
Package ‘mxnet’
June 24, 2020

Type Package

Title MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Sys-
tems

Version 2.0.0

Date 2017-06-27

Author Tianqi Chen, Qiang Kou, Tong He, Anirudh Acharya <https://github.com/anirudhacharya>

Maintainer Qiang Kou <qkou@qkou.info>

Repository apache/incubator-mxnet

Description MXNet is a deep learning framework designed for both efficiency
and flexibility. It allows you to mix the flavours of deep learning programs
together to maximize the efficiency and your productivity.

License Apache License (== 2.0)

URL https://github.com/apache/incubator-mxnet/tree/master/R-package

BugReports https://github.com/apache/incubator-mxnet/issues

Imports methods,
Rcpp (>= 0.12.1),
DiagrammeR (>= 0.9.0),
visNetwork (>= 1.0.3),
data.table,
jsonlite,
magrittr,
stringr

Suggests testthat,
mlbench,
knitr,
rmarkdown,
imager,
covr

Depends R (>= 3.4.4)

LinkingTo Rcpp

VignetteBuilder knitr

1

https://github.com/apache/incubator-mxnet/tree/master/R-package
https://github.com/apache/incubator-mxnet/issues

2 R topics documented:

RoxygenNote 7.1.0

Encoding UTF-8

R topics documented:
arguments . 15
as.array.MXNDArray . 15
as.matrix.MXNDArray . 16
children . 16
ctx . 16
dim.MXNDArray . 17
graph.viz . 17
im2rec . 18
internals . 19
is.mx.context . 19
is.mx.dataiter . 20
is.mx.ndarray . 20
is.mx.symbol . 21
is.serialized . 21
length.MXNDArray . 21
mx.apply . 22
mx.callback.early.stop . 22
mx.callback.log.speedometer . 23
mx.callback.log.train.metric . 23
mx.callback.save.checkpoint . 24
mx.cpu . 24
mx.ctx.default . 24
mx.exec.backward . 25
mx.exec.forward . 25
mx.exec.update.arg.arrays . 26
mx.exec.update.aux.arrays . 26
mx.exec.update.grad.arrays . 27
mx.gpu . 27
mx.infer.rnn . 28
mx.infer.rnn.one . 28
mx.infer.rnn.one.unroll . 29
mx.init.create . 29
mx.init.internal.default . 30
mx.init.normal . 30
mx.init.uniform . 30
mx.init.Xavier . 31
mx.io.arrayiter . 31
mx.io.bucket.iter . 32
mx.io.CSVIter . 32
mx.io.extract . 34
mx.io.ImageDetRecordIter . 34
mx.io.ImageRecordInt8Iter . 38

R topics documented: 3

mx.io.ImageRecordIter . 41
mx.io.ImageRecordIter_v1 . 44
mx.io.ImageRecordUInt8Iter . 48
mx.io.ImageRecordUInt8Iter_v1 . 51
mx.io.LibSVMIter . 54
mx.io.MNISTIter . 56
mx.io.RandomSampler . 57
mx.io.SequentialSampler . 57
mx.io.ThreadedDataLoader . 58
mx.kv.create . 59
mx.lr_scheduler.FactorScheduler . 59
mx.lr_scheduler.MultiFactorScheduler . 60
mx.metric.accuracy . 60
mx.metric.custom . 61
mx.metric.logistic_acc . 61
mx.metric.logloss . 61
mx.metric.mae . 62
mx.metric.mse . 62
mx.metric.Perplexity . 62
mx.metric.rmse . 63
mx.metric.rmsle . 63
mx.metric.top_k_accuracy . 63
mx.model.buckets . 64
mx.model.FeedForward.create . 64
mx.model.init.params . 66
mx.model.load . 67
mx.model.save . 67
mx.nd.abs . 68
mx.nd.Activation . 68
mx.nd.adam.update . 69
mx.nd.add.n . 70
mx.nd.all.finite . 70
mx.nd.amp.cast . 71
mx.nd.amp.multicast . 71
mx.nd.arccos . 72
mx.nd.arccosh . 72
mx.nd.arcsin . 73
mx.nd.arcsinh . 73
mx.nd.arctan . 74
mx.nd.arctanh . 74
mx.nd.argmax . 75
mx.nd.argmax.channel . 75
mx.nd.argmin . 76
mx.nd.argsort . 77
mx.nd.array . 77
mx.nd.batch.dot . 78
mx.nd.batch.take . 79
mx.nd.BatchNorm . 79

4 R topics documented:

mx.nd.BilinearSampler . 81
mx.nd.BlockGrad . 82
mx.nd.broadcast.add . 83
mx.nd.broadcast.axes . 83
mx.nd.broadcast.axis . 84
mx.nd.broadcast.div . 85
mx.nd.broadcast.equal . 85
mx.nd.broadcast.greater . 86
mx.nd.broadcast.greater.equal . 86
mx.nd.broadcast.hypot . 87
mx.nd.broadcast.lesser . 88
mx.nd.broadcast.lesser.equal . 88
mx.nd.broadcast.like . 89
mx.nd.broadcast.logical.and . 90
mx.nd.broadcast.logical.or . 90
mx.nd.broadcast.logical.xor . 91
mx.nd.broadcast.maximum . 91
mx.nd.broadcast.minimum . 92
mx.nd.broadcast.minus . 93
mx.nd.broadcast.mod . 93
mx.nd.broadcast.mul . 94
mx.nd.broadcast.not.equal . 95
mx.nd.broadcast.plus . 95
mx.nd.broadcast.power . 96
mx.nd.broadcast.sub . 97
mx.nd.broadcast.to . 97
mx.nd.Cast . 98
mx.nd.cast . 99
mx.nd.cast.storage . 99
mx.nd.cbrt . 100
mx.nd.ceil . 101
mx.nd.choose.element.0index . 101
mx.nd.clip . 102
mx.nd.col2im . 103
mx.nd.Concat . 104
mx.nd.concat . 104
mx.nd.Convolution . 105
mx.nd.Convolution.v1 . 107
mx.nd.copyto . 108
mx.nd.Correlation . 109
mx.nd.cos . 110
mx.nd.cosh . 110
mx.nd.Crop . 111
mx.nd.crop . 112
mx.nd.ctc.loss . 113
mx.nd.CTCLoss . 114
mx.nd.cumsum . 116
mx.nd.Custom . 116

R topics documented: 5

mx.nd.Deconvolution . 117
mx.nd.degrees . 118
mx.nd.depth.to.space . 119
mx.nd.diag . 119
mx.nd.digamma . 120
mx.nd.dot . 121
mx.nd.Dropout . 122
mx.nd.ElementWiseSum . 123
mx.nd.elemwise.add . 123
mx.nd.elemwise.div . 124
mx.nd.elemwise.mul . 124
mx.nd.elemwise.sub . 125
mx.nd.Embedding . 125
mx.nd.erf . 126
mx.nd.erfinv . 127
mx.nd.exp . 127
mx.nd.expand.dims . 128
mx.nd.expm1 . 128
mx.nd.fill.element.0index . 129
mx.nd.fix . 129
mx.nd.Flatten . 130
mx.nd.flatten . 130
mx.nd.flip . 131
mx.nd.floor . 131
mx.nd.ftml.update . 132
mx.nd.ftrl.update . 133
mx.nd.FullyConnected . 134
mx.nd.gamma . 135
mx.nd.gammaln . 135
mx.nd.gather.nd . 136
mx.nd.GridGenerator . 136
mx.nd.GroupNorm . 137
mx.nd.hard.sigmoid . 138
mx.nd.identity . 138
mx.nd.IdentityAttachKLSparseReg . 139
mx.nd.im2col . 139
mx.nd.InstanceNorm . 140
mx.nd.khatri.rao . 141
mx.nd.L2Normalization . 142
mx.nd.lamb.update.phase1 . 143
mx.nd.lamb.update.phase2 . 144
mx.nd.LayerNorm . 144
mx.nd.LeakyReLU . 145
mx.nd.linalg.det . 146
mx.nd.linalg.extractdiag . 147
mx.nd.linalg.extracttrian . 148
mx.nd.linalg.gelqf . 149
mx.nd.linalg.gemm . 150

