Install Gluon
  • About
  • Dive into Deep Learning
  • GluonCV Toolkit
  • GluonNLP Toolkit
API
  • Python
  • C++
  • Clojure
  • Java
  • Julia
  • Perl
  • R
  • Scala
Docs
  • FAQ
  • Tutorials
  • Examples
  • Architecture
  • Developer Wiki
  • Model Zoo
  • ONNX
Community
  • Forum
  • Github
  • Contribute
  • Ecosystem
  • Powered By
1.4.1
  • master
  • 1.7.0
  • 1.6.0
  • 1.5.0
  • 1.4.1
  • 1.3.1
  • 1.2.1
  • 1.1.0
  • 1.0.0
  • 0.12.1
  • 0.11.0
☰
  • Install
  • Tutorials
  • Gluon
    • About
    • The Straight Dope (Tutorials)
    • GluonCV Toolkit
    • GluonNLP Toolkit
  • API
    • Python
    • C++
    • Clojure
    • Java
    • Julia
    • Perl
    • R
    • Scala
  • Docs
    • FAQ
    • Tutorials
    • Examples
    • Architecture
    • Developer Wiki
    • Gluon Model Zoo
    • ONNX
  • Community
    • Forum
    • Github
    • Contribute
    • Ecosystem
    • Powered By
  • 1.4.1
    • master
    • 1.6.0
    • 1.5.0
    • 1.4.1
    • 1.3.1
    • 1.2.1
    • 1.1.0
    • 1.0.0
    • 0.12.1
    • 0.11.0
    • MXNet APIs
    • MXNet Architecture
    • MXNet Community
    • MXNet FAQ
    • About Gluon
    • Installing MXNet
    • Nvidia Jetson TX family
    • Source Download
    • MXNet Model Zoo
    • Tutorials

    Tutorials¶

    • CSRNDArray - NDArray in Compressed Sparse Row Storage Format
      • Advantages of Compressed Sparse Row NDArray (CSRNDArray)
      • Prerequisites
      • Compressed Sparse Row Matrix
        • Example Matrix Compression
      • Array Creation
      • Inspecting Arrays
      • Storage Type Conversion
      • Copies
      • Indexing and Slicing
      • Sparse Operators and Storage Type Inference
      • Data Loading
      • Advanced Topics
        • GPU Support
      • Next
    • RowSparseNDArray - NDArray for Sparse Gradient Updates
      • Motivation
      • Prerequisites
      • Row Sparse Format
      • Array Creation
      • Function Overview
      • Setting Type
      • Inspecting Arrays
      • Storage Type Conversion
      • Copies
      • Retain Row Slices
      • Sparse Operators and Storage Type Inference
      • Sparse Optimizers
      • Advanced Topics
        • GPU Support
      • Next
    • Train a Linear Regression Model with Sparse Symbols
      • Prerequisites
      • Variables
        • Variable Storage Types
        • Bind with Sparse Arrays
      • Symbol Composition and Storage Type Inference
        • Basic Symbol Composition
        • Storage Type Inference
        • Storage Type Fallback
        • Inspecting Storage Types of the Symbol Graph
      • Training with Module APIs
        • Preparing the Data
        • Defining the Model
        • Training the model
        • Training the model with multiple machines or multiple devices

    Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.

    "Copyright © 2017-2018, The Apache Software Foundation Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."