class
NDArrayIter extends DataIter
Instance Constructors
-
new
NDArrayIter(data: IndexedSeq[NDArray], label: IndexedSeq[NDArray] = IndexedSeq.empty, dataBatchSize: Int = 1, shuffle: Boolean = false, lastBatchHandle: String = "pad", dataName: String = "data", labelName: String = "label")
-
new
NDArrayIter(data: IndexedSeq[(DataDesc, NDArray)], label: IndexedSeq[(DataDesc, NDArray)], dataBatchSize: Int, shuffle: Boolean, lastBatchHandle: String)
Type Members
-
class
GroupedIterator[B >: A] extends AbstractIterator[Seq[B]] with Iterator[Seq[B]]
Value Members
-
final
def
!=(arg0: Any): Boolean
-
final
def
##(): Int
-
def
++[B >: DataBatch](that: ⇒ GenTraversableOnce[B]): Iterator[B]
-
def
/:[B](z: B)(op: (B, DataBatch) ⇒ B): B
-
def
:\[B](z: B)(op: (DataBatch, B) ⇒ B): B
-
final
def
==(arg0: Any): Boolean
-
def
addString(b: StringBuilder): StringBuilder
-
def
addString(b: StringBuilder, sep: String): StringBuilder
-
def
addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder
-
def
aggregate[B](z: ⇒ B)(seqop: (B, DataBatch) ⇒ B, combop: (B, B) ⇒ B): B
-
final
def
asInstanceOf[T0]: T0
-
def
batchSize: Int
-
def
buffered: BufferedIterator[DataBatch]
-
def
clone(): AnyRef
-
def
collect[B](pf: PartialFunction[DataBatch, B]): Iterator[B]
-
def
collectFirst[B](pf: PartialFunction[DataBatch, B]): Option[B]
-
def
contains(elem: Any): Boolean
-
def
copyToArray[B >: DataBatch](xs: Array[B], start: Int, len: Int): Unit
-
def
copyToArray[B >: DataBatch](xs: Array[B]): Unit
-
def
copyToArray[B >: DataBatch](xs: Array[B], start: Int): Unit
-
def
copyToBuffer[B >: DataBatch](dest: Buffer[B]): Unit
-
def
corresponds[B](that: GenTraversableOnce[B])(p: (DataBatch, B) ⇒ Boolean): Boolean
-
def
count(p: (DataBatch) ⇒ Boolean): Int
-
def
defaultBucketKey: AnyRef
-
def
drop(n: Int): Iterator[DataBatch]
-
def
dropWhile(p: (DataBatch) ⇒ Boolean): Iterator[DataBatch]
-
def
duplicate: (Iterator[DataBatch], Iterator[DataBatch])
-
final
def
eq(arg0: AnyRef): Boolean
-
def
equals(arg0: Any): Boolean
-
def
exists(p: (DataBatch) ⇒ Boolean): Boolean
-
def
filter(p: (DataBatch) ⇒ Boolean): Iterator[DataBatch]
-
def
filterNot(p: (DataBatch) ⇒ Boolean): Iterator[DataBatch]
-
def
finalize(): Unit
-
-
def
flatMap[B](f: (DataBatch) ⇒ GenTraversableOnce[B]): Iterator[B]
-
def
fold[A1 >: DataBatch](z: A1)(op: (A1, A1) ⇒ A1): A1
-
def
foldLeft[B](z: B)(op: (B, DataBatch) ⇒ B): B
-
def
foldRight[B](z: B)(op: (DataBatch, B) ⇒ B): B
-
def
forall(p: (DataBatch) ⇒ Boolean): Boolean
-
def
foreach[U](f: (DataBatch) ⇒ U): Unit
-
final
def
getClass(): Class[_]
-
def
getData(): IndexedSeq[NDArray]
-
def
getIndex(): IndexedSeq[Long]
-
def
getLabel(): IndexedSeq[NDArray]
-
def
getPad(): MXUint
-
-
def
hardReset(): Unit
-
def
hasDefiniteSize: Boolean
-
def
hasNext: Boolean
-
def
hashCode(): Int
-
def
indexOf[B >: DataBatch](elem: B): Int
-
def
indexWhere(p: (DataBatch) ⇒ Boolean): Int
-
-
val
initLabel: IndexedSeq[(DataDesc, NDArray)]
-
def
isEmpty: Boolean
-
final
def
isInstanceOf[T0]: Boolean
-
def
isTraversableAgain: Boolean
-
def
length: Int
-
def