6 R topics documented:

mx.nd.linalg.gemm2 . 151
mx.nd.linalg.inverse . 152
mx.nd.linalg.makediag . 153
mx.nd.linalg.maketrian . 153
mx.nd.linalg.potrf . 154
mx.nd.linalg.potri . 155
mx.nd.linalg.slogdet . 156
mx.nd.linalg.sumlogdiag . 157
mx.nd.linalg.syrk . 157
mx.nd.linalg.trmm . 158
mx.nd.linalg.trsm . 159
mx.nd.load . 160
mx.nd.log . 161
mx.nd.log.softmax . 161
mx.nd.log10 . 162
mx.nd.log1p . 162
mx.nd.log2 . 163
mx.nd.logical.not . 163
mx.nd.LRN . 164
mx.nd.make.loss . 164
mx.nd.MakeLoss . 165
mx.nd.max . 166
mx.nd.max.axis . 167
mx.nd.mean . 167
mx.nd.min . 168
mx.nd.min.axis . 169
mx.nd.moments . 169
mx.nd.mp.lamb.update.phase1 . 170
mx.nd.mp.lamb.update.phase2 . 171
mx.nd.mp.nag.mom.update . 172
mx.nd.mp.sgd.mom.update . 173
mx.nd.mp.sgd.update . 173
mx.nd.multi.all.finite . 174
mx.nd.multi.lars . 175
mx.nd.multi.mp.sgd.mom.update . 175
mx.nd.multi.mp.sgd.update . 176
mx.nd.multi.sgd.mom.update . 177
mx.nd.multi.sgd.update . 178
mx.nd.multi.sum.sq . 178
mx.nd.nag.mom.update . 179
mx.nd.nanprod . 180
mx.nd.nansum . 180
mx.nd.negative . 181
mx.nd.norm . 182
mx.nd.normal . 183
mx.nd.one.hot . 183
mx.nd.ones . 184
mx.nd.ones.like . 185

R topics documented: 7

mx.nd.Pad . 185
mx.nd.pad . 187
mx.nd.pick . 188
mx.nd.Pooling . 189
mx.nd.Pooling.v1 . 190
mx.nd.preloaded.multi.mp.sgd.mom.update . 192
mx.nd.preloaded.multi.mp.sgd.update . 193
mx.nd.preloaded.multi.sgd.mom.update . 193
mx.nd.preloaded.multi.sgd.update . 194
mx.nd.prod . 195
mx.nd.radians . 195
mx.nd.random.exponential . 196
mx.nd.random.gamma . 197
mx.nd.random.generalized.negative.binomial . 197
mx.nd.random.negative.binomial . 198
mx.nd.random.normal . 199
mx.nd.random.pdf.dirichlet . 200
mx.nd.random.pdf.exponential . 200
mx.nd.random.pdf.gamma . 201
mx.nd.random.pdf.generalized.negative.binomial . 202
mx.nd.random.pdf.negative.binomial . 203
mx.nd.random.pdf.normal . 204
mx.nd.random.pdf.poisson . 205
mx.nd.random.pdf.uniform . 205
mx.nd.random.poisson . 206
mx.nd.random.randint . 207
mx.nd.random.uniform . 207
mx.nd.ravel.multi.index . 208
mx.nd.rcbrt . 209
mx.nd.reciprocal . 209
mx.nd.relu . 210
mx.nd.repeat . 210
mx.nd.reset.arrays . 211
mx.nd.Reshape . 211
mx.nd.reshape . 213
mx.nd.reshape.like . 214
mx.nd.reverse . 215
mx.nd.rint . 216
mx.nd.rmsprop.update . 216
mx.nd.rmspropalex.update . 217
mx.nd.RNN . 219
mx.nd.ROIPooling . 221
mx.nd.round . 222
mx.nd.rsqrt . 222
mx.nd.sample.exponential . 223
mx.nd.sample.gamma . 224
mx.nd.sample.generalized.negative.binomial . 225
mx.nd.sample.multinomial . 226

8 R topics documented:

mx.nd.sample.negative.binomial . 227
mx.nd.sample.normal . 228
mx.nd.sample.poisson . 229
mx.nd.sample.uniform . 230
mx.nd.save . 231
mx.nd.scatter.nd . 231
mx.nd.SequenceLast . 232
mx.nd.SequenceMask . 233
mx.nd.SequenceReverse . 234
mx.nd.sgd.mom.update . 236
mx.nd.sgd.update . 237
mx.nd.shape.array . 238
mx.nd.shuffle . 238
mx.nd.sigmoid . 239
mx.nd.sign . 239
mx.nd.signsgd.update . 240
mx.nd.signum.update . 240
mx.nd.sin . 241
mx.nd.sinh . 242
mx.nd.size.array . 242
mx.nd.slice.axis . 243
mx.nd.slice.like . 244
mx.nd.SliceChannel . 245
mx.nd.smooth.l1 . 246
mx.nd.softmax . 246
mx.nd.softmax.cross.entropy . 247
mx.nd.SoftmaxActivation . 248
mx.nd.softmin . 249
mx.nd.softsign . 250
mx.nd.sort . 250
mx.nd.space.to.depth . 251
mx.nd.SpatialTransformer . 251
mx.nd.split . 252
mx.nd.sqrt . 253
mx.nd.square . 254
mx.nd.squeeze . 254
mx.nd.stack . 255
mx.nd.stop.gradient . 256
mx.nd.sum . 256
mx.nd.sum.axis . 257
mx.nd.swapaxes . 258
mx.nd.SwapAxis . 259
mx.nd.take . 259
mx.nd.tan . 260
mx.nd.tanh . 261
mx.nd.tile . 262
mx.nd.topk . 262
mx.nd.transpose . 263

R topics documented: 9

mx.nd.trunc . 264
mx.nd.uniform . 265
mx.nd.unravel.index . 265
mx.nd.UpSampling . 266
mx.nd.where . 267
mx.nd.zeros . 268
mx.nd.zeros.like . 269
mx.opt.adadelta . 269
mx.opt.adagrad . 270
mx.opt.adam . 271
mx.opt.create . 271
mx.opt.get.updater . 272
mx.opt.nag . 272
mx.opt.rmsprop . 273
mx.opt.sgd . 274
mx.profiler.config . 275
mx.profiler.state . 275
mx.rnorm . 276
mx.runif . 276
mx.serialize . 277
mx.set.seed . 277
mx.simple.bind . 278
mx.symbol.abs . 278
mx.symbol.Activation . 279
mx.symbol.adam_update . 279
mx.symbol.add_n . 281
mx.symbol.all_finite . 281
mx.symbol.amp_cast . 282
mx.symbol.amp_multicast . 282
mx.symbol.arccos . 283
mx.symbol.arccosh . 284
mx.symbol.arcsin . 284
mx.symbol.arcsinh . 285
mx.symbol.arctan . 286
mx.symbol.arctanh . 286
mx.symbol.argmax . 287
mx.symbol.argmax_channel . 288
mx.symbol.argmin . 288
mx.symbol.argsort . 289
mx.symbol.BatchNorm . 290
mx.symbol.batch_dot . 292
mx.symbol.batch_take . 293
mx.symbol.BilinearSampler . 293
mx.symbol.BlockGrad . 295
mx.symbol.broadcast_add . 295
mx.symbol.broadcast_axes . 296
mx.symbol.broadcast_axis . 297
mx.symbol.broadcast_div . 298

10 R topics documented:

mx.symbol.broadcast_equal . 298
mx.symbol.broadcast_greater . 299
mx.symbol.broadcast_greater_equal . 300
mx.symbol.broadcast_hypot . 300
mx.symbol.broadcast_lesser . 301
mx.symbol.broadcast_lesser_equal . 302
mx.symbol.broadcast_like . 303
mx.symbol.broadcast_logical_and . 304
mx.symbol.broadcast_logical_or . 304
mx.symbol.broadcast_logical_xor . 305
mx.symbol.broadcast_maximum . 306
mx.symbol.broadcast_minimum . 306
mx.symbol.broadcast_minus . 307
mx.symbol.broadcast_mod . 308
mx.symbol.broadcast_mul . 309
mx.symbol.broadcast_not_equal . 309
mx.symbol.broadcast_plus . 310
mx.symbol.broadcast_power . 311
mx.symbol.broadcast_sub . 312
mx.symbol.broadcast_to . 313
mx.symbol.Cast . 314
mx.symbol.cast . 314
mx.symbol.cast_storage . 315
mx.symbol.cbrt . 316
mx.symbol.ceil . 316
mx.symbol.choose_element_0index . 317
mx.symbol.clip . 318
mx.symbol.col2im . 319
mx.symbol.Concat . 320
mx.symbol.concat . 321
mx.symbol.Convolution . 321
mx.symbol.Convolution_v1 . 323
mx.symbol.Correlation . 324
mx.symbol.cos . 326
mx.symbol.cosh . 326
mx.symbol.Crop . 327
mx.symbol.crop . 328
mx.symbol.CTCLoss . 329
mx.symbol.ctc_loss . 330
mx.symbol.cumsum . 332
mx.symbol.Custom . 332
mx.symbol.Deconvolution . 333
mx.symbol.degrees . 334
mx.symbol.depth_to_space . 335
mx.symbol.diag . 336
mx.symbol.digamma . 337
mx.symbol.dot . 338
mx.symbol.Dropout . 339

