cell._modified = True merge_outputs = isinstance(outputs, symbol.Symbol) if merge_outputs is None else \ merge_outputs inputs, _ = _normalize_sequence(length, inputs, layout, merge_outputs) if merge_outputs: outputs = symbol.elemwise_add(outputs, inputs, name="%s_plus_residual" % outputs.name) else: outputs = [symbol.elemwise_add(output_sym, input_sym, name="%s_plus_residual" % output_sym.name) for output_sym, input_sym in zip(outputs, inputs)] return outputs, states
[docs]class BidirectionalCell(BaseRNNCell): """Bidirectional RNN cell. Parameters ---------- l_cell : BaseRNNCell cell for forward unrolling r_cell : BaseRNNCell cell for backward unrolling params : RNNParams, default None. Container for weight sharing between cells. A new RNNParams container is created if `params` is None. output_prefix : str, default 'bi_' prefix for name of output """ def __init__(self, l_cell, r_cell, params=None, output_prefix='bi_'): super(BidirectionalCell, self).__init__('', params=params) self._output_prefix = output_prefix self._override_cell_params = params is not None if self._override_cell_params: assert l_cell._own_params and r_cell._own_params, \ "Either specify params for BidirectionalCell " \ "or child cells, not both." l_cell.params._params.update(self.params._params) r_cell.params._params.update(self.params._params) self.params._params.update(l_cell.params._params) self.params._params.update(r_cell.params._params) self._cells = [l_cell, r_cell] def unpack_weights(self, args): return _cells_unpack_weights(self._cells, args) def pack_weights(self, args): return _cells_pack_weights(self._cells, args) def __call__(self, inputs, states): raise NotImplementedError("Bidirectional cannot be stepped. Please use unroll") @property def state_info(self): return _cells_state_info(self._cells) def begin_state(self, **kwargs): # pylint: disable=arguments-differ assert not self._modified, \ "After applying modifier cells (e.g. DropoutCell) the base " \ "cell cannot be called directly. Call the modifier cell instead." return _cells_begin_state(self._cells, **kwargs) def unroll(self, length, inputs, begin_state=None, layout='NTC', merge_outputs=None): self.reset() inputs, axis = _normalize_sequence(length, inputs, layout, False) if begin_state is None: begin_state = self.begin_state() states = begin_state l_cell, r_cell = self._cells l_outputs, l_states = l_cell.unroll(length, inputs=inputs, begin_state=states[:len(l_cell.state_info)], layout=layout, merge_outputs=merge_outputs) r_outputs, r_states = r_cell.unroll(length, inputs=list(reversed(inputs)), begin_state=states[len(l_cell.state_info):], layout=layout, merge_outputs=merge_outputs) if merge_outputs is None: merge_outputs = (isinstance(l_outputs, symbol.Symbol) and isinstance(r_outputs, symbol.Symbol)) if not merge_outputs: if isinstance(l_outputs, symbol.Symbol): l_outputs = list(symbol.SliceChannel(l_outputs, axis=axis, num_outputs=length, squeeze_axis=1)) if isinstance(r_outputs, symbol.Symbol): r_outputs = list(symbol.SliceChannel(r_outputs, axis=axis, num_outputs=length, squeeze_axis=1)) if merge_outputs: l_outputs = [l_outputs] r_outputs = [symbol.reverse(r_outputs, axis=axis)] else: r_outputs = list(reversed(r_outputs)) outputs = [symbol.Concat(l_o, r_o, dim=1+merge_outputs, name=('%sout'%(self._output_prefix) if merge_outputs else '%st%d'%(self._output_prefix, i))) for i, l_o, r_o in zip(range(len(l_outputs)), l_outputs, r_outputs)] if merge_outputs: outputs = outputs[0] states = [l_states, r_states] return outputs, states