map[B](f: (DataBatch) ⇒ B): Iterator[B]
-
def
max[B >: DataBatch](implicit cmp: Ordering[B]): DataBatch
-
def
maxBy[B](f: (DataBatch) ⇒ B)(implicit cmp: Ordering[B]): DataBatch
-
def
min[B >: DataBatch](implicit cmp: Ordering[B]): DataBatch
-
def
minBy[B](f: (DataBatch) ⇒ B)(implicit cmp: Ordering[B]): DataBatch
-
def
mkString: String
-
def
mkString(sep: String): String
-
def
mkString(start: String, sep: String, end: String): String
-
final
def
ne(arg0: AnyRef): Boolean
-
-
def
nonEmpty: Boolean
-
final
def
notify(): Unit
-
final
def
notifyAll(): Unit
-
val
numData: Int
-
val
numSource: MXUint
-
def
padTo[A1 >: DataBatch](len: Int, elem: A1): Iterator[A1]
-
def
partition(p: (DataBatch) ⇒ Boolean): (Iterator[DataBatch], Iterator[DataBatch])
-
def
patch[B >: DataBatch](from: Int, patchElems: Iterator[B], replaced: Int): Iterator[B]
-
def
product[B >: DataBatch](implicit num: Numeric[B]): B
-
def
provideDataDesc: IndexedSeq[DataDesc]
-
def
provideLabelDesc: IndexedSeq[DataDesc]
-
def
reduce[A1 >: DataBatch](op: (A1, A1) ⇒ A1): A1
-
def
reduceLeft[B >: DataBatch](op: (B, DataBatch) ⇒ B): B
-
def
reduceLeftOption[B >: DataBatch](op: (B, DataBatch) ⇒ B): Option[B]
-
def
reduceOption[A1 >: DataBatch](op: (A1, A1) ⇒ A1): Option[A1]
-
def
reduceRight[B >: DataBatch](op: (DataBatch, B) ⇒ B): B
-
def
reduceRightOption[B >: DataBatch](op: (DataBatch, B) ⇒ B): Option[B]
-
def
reset(): Unit
-
def
reversed: List[DataBatch]
-
def
sameElements(that: Iterator[_]): Boolean
-
def
scanLeft[B](z: B)(op: (B, DataBatch) ⇒ B): Iterator[B]
-
def
scanRight[B](z: B)(op: (DataBatch, B) ⇒ B): Iterator[B]
-
def
seq: Iterator[DataBatch]
-
def
size: Int
-
def
slice(from: Int, until: Int): Iterator[DataBatch]
-
-
-
def
sum[B >: DataBatch](implicit num: Numeric[B]): B
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
-
def
take(n: Int): Iterator[DataBatch]
-
def
takeWhile(p: (DataBatch) ⇒ Boolean): Iterator[DataBatch]
-
def
to[Col[_]](implicit cbf: CanBuildFrom[Nothing, DataBatch, Col[DataBatch]]): Col[DataBatch]
-
def
toArray[B >: DataBatch](implicit arg0: ClassTag[B]): Array[B]
-
def
toBuffer[B >: DataBatch]: Buffer[B]
-
def
toIndexedSeq: IndexedSeq[DataBatch]
-
def
toIterable: Iterable[DataBatch]
-
def
toIterator: Iterator[DataBatch]
-
-
def
toMap[T, U](implicit ev: <:<[DataBatch, (T, U)]): Map[T, U]
-
-
def
toSet[B >: DataBatch]: Set[B]
-
def
toStream: Stream[DataBatch]
-
def
toString(): String
-
def
toTraversable: Traversable[DataBatch]
-
def
toVector: Vector[DataBatch]
-
final
def
wait(): Unit
-
final
def
wait(arg0: Long, arg1: Int): Unit
-
final
def
wait(arg0: Long): Unit
-
def
withFilter(p: (DataBatch) ⇒ Boolean): Iterator[DataBatch]
-
def
zip[B](that: Iterator[B]): Iterator[(DataBatch, B)]
-
def
zipAll[B, A1 >: DataBatch, B1 >: B](that: Iterator[B], thisElem: A1, thatElem: B1): Iterator[(A1, B1)]
-
def
zipWithIndex: Iterator[(DataBatch, Int)]
Deprecated Value Members
-
def
provideData: ListMap[String, Shape]
-
def
provideLabel: ListMap[String, Shape]
Inherited from AnyRef
Inherited from Any
NDArrayIter object in mxnet. Taking NDArray to get dataiter.