R topics documented: 11

mx.symbol.ElementWiseSum . 340
mx.symbol.elemwise_add . 341
mx.symbol.elemwise_div . 341
mx.symbol.elemwise_mul . 342
mx.symbol.elemwise_sub . 342
mx.symbol.Embedding . 343
mx.symbol.erf . 344
mx.symbol.erfinv . 345
mx.symbol.exp . 346
mx.symbol.expand_dims . 346
mx.symbol.expm1 . 347
mx.symbol.fill_element_0index . 348
mx.symbol.fix . 348
mx.symbol.Flatten . 349
mx.symbol.flatten . 350
mx.symbol.flip . 350
mx.symbol.floor . 351
mx.symbol.ftml_update . 352
mx.symbol.ftrl_update . 353
mx.symbol.FullyConnected . 354
mx.symbol.gamma . 355
mx.symbol.gammaln . 355
mx.symbol.gather_nd . 356
mx.symbol.GridGenerator . 356
mx.symbol.Group . 357
mx.symbol.GroupNorm . 358
mx.symbol.hard_sigmoid . 359
mx.symbol.identity . 359
mx.symbol.IdentityAttachKLSparseReg . 360
mx.symbol.im2col . 360
mx.symbol.infer.shape . 361
mx.symbol.InstanceNorm . 362
mx.symbol.khatri_rao . 363
mx.symbol.L2Normalization . 364
mx.symbol.lamb_update_phase1 . 365
mx.symbol.lamb_update_phase2 . 366
mx.symbol.LayerNorm . 367
mx.symbol.LeakyReLU . 368
mx.symbol.linalg_det . 369
mx.symbol.linalg_extractdiag . 370
mx.symbol.linalg_extracttrian . 371
mx.symbol.linalg_gelqf . 372
mx.symbol.linalg_gemm . 373
mx.symbol.linalg_gemm2 . 374
mx.symbol.linalg_inverse . 375
mx.symbol.linalg_makediag . 376
mx.symbol.linalg_maketrian . 377
mx.symbol.linalg_potrf . 378

12 R topics documented:

mx.symbol.linalg_potri . 379
mx.symbol.linalg_slogdet . 380
mx.symbol.linalg_sumlogdiag . 381
mx.symbol.linalg_syrk . 382
mx.symbol.linalg_trmm . 383
mx.symbol.linalg_trsm . 384
mx.symbol.load . 385
mx.symbol.load.json . 385
mx.symbol.log . 386
mx.symbol.log10 . 386
mx.symbol.log1p . 387
mx.symbol.log2 . 387
mx.symbol.logical_not . 388
mx.symbol.log_softmax . 388
mx.symbol.LRN . 389
mx.symbol.MakeLoss . 390
mx.symbol.make_loss . 391
mx.symbol.max . 392
mx.symbol.max_axis . 393
mx.symbol.mean . 393
mx.symbol.moments . 394
mx.symbol.mp_lamb_update_phase1 . 395
mx.symbol.mp_lamb_update_phase2 . 396
mx.symbol.mp_nag_mom_update . 397
mx.symbol.mp_sgd_mom_update . 398
mx.symbol.mp_sgd_update . 399
mx.symbol.multi_all_finite . 399
mx.symbol.multi_lars . 400
mx.symbol.multi_mp_sgd_mom_update . 401
mx.symbol.multi_mp_sgd_update . 402
mx.symbol.multi_sgd_mom_update . 403
mx.symbol.multi_sgd_update . 404
mx.symbol.multi_sum_sq . 405
mx.symbol.nag_mom_update . 405
mx.symbol.nanprod . 406
mx.symbol.nansum . 407
mx.symbol.negative . 408
mx.symbol.norm . 408
mx.symbol.normal . 409
mx.symbol.ones_like . 410
mx.symbol.one_hot . 411
mx.symbol.Pad . 412
mx.symbol.pad . 413
mx.symbol.pick . 414
mx.symbol.Pooling . 416
mx.symbol.Pooling_v1 . 417
mx.symbol.preloaded_multi_mp_sgd_mom_update . 419
mx.symbol.preloaded_multi_mp_sgd_update . 420

R topics documented: 13

mx.symbol.preloaded_multi_sgd_mom_update . 420
mx.symbol.preloaded_multi_sgd_update . 421
mx.symbol.prod . 422
mx.symbol.radians . 423
mx.symbol.random_exponential . 423
mx.symbol.random_gamma . 424
mx.symbol.random_generalized_negative_binomial . 425
mx.symbol.random_negative_binomial . 426
mx.symbol.random_normal . 427
mx.symbol.random_pdf_dirichlet . 428
mx.symbol.random_pdf_exponential . 429
mx.symbol.random_pdf_gamma . 430
mx.symbol.random_pdf_generalized_negative_binomial 431
mx.symbol.random_pdf_negative_binomial . 432
mx.symbol.random_pdf_normal . 433
mx.symbol.random_pdf_poisson . 434
mx.symbol.random_pdf_uniform . 435
mx.symbol.random_poisson . 436
mx.symbol.random_randint . 436
mx.symbol.random_uniform . 437
mx.symbol.ravel_multi_index . 438
mx.symbol.rcbrt . 439
mx.symbol.reciprocal . 439
mx.symbol.relu . 440
mx.symbol.repeat . 441
mx.symbol.reset_arrays . 441
mx.symbol.Reshape . 442
mx.symbol.reshape . 443
mx.symbol.reshape_like . 445
mx.symbol.reverse . 446
mx.symbol.rint . 447
mx.symbol.rmspropalex_update . 447
mx.symbol.rmsprop_update . 449
mx.symbol.RNN . 450
mx.symbol.ROIPooling . 452
mx.symbol.round . 453
mx.symbol.rsqrt . 454
mx.symbol.sample_exponential . 455
mx.symbol.sample_gamma . 456
mx.symbol.sample_generalized_negative_binomial . 457
mx.symbol.sample_multinomial . 458
mx.symbol.sample_negative_binomial . 459
mx.symbol.sample_normal . 460
mx.symbol.sample_poisson . 461
mx.symbol.sample_uniform . 462
mx.symbol.save . 463
mx.symbol.scatter_nd . 463
mx.symbol.SequenceLast . 464

14 R topics documented:

mx.symbol.SequenceMask . 465
mx.symbol.SequenceReverse . 467
mx.symbol.sgd_mom_update . 468
mx.symbol.sgd_update . 469
mx.symbol.shape_array . 470
mx.symbol.shuffle . 471
mx.symbol.sigmoid . 471
mx.symbol.sign . 472
mx.symbol.signsgd_update . 472
mx.symbol.signum_update . 473
mx.symbol.sin . 474
mx.symbol.sinh . 475
mx.symbol.size_array . 476
mx.symbol.slice . 476
mx.symbol.SliceChannel . 478
mx.symbol.slice_axis . 479
mx.symbol.slice_like . 480
mx.symbol.smooth_l1 . 481
mx.symbol.softmax . 481
mx.symbol.SoftmaxActivation . 482
mx.symbol.softmax_cross_entropy . 483
mx.symbol.softmin . 484
mx.symbol.softsign . 485
mx.symbol.sort . 486
mx.symbol.space_to_depth . 487
mx.symbol.SpatialTransformer . 488
mx.symbol.split . 488
mx.symbol.sqrt . 490
mx.symbol.square . 490
mx.symbol.squeeze . 491
mx.symbol.stack . 492
mx.symbol.stop_gradient . 492
mx.symbol.sum . 493
mx.symbol.sum_axis . 494
mx.symbol.swapaxes . 495
mx.symbol.SwapAxis . 496
mx.symbol.take . 497
mx.symbol.tan . 498
mx.symbol.tanh . 499
mx.symbol.tile . 499
mx.symbol.topk . 500
mx.symbol.transpose . 501
mx.symbol.trunc . 502
mx.symbol.uniform . 502
mx.symbol.unravel_index . 503
mx.symbol.UpSampling . 504
mx.symbol.Variable . 505
mx.symbol.where . 506

arguments 15

mx.symbol.zeros_like . 507
mx.unserialize . 507
mxnet . 508
mxnet.export . 508
Ops.MXNDArray . 508
outputs . 509
predict.MXFeedForwardModel . 509
print.MXNDArray . 510

Index 511

arguments Get the arguments of symbol.

Description

Get the arguments of symbol.

Usage

arguments(x)

Arguments

x The input symbol

as.array.MXNDArray as.array operator overload of mx.ndarray

Description

as.array operator overload of mx.ndarray

Usage

S3 method for class 'MXNDArray'
as.array(nd)

Arguments

nd The mx.ndarray

16 ctx

as.matrix.MXNDArray as.matrix operator overload of mx.ndarray

Description

as.matrix operator overload of mx.ndarray

Usage

S3 method for class 'MXNDArray'
as.matrix(nd)

Arguments

nd The mx.ndarray

children Gets a new grouped symbol whose output contains inputs to output
nodes of the original symbol.

Description

Gets a new grouped symbol whose output contains inputs to output nodes of the original symbol.