class BaseConvRNNCell(BaseRNNCell): """Abstract base class for Convolutional RNN cells""" def __init__(self, input_shape, num_hidden, h2h_kernel, h2h_dilate, i2h_kernel, i2h_stride, i2h_pad, i2h_dilate, i2h_weight_initializer, h2h_weight_initializer, i2h_bias_initializer, h2h_bias_initializer, activation, prefix='', params=None, conv_layout='NCHW'): super(BaseConvRNNCell, self).__init__(prefix=prefix, params=params) # Convolution setting self._h2h_kernel = h2h_kernel assert (self._h2h_kernel[0] % 2 == 1) and (self._h2h_kernel[1] % 2 == 1), \ "Only support odd number, get h2h_kernel= %s" % str(h2h_kernel) self._h2h_pad = (h2h_dilate[0] * (h2h_kernel[0] - 1) // 2, h2h_dilate[1] * (h2h_kernel[1] - 1) // 2) self._h2h_dilate = h2h_dilate self._i2h_kernel = i2h_kernel self._i2h_stride = i2h_stride self._i2h_pad = i2h_pad self._i2h_dilate = i2h_dilate self._num_hidden = num_hidden self._input_shape = input_shape self._conv_layout = conv_layout self._activation = activation # Infer state shape data = symbol.Variable('data') self._state_shape = symbol.Convolution(data=data, num_filter=self._num_hidden, kernel=self._i2h_kernel, stride=self._i2h_stride, pad=self._i2h_pad, dilate=self._i2h_dilate, layout=conv_layout) self._state_shape = self._state_shape.infer_shape(data=input_shape)[1][0] self._state_shape = (0, ) + self._state_shape[1:] # Get params self._iW = self.params.get('i2h_weight', init=i2h_weight_initializer) self._hW = self.params.get('h2h_weight', init=h2h_weight_initializer) self._iB = self.params.get('i2h_bias', init=i2h_bias_initializer) self._hB = self.params.get('h2h_bias', init=h2h_bias_initializer) @property def _num_gates(self): return len(self._gate_names) @property def state_info(self): return [{'shape': self._state_shape, '__layout__': self._conv_layout}, {'shape': self._state_shape, '__layout__': self._conv_layout}] def _conv_forward(self, inputs, states, name): i2h = symbol.Convolution(name='%si2h'%name, data=inputs, num_filter=self._num_hidden*self._num_gates, kernel=self._i2h_kernel, stride=self._i2h_stride, pad=self._i2h_pad, dilate=self._i2h_dilate, weight=self._iW, bias=self._iB, layout=self._conv_layout) h2h = symbol.Convolution(name='%sh2h'%name, data=states[0], num_filter=self._num_hidden*self._num_gates, kernel=self._h2h_kernel, dilate=self._h2h_dilate, pad=self._h2h_pad, stride=(1, 1), weight=self._hW, bias=self._hB, layout=self._conv_layout) return i2h, h2h def __call__(self, inputs, states): raise NotImplementedError("BaseConvRNNCell is abstract class for convolutional RNN") class ConvRNNCell(BaseConvRNNCell): """Convolutional RNN cells Parameters ---------- input_shape : tuple of int Shape of input in single timestep. num_hidden : int Number of units in output symbol. h2h_kernel : tuple of int, default (3, 3) Kernel of Convolution operator in state-to-state transitions. h2h_dilate : tuple of int, default (1, 1) Dilation of Convolution operator in state-to-state transitions. i2h_kernel : tuple of int, default (3, 3) Kernel of Convolution operator in input-to-state transitions. i2h_stride : tuple of int, default (1, 1) Stride of Convolution operator in input-to-state transitions. i2h_pad : tuple of int, default (1, 1) Pad of Convolution operator in input-to-state transitions. i2h_dilate : tuple of int, default (1, 1) Dilation of Convolution operator in input-to-state transitions. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the convolution transformation of the inputs. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the convolution transformation of the recurrent state. i2h_bias_initializer : str or Initializer, default zeros Initializer for the bias vector. h2h_bias_initializer : str or Initializer, default zeros Initializer for the bias vector. activation : str or Symbol, default functools.partial(symbol.LeakyReLU, act_type='leaky', slope=0.2) Type of activation function. prefix : str, default 'ConvRNN_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. conv_layout : str, , default 'NCHW' Layout of ConvolutionOp """ def __init__(self, input_shape, num_hidden, h2h_kernel=(3, 3), h2h_dilate=(1, 1), i2h_kernel=(3, 3), i2h_stride=(1, 1), i2h_pad=(1, 1), i2h_dilate=(1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', activation=functools.partial(symbol.LeakyReLU, act_type='leaky', slope=0.2), prefix='ConvRNN_', params=None, conv_layout='NCHW'): super(ConvRNNCell, self).