Source code for mxnet.contrib.text.vocab

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=consider-iterating-dictionary

"""Text token indexer."""
from __future__ import absolute_import
from __future__ import print_function

import collections

from . import _constants as C


[docs]class Vocabulary(object): """Indexing for text tokens. Build indices for the unknown token, reserved tokens, and input counter keys. Indexed tokens can be used by token embeddings. Parameters ---------- counter : collections.Counter or None, default None Counts text token frequencies in the text data. Its keys will be indexed according to frequency thresholds such as `most_freq_count` and `min_freq`. Keys of `counter`, `unknown_token`, and values of `reserved_tokens` must be of the same hashable type. Examples: str, int, and tuple. most_freq_count : None or int, default None The maximum possible number of the most frequent tokens in the keys of `counter` that can be indexed. Note that this argument does not count any token from `reserved_tokens`. Suppose that there are different keys of `counter` whose frequency are the same, if indexing all of them will exceed this argument value, such keys will be indexed one by one according to their __cmp__() order until the frequency threshold is met. If this argument is None or larger than its largest possible value restricted by `counter` and `reserved_tokens`, this argument has no effect. min_freq : int, default 1 The minimum frequency required for a token in the keys of `counter` to be indexed. unknown_token : hashable object, default '&lt;unk&gt;' The representation for any unknown token. In other words, any unknown token will be indexed as the same representation. Keys of `counter`, `unknown_token`, and values of `reserved_tokens` must be of the same hashable type. Examples: str, int, and tuple. reserved_tokens : list of hashable objects or None, default None A list of reserved tokens that will always be indexed, such as special symbols representing padding, beginning of sentence, and end of sentence. It cannot contain `unknown_token`, or duplicate reserved tokens. Keys of `counter`, `unknown_token`, and values of `reserved_tokens` must be of the same hashable type. Examples: str, int, and tuple. Attributes ---------- unknown_token : hashable object The representation for any unknown token. In other words, any unknown token will be indexed as the same representation. reserved_tokens : list of strs or None A list of reserved tokens that will always be indexed. """ def __init__(self, counter=None, most_freq_count=None, min_freq=1, unknown_token='', reserved_tokens=None): # Sanity checks. assert min_freq > 0, '`min_freq` must be set to a positive value.' if reserved_tokens is not None: reserved_token_set = set(reserved_tokens) assert unknown_token not in reserved_token_set, \ '`reserved_token` cannot contain `unknown_token`.' assert len(reserved_token_set) == len(reserved_tokens), \ '`reserved_tokens` cannot contain duplicate reserved tokens.' self._index_unknown_and_reserved_tokens(unknown_token, reserved_tokens) if counter is not None: self._index_counter_keys(counter, unknown_token, reserved_tokens, most_freq_count, min_freq) def _index_unknown_and_reserved_tokens(self, unknown_token, reserved_tokens): """Indexes unknown and reserved tokens.""" self._unknown_token = unknown_token # Thus, constants.UNKNOWN_IDX must be 0. self._idx_to_token = [unknown_token] if reserved_tokens is None: self._reserved_tokens = None else: self._reserved_tokens = reserved_tokens[:] self._idx_to_token.extend(reserved_tokens) self._token_to_idx = {token: idx for idx, token in enumerate(self._idx_to_token)} def _index_counter_keys(self, counter, unknown_token, reserved_tokens, most_freq_count, min_freq): """Indexes keys of `counter`. Indexes keys of `counter` according to frequency thresholds such as `most_freq_count` and `min_freq`. """ assert isinstance(counter, collections.Counter), \ '`counter` must be an instance of collections.Counter.' unknown_and_reserved_tokens = set(reserved_tokens) if reserved_tokens is not None else set() unknown_and_reserved_tokens.add(unknown_token) token_freqs = sorted(counter.items(), key=lambda x: x[0]) token_freqs.sort(key=lambda x: x[1], reverse=True) token_cap = len(unknown_and_reserved_tokens) + ( len(counter) if most_freq_count is None else most_freq_count) for token, freq in token_freqs: if freq < min_freq or len(self._idx_to_token) == token_cap: break if token not in unknown_and_reserved_tokens: self._idx_to_token.append(token) self._token_to_idx[token] = len(self._idx_to_token) - 1 def __len__(self): return len(self.idx_to_token) @property def token_to_idx(self): """ dict mapping str to int: A dict mapping each token to its index integer. """ return self._token_to_idx @property def idx_to_token(self): """ list of strs: A list of indexed tokens where the list indices and the token indices are aligned. """ return self._idx_to_token @property def unknown_token(self): return self._unknown_token @property def reserved_tokens(self): return self._reserved_tokens
[docs] def to_indices(self, tokens): """Converts tokens to indices according to the vocabulary. Parameters ---------- tokens : str or list of strs A source token or tokens to be converted. Returns ------- int or list of ints A token index or a list of token indices according to the vocabulary. """ to_reduce = False if not isinstance(tokens, list): tokens = [tokens] to_reduce = True indices = [self.token_to_idx[token] if token in self.token_to_idx else C.UNKNOWN_IDX for token in tokens] return indices[0] if to_reduce else indices
[docs] def to_tokens(self, indices): """Converts token indices to tokens according to the vocabulary. Parameters ---------- indices : int or list of ints A source token index or token indices to be converted. Returns ------- str or list of strs A token or a list of tokens according to the vocabulary. """ to_reduce = False if not isinstance(indices, list): indices = [indices] to_reduce = True max_idx = len(self.idx_to_token) - 1 tokens = [] for idx in indices: if not isinstance(idx, int) or idx > max_idx: raise ValueError('Token index %d in the provided `indices` is invalid.' % idx) else: tokens.append(self.idx_to_token[idx]) return tokens[0] if to_reduce else tokens