Usage

children(x)

Arguments

x The input symbol

ctx Get the context of mx.ndarray

Description

Get the context of mx.ndarray

Usage

ctx(nd)

Arguments

nd The mx.ndarray

dim.MXNDArray 17

dim.MXNDArray Dimension operator overload of mx.ndarray

Description

Dimension operator overload of mx.ndarray

Usage

S3 method for class 'MXNDArray'
dim(nd)

Arguments

nd The mx.ndarray

graph.viz Convert symbol to Graphviz or visNetwork visualisation.

Description

Convert symbol to Graphviz or visNetwork visualisation.

Usage

graph.viz(
symbol,
shape = NULL,
direction = "TD",
type = "graph",
graph.width.px = NULL,
graph.height.px = NULL

)

Arguments

symbol a string representing the symbol of a model.
shape a numeric representing the input dimensions to the symbol.
direction a string representing the direction of the graph, either TD or LR.
type a string representing the rendering engine of the graph, either graph or vis.
graph.width.px a numeric representing the size (width) of the graph. In pixels
graph.height.px

a numeric representing the size (height) of the graph. In pixels

Value

a graph object ready to be displayed with the print function.

18 im2rec

im2rec Convert images into image recordio format

Description

Convert images into image recordio format

Usage

im2rec(
image_lst,
root,
output_rec,
label_width = 1L,
pack_label = 0L,
new_size = -1L,
nsplit = 1L,
partid = 0L,
center_crop = 0L,
quality = 95L,
color_mode = 1L,
unchanged = 0L,
inter_method = 1L,
encoding = ".jpg"

)

Arguments

image_lst The image lst file

root The root folder for image files

output_rec The output rec file

label_width The label width in the list file. Default is 1.

pack_label Whether to also pack multi dimenional label in the record file. Default is 0.

new_size The shorter edge of image will be resized to the newsize. Original images will
be packed by default.

nsplit It is used for part generation, logically split the image.lst to NSPLIT parts by
position. Default is 1.

partid It is used for part generation, pack the images from the specific part in image.lst.
Default is 0.

center_crop Whether to crop the center image to make it square. Default is 0.

quality JPEG quality for encoding (1-100, default: 95) or PNG compression for encod-
ing (1-9, default: 3).

color_mode Force color (1), gray image (0) or keep source unchanged (-1). Default is 1.

internals 19

unchanged Keep the original image encoding, size and color. If set to 1, it will ignore the
others parameters.

inter_method NN(0), BILINEAR(1), CUBIC(2), AREA(3), LANCZOS4(4), AUTO(9), RAND(10).
Default is 1.

encoding The encoding type for images. It can be ’.jpg’ or ’.png’. Default is ’.jpg’.

internals Get a symbol that contains all the internals

Description

Get a symbol that contains all the internals

Usage

internals(x)

Arguments

x The input symbol

is.mx.context Check if the type is mxnet context.

Description

Check if the type is mxnet context.

Usage

is.mx.context(x)

Value

Logical indicator

20 is.mx.ndarray

is.mx.dataiter Judge if an object is mx.dataiter

Description

Judge if an object is mx.dataiter

Usage

is.mx.dataiter(x)

Value

Logical indicator

is.mx.ndarray Check if src.array is mx.ndarray

Description

Check if src.array is mx.ndarray

Usage

is.mx.ndarray(src.array)

Value

Logical indicator

Examples

mat = mx.nd.array(1:10)
is.mx.ndarray(mat)
mat2 = 1:10
is.mx.ndarray(mat2)

is.mx.symbol 21

is.mx.symbol Judge if an object is mx.symbol

Description

Judge if an object is mx.symbol

Usage

is.mx.symbol(x)

Value

Logical indicator

is.serialized Check if the model has been serialized into RData-compatiable for-
mat.

Description

Check if the model has been serialized into RData-compatiable format.

Usage

is.serialized(model)

Value

Logical indicator

length.MXNDArray Length operator overload of mx.ndarray

Description

Length operator overload of mx.ndarray

Usage

S3 method for class 'MXNDArray'
length(nd)

Arguments

nd The mx.ndarray

22 mx.callback.early.stop

mx.apply Apply symbol to the inputs.

Description

Apply symbol to the inputs.

Usage

mx.apply(x, ...)

Arguments

x The symbol to be applied

kwargs The keyword arguments to the symbol

mx.callback.early.stop

Early stop with different conditions

Description

Early stopping applying different conditions: hard thresholds or epochs number from the best score.
Tested with "epoch.end.callback" function.

Usage

mx.callback.early.stop(
train.metric = NULL,
eval.metric = NULL,
bad.steps = NULL,
maximize = FALSE,
verbose = FALSE

)

Arguments

train.metric Numeric. Hard threshold for the metric of the training data set (optional)

eval.metric Numeric. Hard threshold for the metric of the evaluating data set (if set, op-
tional)

bad.steps Integer. How much epochs should gone from the best score? Use this option
with evaluation data set

maximize Logical. Do your model use maximizing or minimizing optimization?

verbose Logical

mx.callback.log.speedometer 23

mx.callback.log.speedometer

Calculate the training speed

Description

Calculate the training speed

Usage

mx.callback.log.speedometer(batch.size, frequency = 50)

Arguments

frequency The frequency of the training speed update

batch_size The batch size

mx.callback.log.train.metric

Log training metric each period

Description

Log training metric each period

Usage

mx.callback.log.train.metric(period, logger = NULL)

Arguments

period The number of batch to log the training evaluation metric

logger The logger class

24 mx.ctx.default

mx.callback.save.checkpoint

Save checkpoint to files each period iteration.

Description

Save checkpoint to files each period iteration.

Usage

mx.callback.save.checkpoint(prefix, period = 1)

Arguments

prefix The prefix of the model checkpoint.

mx.cpu Create a mxnet CPU context.

Description

Create a mxnet CPU context.

Arguments

dev.id optional, default=0 The device ID, this is meaningless for CPU, included for
interface compatiblity.

Value

The CPU context.

mx.ctx.default Set/Get default context for array creation.

Description

Set/Get default context for array creation.

Usage

mx.ctx.default(new = NULL)

mx.exec.backward 25

Arguments

new optional takes mx.cpu() or mx.gpu(id), new default ctx.

Value

The default context.

mx.exec.backward Peform an backward on the executors This function will MUTATE the
state of exec

Description

Peform an backward on the executors This function will MUTATE the state of exec

Usage

mx.exec.backward(exec, ...)

mx.exec.forward Peform an forward on the executors This function will MUTATE the
state of exec

Description

Peform an forward on the executors This function will MUTATE the state of exec

Usage

mx.exec.forward(exec, is.train = TRUE)

26 mx.exec.update.aux.arrays

mx.exec.update.arg.arrays

Update the executors with new arrays This function will MUTATE the
state of exec

Description

Update the executors with new arrays This function will MUTATE the state of exec

Usage

mx.exec.update.arg.arrays(
exec,
arg.arrays,
match.name = FALSE,
skip.null = FALSE

)

mx.exec.update.aux.arrays

Update the executors with new arrays This function will MUTATE the
state of exec

Description

Update the executors with new arrays This function will MUTATE the state of exec

Usage

mx.exec.update.aux.arrays(
exec,
arg.arrays,
match.name = FALSE,
skip.null = FALSE

)

mx.exec.update.grad.arrays 27

mx.exec.update.grad.arrays

Update the executors with new arrays This function will MUTATE the
state of exec

Description

Update the executors with new arrays This function will MUTATE the state of exec

Usage

mx.exec.update.grad.arrays(
exec,
arg.arrays,
match.name = FALSE,
skip.null = FALSE

)

mx.gpu Create a mxnet GPU context.

Description

Create a mxnet GPU context.

Arguments

dev.id optional, default=0 The GPU device ID, starts from 0.

Value

The GPU context.

28 mx.infer.rnn.one

mx.infer.rnn Inference of RNN model

Description

Inference of RNN model

Usage

mx.infer.rnn(infer.data, model, ctx = mx.cpu())

Arguments

infer.data DataIter

model Model used for inference

ctx

mx.infer.rnn.one Inference for one-to-one fusedRNN (CUDA) models

Description

Inference for one-to-one fusedRNN (CUDA) models

Usage

mx.infer.rnn.one(
infer.data,
symbol,
arg.params,
aux.params,
input.params = NULL,
ctx = mx.cpu()

)

Arguments

infer.data Data iterator created by mx.io.bucket.iter

symbol Symbol used for inference

ctx

mx.infer.rnn.one.unroll 29

mx.infer.rnn.one.unroll

Inference for one-to-one unroll models

Description

Inference for one-to-one unroll models

Usage

mx.infer.rnn.one.unroll(
infer.data,
symbol,
num_hidden,
arg.params,
aux.params,
init_states = NULL,
ctx = mx.cpu()

)

Arguments

infer.data NDArray

symbol Model used for inference

num_hidden

ctx

mx.init.create Create initialization of argument like arg.array

Description

Create initialization of argument like arg.array

Usage

mx.init.create(initializer, shape.array, ctx = NULL, skip.unknown = TRUE)

Arguments

initializer The initializer.

shape.array A named list that represents the shape of the weights

ctx mx.context The context of the weights

skip.unknown Whether skip the unknown weight types

30 mx.init.uniform

mx.init.internal.default

Internal default value initialization scheme.