__init__(input_shape=input_shape, num_hidden=num_hidden, h2h_kernel=h2h_kernel, h2h_dilate=h2h_dilate, i2h_kernel=i2h_kernel, i2h_stride=i2h_stride, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, activation=activation, prefix=prefix, params=params, conv_layout=conv_layout) @property def _gate_names(self): return ('',) def __call__(self, inputs, states): self._counter += 1 name = '%st%d_'%(self._prefix, self._counter) i2h, h2h = self._conv_forward(inputs, states, name) output = self._get_activation(i2h + h2h, self._activation, name='%sout'%name) return output, [output] @property def state_info(self): return [{'shape': self._state_shape, '__layout__': self._conv_layout}] class ConvLSTMCell(BaseConvRNNCell): """Convolutional LSTM network cell. Reference: Xingjian et al. NIPS2015 Parameters ---------- input_shape : tuple of int Shape of input in single timestep. num_hidden : int Number of units in output symbol. h2h_kernel : tuple of int, default (3, 3) Kernel of Convolution operator in state-to-state transitions. h2h_dilate : tuple of int, default (1, 1) Dilation of Convolution operator in state-to-state transitions. i2h_kernel : tuple of int, default (3, 3) Kernel of Convolution operator in input-to-state transitions. i2h_stride : tuple of int, default (1, 1) Stride of Convolution operator in input-to-state transitions. i2h_pad : tuple of int, default (1, 1) Pad of Convolution operator in input-to-state transitions. i2h_dilate : tuple of int, default (1, 1) Dilation of Convolution operator in input-to-state transitions. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the convolution transformation of the inputs. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the convolution transformation of the recurrent state. i2h_bias_initializer : str or Initializer, default zeros Initializer for the bias vector. h2h_bias_initializer : str or Initializer, default zeros Initializer for the bias vector. activation : str or Symbol default functools.partial(symbol.LeakyReLU, act_type='leaky', slope=0.2) Type of activation function. prefix : str, default 'ConvLSTM_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. conv_layout : str, , default 'NCHW' Layout of ConvolutionOp """ def __init__(self, input_shape, num_hidden, h2h_kernel=(3, 3), h2h_dilate=(1, 1), i2h_kernel=(3, 3), i2h_stride=(1, 1), i2h_pad=(1, 1), i2h_dilate=(1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', activation=functools.partial(symbol.LeakyReLU, act_type='leaky', slope=0.2), prefix='ConvLSTM_', params=None, conv_layout='NCHW'): super(ConvLSTMCell, self).__init__(input_shape=input_shape, num_hidden=num_hidden, h2h_kernel=h2h_kernel, h2h_dilate=h2h_dilate, i2h_kernel=i2h_kernel, i2h_stride=i2h_stride, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, activation=activation, prefix=prefix, params=params, conv_layout=conv_layout) @property def _gate_names(self): return ['_i', '_f', '_c', '_o'] def __call__(self, inputs, states): self._counter += 1 name = '%st%d_'%(self._prefix, self._counter) i2h, h2h = self._conv_forward(inputs, states, name) gates = i2h + h2h slice_gates = symbol.SliceChannel(gates, num_outputs=4, axis=self._conv_layout.find('C'), name="%sslice"%name) in_gate = symbol.Activation(slice_gates[0], act_type="sigmoid", name='%si'%name) forget_gate = symbol.Activation(slice_gates[1], act_type="sigmoid", name='%sf'%name) in_transform = self._get_activation(slice_gates[2], self._activation, name='%sc'%name) out_gate = symbol.Activation(slice_gates[3], act_type="sigmoid", name='%so'%name) next_c = symbol._internal._plus(forget_gate * states[1], in_gate * in_transform, name='%sstate'%name) next_h = symbol._internal._mul(out_gate, self._get_activation(next_c, self._activation), name='%sout'%name) return next_h, [next_h, next_c] @property def state_info(self): return [{'shape': self._state_shape, '__layout__': self._conv_layout}, {'shape': self._state_shape, '__layout__': self._conv_layout}] class ConvGRUCell(BaseConvRNNCell): """Convolutional Gated Rectified Unit (GRU) network cell. Parameters ---------- input_shape : tuple of int Shape of input in single timestep. num_hidden : int Number of units in output symbol. h2h_kernel : tuple of int, default (3, 3) Kernel of Convolution operator in state-to-state transitions. h2h_dilate : tuple of int, default (1, 1) Dilation of Convolution operator in state-to-state transitions. i2h_kernel : tuple of int, default (3, 3) Kernel of Convolution operator in input-to-state transitions. i2h_stride : tuple of int, default (1, 1) Stride of Convolution operator in input-to-state transitions. i2h_pad : tuple of int, default (1, 1) Pad of Convolution operator in input-to-state transitions. i2h_dilate : tuple of int, default (1, 1) Dilation of Convolution operator in input-to-state transitions. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the convolution transformation of the inputs. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the convolution transformation of the recurrent state. i2h_bias_initializer : str or Initializer, default zeros Initializer for the bias vector. h2h_bias_initializer : str or Initializer, default zeros Initializer for the bias vector. activation : str or Symbol, default functools.partial(symbol.LeakyReLU, act_type='leaky', slope=0.2) Type of activation function. prefix : str, default 'ConvGRU_' Prefix for name of layers (and name of weight if params is None). params : RNNParams, default None Container for weight sharing between cells. Created if None. conv_layout : str, , default 'NCHW' Layout of ConvolutionOp """ def __init__(self, input_shape, num_hidden, h2h_kernel=(3, 3), h2h_dilate=(1, 1), i2h_kernel=(3, 3), i2h_stride=(1, 1), i2h_pad=(1, 1), i2h_dilate=(1, 1), i2h_weight_initializer=None, h2h_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', activation=functools.partial(symbol.LeakyReLU, act_type='leaky', slope=0.2), prefix='ConvGRU_', params=None, conv_layout='NCHW'): super(ConvGRUCell, self).__init__(input_shape=input_shape, num_hidden=num_hidden, h2h_kernel=h2h_kernel, h2h_dilate=h2h_dilate, i2h_kernel=i2h_kernel, i2h_stride=i2h_stride, i2h_pad=i2h_pad, i2h_dilate=i2h_dilate, i2h_weight_initializer=i2h_weight_initializer, h2h_weight_initializer=h2h_weight_initializer, i2h_bias_initializer=i2h_bias_initializer, h2h_bias_initializer=h2h_bias_initializer, activation=activation, prefix=prefix, params=params, conv_layout=conv_layout) @property def _gate_names(self): return ['_r', '_z', '_o'] @property def state_info(self): return [{'shape': self._state_shape, '__layout__': self._conv_layout}] def __call__(self, inputs, states): self._counter += 1 seq_idx = self._counter name = '%st%d_' % (self._prefix, seq_idx) i2h, h2h = self._conv_forward(inputs, states, name) i2h_r, i2h_z, i2h = symbol.SliceChannel(i2h, num_outputs=3, name="%s_i2h_slice" % name) h2h_r, h2h_z, h2h = symbol.SliceChannel(h2h, num_outputs=3, name="%s_h2h_slice" % name) reset_gate = symbol.Activation(i2h_r + h2h_r, act_type="sigmoid", name="%s_r_act" % name) update_gate = symbol.Activation(i2h_z + h2h_z, act_type="sigmoid", name="%s_z_act" % name) next_h_tmp = self._get_activation(i2h + reset_gate * h2h, self._activation, name="%s_h_act" % name) next_h = symbol._internal._plus((1. - update_gate) * next_h_tmp, update_gate * states[0], name='%sout' % name) return next_h, [next_h]