Description

Internal default value initialization scheme.

Usage

mx.init.internal.default(name, shape, ctx, allow.unknown = FALSE)

Arguments

name the name of the variable.
shape the shape of the array to be generated.

mx.init.normal Create a initializer that initialize the weight with normal(0, sd)

Description

Create a initializer that initialize the weight with normal(0, sd)

Usage

mx.init.normal(sd)

Arguments

sd The standard deviation of normal distribution

mx.init.uniform Create a initializer that initialize the weight with uniform [-scale,
scale]

Description

Create a initializer that initialize the weight with uniform [-scale, scale]

Usage

mx.init.uniform(scale)

Arguments

scale The scale of uniform distribution

mx.init.Xavier 31

mx.init.Xavier Xavier initializer

Description

Create a initializer which initialize weight with Xavier or similar initialization scheme.

Usage

mx.init.Xavier(rnd_type = "uniform", factor_type = "avg", magnitude = 3)

Arguments

rnd_type A string of character indicating the type of distribution from which the weights
are initialized.

factor_type A string of character.

magnitude A numeric number indicating the scale of random number range.

mx.io.arrayiter Create MXDataIter compatible iterator from R’s array

Description

Create MXDataIter compatible iterator from R’s array

Usage

mx.io.arrayiter(data, label, batch.size = 128, shuffle = FALSE)

Arguments

data The data array.

label The label array.

batch.size The batch size used to pack the array.

shuffle Whether shuffle the data

32 mx.io.CSVIter

mx.io.bucket.iter Create Bucket Iter

Description

Create Bucket Iter

Usage

mx.io.bucket.iter(
buckets,
batch.size,
data.mask.element = 0,
shuffle = FALSE,
seed = 123

)

Arguments

buckets The data array.

batch.size The batch size used to pack the array.

data.mask.element

The element to mask

shuffle Whether shuffle the data

seed The random seed

mx.io.CSVIter Returns the CSV file iterator.

Description

In this function, the ‘data_shape‘ parameter is used to set the shape of each line of the input data. If
a row in an input file is ‘1,2,3,4,5,6“ and ‘data_shape‘ is (3,2), that row will be reshaped, yielding
the array [[1,2],[3,4],[5,6]] of shape (3,2).

Usage

mx.io.CSVIter(...)

mx.io.CSVIter 33

Arguments

data.csv string, required The input CSV file or a directory path.

data.shape Shape(tuple), required The shape of one example.

label.csv string, optional, default=’NULL’ The input CSV file or a directory path. If
NULL, all labels will be returned as 0.

label.shape Shape(tuple), optional, default=[1] The shape of one label.

batch.size int (non-negative), required Batch size.

round.batch boolean, optional, default=1 Whether to use round robin to handle overflow
batch or not.

prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

Details

By default, the ‘CSVIter‘ has ‘round_batch‘ parameter set to “True“. So, if ‘batch_size‘ is 3 and
there are 4 total rows in CSV file, 2 more examples are consumed at the first round. If ‘reset‘
function is called after first round, the call is ignored and remaining examples are returned in the
second round.

If one wants all the instances in the second round after calling ‘reset‘, make sure to set ‘round_batch‘
to False.

If “data_csv = ’data/’“ is set, then all the files in this directory will be read.

“reset()“ is expected to be called only after a complete pass of data.

By default, the CSVIter parses all entries in the data file as float32 data type, if ‘dtype‘ argument is
set to be ’int32’ or ’int64’ then CSVIter will parse all entries in the file as int32 or int64 data type
accordingly.

Examples::

// Contents of CSV file “data/data.csv“. 1,2,3 2,3,4 3,4,5 4,5,6

// Creates a ‘CSVIter‘ with ‘batch_size‘=2 and default ‘round_batch‘=True. CSVIter = mx.io.CSVIter(data_csv
= ’data/data.csv’, data_shape = (3,), batch_size = 2)

// Two batches read from the above iterator are as follows: [[1. 2. 3.] [2. 3. 4.]] [[3. 4. 5.] [4. 5.
6.]]

// Creates a ‘CSVIter‘ with default ‘round_batch‘ set to True. CSVIter = mx.io.CSVIter(data_csv =
’data/data.csv’, data_shape = (3,), batch_size = 3)

// Two batches read from the above iterator in the first pass are as follows: [[1. 2. 3.] [2. 3. 4.] [3.
4. 5.]]

34 mx.io.ImageDetRecordIter

[[4. 5. 6.] [1. 2. 3.] [2. 3. 4.]]

// Now, ‘reset‘ method is called. CSVIter.reset()

// Batch read from the above iterator in the second pass is as follows: [[3. 4. 5.] [4. 5. 6.] [1. 2.
3.]]

// Creates a ‘CSVIter‘ with ‘round_batch‘=False. CSVIter = mx.io.CSVIter(data_csv = ’data/data.csv’,
data_shape = (3,), batch_size = 3, round_batch=False)

// Contents of two batches read from the above iterator in both passes, after calling // ‘reset‘ method
before second pass, is as follows: [[1. 2. 3.] [2. 3. 4.] [3. 4. 5.]]

[[4. 5. 6.] [2. 3. 4.] [3. 4. 5.]]

// Creates a ’CSVIter’ with ‘dtype‘=’int32’ CSVIter = mx.io.CSVIter(data_csv = ’data/data.csv’,
data_shape = (3,), batch_size = 3, round_batch=False, dtype=’int32’)

// Contents of two batches read from the above iterator in both passes, after calling // ‘reset‘ method
before second pass, is as follows: [[1 2 3] [2 3 4] [3 4 5]]

[[4 5 6] [2 3 4] [3 4 5]]

Defined in src/io/iter_csv.cc:L308

Value

iter The result mx.dataiter

mx.io.extract Extract a certain field from DataIter.

Description

Extract a certain field from DataIter.

Usage

mx.io.extract(iter, field)

mx.io.ImageDetRecordIter

Create iterator for image detection dataset packed in recordio.

Description

Create iterator for image detection dataset packed in recordio.

Usage

mx.io.ImageDetRecordIter(...)

mx.io.ImageDetRecordIter 35

Arguments

path.imglist string, optional, default=” Dataset Param: Path to image list.

path.imgrec string, optional, default=’./data/imgrec.rec’ Dataset Param: Path to image record
file.

aug.seq string, optional, default=’det_aug_default’ Augmentation Param: the augmenter
names to represent sequence of augmenters to be applied, seperated by comma.
Additional keyword parameters will be seen by these augmenters. Make sure
you don’t use normal augmenters for detection tasks.

label.width int, optional, default=’-1’ Dataset Param: How many labels for an image, -1 for
variable label size.

preprocess.threads

int, optional, default=’4’ Backend Param: Number of thread to do preprocess-
ing.

verbose boolean, optional, default=1 Auxiliary Param: Whether to output parser infor-
mation.

num.parts int, optional, default=’1’ partition the data into multiple parts

part.index int, optional, default=’0’ the index of the part will read
shuffle.chunk.size

long (non-negative), optional, default=0 the size(MB) of the shuffle chunk, used
with shuffle=True, it can enable global shuffling

shuffle.chunk.seed

int, optional, default=’0’ the seed for chunk shuffling
label.pad.width

int, optional, default=’0’ pad output label width if set larger than 0, -1 for auto
estimate

label.pad.value

float, optional, default=-1 label padding value if enabled

shuffle boolean, optional, default=0 Augmentation Param: Whether to shuffle data.

seed int, optional, default=’0’ Augmentation Param: Random Seed.

batch.size int (non-negative), required Batch size.

round.batch boolean, optional, default=1 Whether to use round robin to handle overflow
batch or not.

prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

36 mx.io.ImageDetRecordIter

resize int, optional, default=’-1’ Augmentation Param: scale shorter edge to size before
applying other augmentations, -1 to disable.

rand.crop.prob float, optional, default=0 Augmentation Param: Probability of random cropping,
<= 0 to disable

min.crop.scales

tuple of <float>, optional, default=[0] Augmentation Param: Min crop scales.
max.crop.scales

tuple of <float>, optional, default=[1] Augmentation Param: Max crop scales.
min.crop.aspect.ratios

tuple of <float>, optional, default=[1] Augmentation Param: Min crop aspect
ratios.

max.crop.aspect.ratios

tuple of <float>, optional, default=[1] Augmentation Param: Max crop aspect
ratios.

min.crop.overlaps

tuple of <float>, optional, default=[0] Augmentation Param: Minimum crop
IOU between crop_box and ground-truths.

max.crop.overlaps

tuple of <float>, optional, default=[1] Augmentation Param: Maximum crop
IOU between crop_box and ground-truth.

min.crop.sample.coverages

tuple of <float>, optional, default=[0] Augmentation Param: Minimum ratio of
intersect/crop_area between crop box and ground-truths.

max.crop.sample.coverages

tuple of <float>, optional, default=[1] Augmentation Param: Maximum ratio of
intersect/crop_area between crop box and ground-truths.

min.crop.object.coverages

tuple of <float>, optional, default=[0] Augmentation Param: Minimum ratio of
intersect/gt_area between crop box and ground-truths.

max.crop.object.coverages

tuple of <float>, optional, default=[1] Augmentation Param: Maximum ratio of
intersect/gt_area between crop box and ground-truths.

num.crop.sampler

int, optional, default=’1’ Augmentation Param: Number of crop samplers.

crop.emit.mode ’center’, ’overlap’,optional, default=’center’ Augmentation Param: Emition mode
for invalid ground-truths after crop. center: emit if centroid of object is out of
crop region; overlap: emit if overlap is less than emit_overlap_thresh.

emit.overlap.thresh

float, optional, default=0.300000012 Augmentation Param: Emit overlap thresh
for emit mode overlap only.

max.crop.trials

Shape(tuple), optional, default=[25] Augmentation Param: Skip cropping if fail
crop trail count exceeds this number.

rand.pad.prob float, optional, default=0 Augmentation Param: Probability for random padding.

max.pad.scale float, optional, default=1 Augmentation Param: Maximum padding scale.

mx.io.ImageDetRecordIter 37

max.random.hue int, optional, default=’0’ Augmentation Param: Maximum random value of H
channel in HSL color space.

random.hue.prob

float, optional, default=0 Augmentation Param: Probability to apply random
hue.

max.random.saturation

int, optional, default=’0’ Augmentation Param: Maximum random value of S
channel in HSL color space.

random.saturation.prob

float, optional, default=0 Augmentation Param: Probability to apply random
saturation.

max.random.illumination

int, optional, default=’0’ Augmentation Param: Maximum random value of L
channel in HSL color space.

random.illumination.prob

float, optional, default=0 Augmentation Param: Probability to apply random
illumination.

max.random.contrast

float, optional, default=0 Augmentation Param: Maximum random value of
delta contrast.

random.contrast.prob

float, optional, default=0 Augmentation Param: Probability to apply random
contrast.

rand.mirror.prob

float, optional, default=0 Augmentation Param: Probability to apply horizontal
flip aka. mirror.

fill.value int, optional, default=’127’ Augmentation Param: Filled color value while padding.

inter.method int, optional, default=’1’ Augmentation Param: 0-NN 1-bilinear 2-cubic 3-area
4-lanczos4 9-auto 10-rand.

data.shape Shape(tuple), required Dataset Param: Shape of each instance generated by the
DataIter.

resize.mode ’fit’, ’force’, ’shrink’,optional, default=’force’ Augmentation Param: How im-
age data fit in data_shape. force: force reshape to data_shape regardless of
aspect ratio; shrink: ensure each side fit in data_shape, preserve aspect ratio; fit:
fit image to data_shape, preserve ratio, will upscale if applicable.

mean.img string, optional, default=” Augmentation Param: Mean Image to be subtracted.

mean.r float, optional, default=0 Augmentation Param: Mean value on R channel.

mean.g float, optional, default=0 Augmentation Param: Mean value on G channel.

mean.b float, optional, default=0 Augmentation Param: Mean value on B channel.

mean.a float, optional, default=0 Augmentation Param: Mean value on Alpha channel.

std.r float, optional, default=0 Augmentation Param: Standard deviation on R chan-
nel.

std.g float, optional, default=0 Augmentation Param: Standard deviation on G chan-
nel.

38 mx.io.ImageRecordInt8Iter

std.b float, optional, default=0 Augmentation Param: Standard deviation on B chan-
nel.

std.a float, optional, default=0 Augmentation Param: Standard deviation on Alpha
channel.

scale float, optional, default=1 Augmentation Param: Scale in color space.

Value

iter The result mx.dataiter

mx.io.ImageRecordInt8Iter

Iterating on image RecordIO files

Description

.. note:: “ImageRecordInt8Iter“ is deprecated. Use ImageRecordIter(dtype=’int8’) instead.

Usage

mx.io.ImageRecordInt8Iter(...)

Arguments

path.imglist string, optional, default=” Path to the image list (.lst) file. Generally created
with tools/im2rec.py. Format (Tab separated): <index of record> <one or more
labels> <relative path from root folder>.

path.imgrec string, optional, default=” Path to the image RecordIO (.rec) file or a directory
path. Created with tools/im2rec.py.

path.imgidx string, optional, default=” Path to the image RecordIO index (.idx) file. Created
with tools/im2rec.py.

aug.seq string, optional, default=’aug_default’ The augmenter names to represent se-
quence of augmenters to be applied, seperated by comma. Additional keyword
parameters will be seen by these augmenters.

label.width int, optional, default=’1’ The number of labels per image.
preprocess.threads

int, optional, default=’4’ The number of threads to do preprocessing.

verbose boolean, optional, default=1 If or not output verbose information.

num.parts int, optional, default=’1’ Virtually partition the data into these many parts.

part.index int, optional, default=’0’ The *i*-th virtual partition to be read.
shuffle.chunk.size

long (non-negative), optional, default=0 The data shuffle buffer size in MB. Only
valid if shuffle is true.

mx.io.ImageRecordInt8Iter 39

shuffle.chunk.seed

int, optional, default=’0’ The random seed for shuffling

seed.aug int or None, optional, default=’None’ Random seed for augmentations.

shuffle boolean, optional, default=0 Whether to shuffle data randomly or not.

seed int, optional, default=’0’ The random seed.

batch.size int (non-negative), required Batch size.

round.batch boolean, optional, default=1 Whether to use round robin to handle overflow
batch or not.

prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

resize int, optional, default=’-1’ Down scale the shorter edge to a new size before
applying other augmentations.

rand.crop boolean, optional, default=0 If or not randomly crop the image
random.resized.crop

boolean, optional, default=0 If or not perform random resized cropping on the
image, as a standard preprocessing for resnet training on ImageNet data.

max.rotate.angle

int, optional, default=’0’ Rotate by a random degree in “[-v, v]“
max.aspect.ratio

float, optional, default=0 Change the aspect (namely width/height) to a ran-
dom value. If min_aspect_ratio is None then the aspect ratio ins sampled from
[1 - max_aspect_ratio, 1 + max_aspect_ratio], else it is in “[min_aspect_ratio,
max_aspect_ratio]“

min.aspect.ratio

float or None, optional, default=None Change the aspect (namely width/height)
to a random value in “[min_aspect_ratio, max_aspect_ratio]“

max.shear.ratio

float, optional, default=0 Apply a shear transformation (namely “(x,y)->(x+my,y)“)
with “m“ randomly chose from “[-max_shear_ratio, max_shear_ratio]“

max.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

min.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

max.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“. Ignored if “random_resized_crop“
is True.

40 mx.io.ImageRecordInt8Iter

min.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“Ignored if “random_resized_crop“
is True.

max.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

min.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

max.img.size float, optional, default=1e+10 Set the maximal width and height after all resize
and rotate argumentation are applied

min.img.size float, optional, default=0 Set the minimal width and height after all resize and
rotate argumentation are applied

brightness float, optional, default=0 Add a random value in “[-brightness, brightness]“ to
the brightness of image.

contrast float, optional, default=0 Add a random value in “[-contrast, contrast]“ to the
contrast of image.

saturation float, optional, default=0 Add a random value in “[-saturation, saturation]“ to
the saturation of image.

pca.noise float, optional, default=0 Add PCA based noise to the image.

random.h int, optional, default=’0’ Add a random value in “[-random_h, random_h]“ to
the H channel in HSL color space.

random.s int, optional, default=’0’ Add a random value in “[-random_s, random_s]“ to
the S channel in HSL color space.

random.l int, optional, default=’0’ Add a random value in “[-random_l, random_l]“ to the
L channel in HSL color space.

rotate int, optional, default=’-1’ Rotate by an angle. If set, it overwrites the “max_rotate_angle“
option.

fill.value int, optional, default=’255’ Set the padding pixels value to “fill_value“.

data.shape Shape(tuple), required The shape of a output image.

inter.method int, optional, default=’1’ The interpolation method: 0-NN 1-bilinear 2-cubic
3-area 4-lanczos4 9-auto 10-rand.

pad int, optional, default=’0’ Change size from “[width, height]“ into “[pad + width
+ pad, pad + height + pad]“ by padding pixes

Details

This iterator is identical to “ImageRecordIter“ except for using “int8“ as the data type instead of
“float“.

Defined in src/io/iter_image_recordio_2.cc:L948

mx.io.ImageRecordIter 41

Value

iter The result mx.dataiter

mx.io.ImageRecordIter Iterates on image RecordIO files

Usage

mx.io.ImageRecordIter(...)

Arguments

path.imglist string, optional, default=” Path to the image list (.lst) file. Generally created
with tools/im2rec.py. Format (Tab separated): <index of record> <one or more
labels> <relative path from root folder>.

path.imgrec string, optional, default=” Path to the image RecordIO (.rec) file or a directory
path. Created with tools/im2rec.py.

path.imgidx string, optional, default=” Path to the image RecordIO index (.idx) file. Created
with tools/im2rec.py.

aug.seq string, optional, default=’aug_default’ The augmenter names to represent se-
quence of augmenters to be applied, seperated by comma. Additional keyword
parameters will be seen by these augmenters.

label.width int, optional, default=’1’ The number of labels per image.
preprocess.threads

int, optional, default=’4’ The number of threads to do preprocessing.

verbose boolean, optional, default=1 If or not output verbose information.

num.parts int, optional, default=’1’ Virtually partition the data into these many parts.

part.index int, optional, default=’0’ The *i*-th virtual partition to be read.
shuffle.chunk.size

long (non-negative), optional, default=0 The data shuffle buffer size in MB. Only
valid if shuffle is true.

shuffle.chunk.seed

int, optional, default=’0’ The random seed for shuffling

seed.aug int or None, optional, default=’None’ Random seed for augmentations.

shuffle boolean, optional, default=0 Whether to shuffle data randomly or not.

seed int, optional, default=’0’ The random seed.

batch.size int (non-negative), required Batch size.

round.batch boolean, optional, default=1 Whether to use round robin to handle overflow
batch or not.

prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

42 mx.io.ImageRecordIter

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

resize int, optional, default=’-1’ Down scale the shorter edge to a new size before
applying other augmentations.

rand.crop boolean, optional, default=0 If or not randomly crop the image
random.resized.crop

boolean, optional, default=0 If or not perform random resized cropping on the
image, as a standard preprocessing for resnet training on ImageNet data.

max.rotate.angle

int, optional, default=’0’ Rotate by a random degree in “[-v, v]“
max.aspect.ratio

float, optional, default=0 Change the aspect (namely width/height) to a ran-
dom value. If min_aspect_ratio is None then the aspect ratio ins sampled from
[1 - max_aspect_ratio, 1 + max_aspect_ratio], else it is in “[min_aspect_ratio,
max_aspect_ratio]“

min.aspect.ratio

float or None, optional, default=None Change the aspect (namely width/height)
to a random value in “[min_aspect_ratio, max_aspect_ratio]“

max.shear.ratio

float, optional, default=0 Apply a shear transformation (namely “(x,y)->(x+my,y)“)
with “m“ randomly chose from “[-max_shear_ratio, max_shear_ratio]“

max.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

min.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

max.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“. Ignored if “random_resized_crop“
is True.

min.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“Ignored if “random_resized_crop“
is True.

max.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

min.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

mx.io.ImageRecordIter 43

max.img.size float, optional, default=1e+10 Set the maximal width and height after all resize
and rotate argumentation are applied

min.img.size float, optional, default=0 Set the minimal width and height after all resize and
rotate argumentation are applied

brightness float, optional, default=0 Add a random value in “[-brightness, brightness]“ to
the brightness of image.

contrast float, optional, default=0 Add a random value in “[-contrast, contrast]“ to the
contrast of image.

saturation float, optional, default=0 Add a random value in “[-saturation, saturation]“ to
the saturation of image.

pca.noise float, optional, default=0 Add PCA based noise to the image.

random.h int, optional, default=’0’ Add a random value in “[-random_h, random_h]“ to
the H channel in HSL color space.

random.s int, optional, default=’0’ Add a random value in “[-random_s, random_s]“ to
the S channel in HSL color space.

random.l int, optional, default=’0’ Add a random value in “[-random_l, random_l]“ to the
L channel in HSL color space.

rotate int, optional, default=’-1’ Rotate by an angle. If set, it overwrites the “max_rotate_angle“
option.

fill.value int, optional, default=’255’ Set the padding pixels value to “fill_value“.

data.shape Shape(tuple), required The shape of a output image.

inter.method int, optional, default=’1’ The interpolation method: 0-NN 1-bilinear 2-cubic
3-area 4-lanczos4 9-auto 10-rand.

pad int, optional, default=’0’ Change size from “[width, height]“ into “[pad + width
+ pad, pad + height + pad]“ by padding pixes

mirror boolean, optional, default=0 Whether to mirror the image or not. If true, images
are flipped along the horizontal axis.

rand.mirror boolean, optional, default=0 Whether to randomly mirror images or not. If true,
50
\itemmean.imgstring, optional, default=” Filename of the mean image.
\itemmean.rfloat, optional, default=0 The mean value to be subtracted on the R
channel
\itemmean.gfloat, optional, default=0 The mean value to be subtracted on the G
channel
\itemmean.bfloat, optional, default=0 The mean value to be subtracted on the B
channel
\itemmean.afloat, optional, default=0 The mean value to be subtracted on the
alpha channel
\itemstd.rfloat, optional, default=1 Augmentation Param: Standard deviation on
R channel.
\itemstd.gfloat, optional, default=1 Augmentation Param: Standard deviation on
G channel.

44 mx.io.ImageRecordIter_v1

\itemstd.bfloat, optional, default=1 Augmentation Param: Standard deviation on
B channel.
\itemstd.afloat, optional, default=1 Augmentation Param: Standard deviation on
Alpha channel.
\itemscalefloat, optional, default=1 Multiply the image with a scale value.
\itemmax.random.contrastfloat, optional, default=0 Change the contrast with a
value randomly chosen from “[-max_random_contrast, max_random_contrast]“
\itemmax.random.illuminationfloat, optional, default=0 Change the illumination
with a value randomly chosen from “[-max_random_illumination, max_random_illumination]“
iter The result mx.dataiter
Reads batches of images from .rec RecordIO files. One can use “im2rec.py“
tool (in tools/) to pack raw image files into RecordIO files. This iterator is less
flexible to customization but is fast and has lot of language bindings. To iterate
over raw images directly use “ImageIter“ instead (in Python).
Example::
data_iter = mx.io.ImageRecordIter(path_imgrec="./sample.rec", # The target
record file. data_shape=(3, 227, 227), # Output data shape; 227x227 region
will be cropped from the original image. batch_size=4, # Number of items per
batch. resize=256 # Resize the shorter edge to 256 before cropping. # You
can specify more augmentation options. Use help(mx.io.ImageRecordIter) to
see all the options.) # You can now use the data_iter to access batches of
images. batch = data_iter.next() # first batch. images = batch.data[0] # This
will contain 4 (=batch_size) images each of 3x227x227. # process the images
... data_iter.reset() # To restart the iterator from the beginning.
Defined in src/io/iter_image_recordio_2.cc:L911

mx.io.ImageRecordIter_v1

Iterating on image RecordIO files

Usage

mx.io.ImageRecordIter_v1(...)

Arguments

path.imglist string, optional, default=” Path to the image list (.lst) file. Generally created
with tools/im2rec.py. Format (Tab separated): <index of record> <one or more
labels> <relative path from root folder>.

path.imgrec string, optional, default=” Path to the image RecordIO (.rec) file or a directory
path. Created with tools/im2rec.py.

path.imgidx string, optional, default=” Path to the image RecordIO index (.idx) file. Created
with tools/im2rec.py.

mx.io.ImageRecordIter_v1 45

aug.seq string, optional, default=’aug_default’ The augmenter names to represent se-
quence of augmenters to be applied, seperated by comma. Additional keyword
parameters will be seen by these augmenters.

label.width int, optional, default=’1’ The number of labels per image.
preprocess.threads

int, optional, default=’4’ The number of threads to do preprocessing.

verbose boolean, optional, default=1 If or not output verbose information.

num.parts int, optional, default=’1’ Virtually partition the data into these many parts.

part.index int, optional, default=’0’ The *i*-th virtual partition to be read.
shuffle.chunk.size

long (non-negative), optional, default=0 The data shuffle buffer size in MB. Only
valid if shuffle is true.

shuffle.chunk.seed

int, optional, default=’0’ The random seed for shuffling

seed.aug int or None, optional, default=’None’ Random seed for augmentations.

shuffle boolean, optional, default=0 Whether to shuffle data randomly or not.

seed int, optional, default=’0’ The random seed.

batch.size int (non-negative), required Batch size.

round.batch boolean, optional, default=1 Whether to use round robin to handle overflow
batch or not.

prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

resize int, optional, default=’-1’ Down scale the shorter edge to a new size before
applying other augmentations.

rand.crop boolean, optional, default=0 If or not randomly crop the image
random.resized.crop

boolean, optional, default=0 If or not perform random resized cropping on the
image, as a standard preprocessing for resnet training on ImageNet data.

max.rotate.angle

int, optional, default=’0’ Rotate by a random degree in “[-v, v]“
max.aspect.ratio

float, optional, default=0 Change the aspect (namely width/height) to a ran-
dom value. If min_aspect_ratio is None then the aspect ratio ins sampled from
[1 - max_aspect_ratio, 1 + max_aspect_ratio], else it is in “[min_aspect_ratio,
max_aspect_ratio]“

46 mx.io.ImageRecordIter_v1

min.aspect.ratio

float or None, optional, default=None Change the aspect (namely width/height)
to a random value in “[min_aspect_ratio, max_aspect_ratio]“

max.shear.ratio

float, optional, default=0 Apply a shear transformation (namely “(x,y)->(x+my,y)“)
with “m“ randomly chose from “[-max_shear_ratio, max_shear_ratio]“

max.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

min.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

max.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“. Ignored if “random_resized_crop“
is True.

min.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“Ignored if “random_resized_crop“
is True.

max.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

min.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

max.img.size float, optional, default=1e+10 Set the maximal width and height after all resize
and rotate argumentation are applied

min.img.size float, optional, default=0 Set the minimal width and height after all resize and
rotate argumentation are applied

brightness float, optional, default=0 Add a random value in “[-brightness, brightness]“ to
the brightness of image.

contrast float, optional, default=0 Add a random value in “[-contrast, contrast]“ to the
contrast of image.

saturation float, optional, default=0 Add a random value in “[-saturation, saturation]“ to
the saturation of image.

pca.noise float, optional, default=0 Add PCA based noise to the image.

random.h int, optional, default=’0’ Add a random value in “[-random_h, random_h]“ to
the H channel in HSL color space.

random.s int, optional, default=’0’ Add a random value in “[-random_s, random_s]“ to
the S channel in HSL color space.

random.l int, optional, default=’0’ Add a random value in “[-random_l, random_l]“ to the
L channel in HSL color space.

rotate int, optional, default=’-1’ Rotate by an angle. If set, it overwrites the “max_rotate_angle“
option.

mx.io.ImageRecordIter_v1 47

fill.value int, optional, default=’255’ Set the padding pixels value to “fill_value“.

data.shape Shape(tuple), required The shape of a output image.

inter.method int, optional, default=’1’ The interpolation method: 0-NN 1-bilinear 2-cubic
3-area 4-lanczos4 9-auto 10-rand.

pad int, optional, default=’0’ Change size from “[width, height]“ into “[pad + width
+ pad, pad + height + pad]“ by padding pixes

mirror boolean, optional, default=0 Whether to mirror the image or not. If true, images
are flipped along the horizontal axis.

rand.mirror boolean, optional, default=0 Whether to randomly mirror images or not. If true,
50
\itemmean.imgstring, optional, default=” Filename of the mean image.
\itemmean.rfloat, optional, default=0 The mean value to be subtracted on the R
channel
\itemmean.gfloat, optional, default=0 The mean value to be subtracted on the G
channel
\itemmean.bfloat, optional, default=0 The mean value to be subtracted on the B
channel
\itemmean.afloat, optional, default=0 The mean value to be subtracted on the
alpha channel
\itemstd.rfloat, optional, default=1 Augmentation Param: Standard deviation on
R channel.
\itemstd.gfloat, optional, default=1 Augmentation Param: Standard deviation on
G channel.
\itemstd.bfloat, optional, default=1 Augmentation Param: Standard deviation on
B channel.
\itemstd.afloat, optional, default=1 Augmentation Param: Standard deviation on
Alpha channel.
\itemscalefloat, optional, default=1 Multiply the image with a scale value.
\itemmax.random.contrastfloat, optional, default=0 Change the contrast with a
value randomly chosen from “[-max_random_contrast, max_random_contrast]“
\itemmax.random.illuminationfloat, optional, default=0 Change the illumination
with a value randomly chosen from “[-max_random_illumination, max_random_illumination]“
iter The result mx.dataiter
.. note::
“ImageRecordIter_v1“ is deprecated. Use “ImageRecordIter“ instead.
Read images batches from RecordIO files with a rich of data augmentation op-
tions.
One can use “tools/im2rec.py“ to pack individual image files into RecordIO
files.
Defined in src/io/iter_image_recordio.cc:L352

48 mx.io.ImageRecordUInt8Iter

mx.io.ImageRecordUInt8Iter

Iterating on image RecordIO files

Description

.. note:: ImageRecordUInt8Iter is deprecated. Use ImageRecordIter(dtype=’uint8’) instead.

Usage

mx.io.ImageRecordUInt8Iter(...)

Arguments

path.imglist string, optional, default=” Path to the image list (.lst) file. Generally created
with tools/im2rec.py. Format (Tab separated): <index of record> <one or more
labels> <relative path from root folder>.

path.imgrec string, optional, default=” Path to the image RecordIO (.rec) file or a directory
path. Created with tools/im2rec.py.

path.imgidx string, optional, default=” Path to the image RecordIO index (.idx) file. Created
with tools/im2rec.py.

aug.seq string, optional, default=’aug_default’ The augmenter names to represent se-
quence of augmenters to be applied, seperated by comma. Additional keyword
parameters will be seen by these augmenters.

label.width int, optional, default=’1’ The number of labels per image.
preprocess.threads

int, optional, default=’4’ The number of threads to do preprocessing.

verbose boolean, optional, default=1 If or not output verbose information.

num.parts int, optional, default=’1’ Virtually partition the data into these many parts.

part.index int, optional, default=’0’ The *i*-th virtual partition to be read.
shuffle.chunk.size

long (non-negative), optional, default=0 The data shuffle buffer size in MB. Only
valid if shuffle is true.

shuffle.chunk.seed

int, optional, default=’0’ The random seed for shuffling

seed.aug int or None, optional, default=’None’ Random seed for augmentations.

shuffle boolean, optional, default=0 Whether to shuffle data randomly or not.

seed int, optional, default=’0’ The random seed.

batch.size int (non-negative), required Batch size.

round.batch boolean, optional, default=1 Whether to use round robin to handle overflow
batch or not.

prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

mx.io.ImageRecordUInt8Iter 49

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

resize int, optional, default=’-1’ Down scale the shorter edge to a new size before
applying other augmentations.

rand.crop boolean, optional, default=0 If or not randomly crop the image
random.resized.crop

boolean, optional, default=0 If or not perform random resized cropping on the
image, as a standard preprocessing for resnet training on ImageNet data.

max.rotate.angle

int, optional, default=’0’ Rotate by a random degree in “[-v, v]“
max.aspect.ratio

float, optional, default=0 Change the aspect (namely width/height) to a ran-
dom value. If min_aspect_ratio is None then the aspect ratio ins sampled from
[1 - max_aspect_ratio, 1 + max_aspect_ratio], else it is in “[min_aspect_ratio,
max_aspect_ratio]“

min.aspect.ratio

float or None, optional, default=None Change the aspect (namely width/height)
to a random value in “[min_aspect_ratio, max_aspect_ratio]“

max.shear.ratio

float, optional, default=0 Apply a shear transformation (namely “(x,y)->(x+my,y)“)
with “m“ randomly chose from “[-max_shear_ratio, max_shear_ratio]“

max.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

min.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

max.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“. Ignored if “random_resized_crop“
is True.

min.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“Ignored if “random_resized_crop“
is True.

max.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

min.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

50 mx.io.ImageRecordUInt8Iter

max.img.size float, optional, default=1e+10 Set the maximal width and height after all resize
and rotate argumentation are applied

min.img.size float, optional, default=0 Set the minimal width and height after all resize and
rotate argumentation are applied

brightness float, optional, default=0 Add a random value in “[-brightness, brightness]“ to
the brightness of image.

contrast float, optional, default=0 Add a random value in “[-contrast, contrast]“ to the
contrast of image.

saturation float, optional, default=0 Add a random value in “[-saturation, saturation]“ to
the saturation of image.

pca.noise float, optional, default=0 Add PCA based noise to the image.

random.h int, optional, default=’0’ Add a random value in “[-random_h, random_h]“ to
the H channel in HSL color space.

random.s int, optional, default=’0’ Add a random value in “[-random_s, random_s]“ to
the S channel in HSL color space.

random.l int, optional, default=’0’ Add a random value in “[-random_l, random_l]“ to the
L channel in HSL color space.

rotate int, optional, default=’-1’ Rotate by an angle. If set, it overwrites the “max_rotate_angle“
option.

fill.value int, optional, default=’255’ Set the padding pixels value to “fill_value“.

data.shape Shape(tuple), required The shape of a output image.

inter.method int, optional, default=’1’ The interpolation method: 0-NN 1-bilinear 2-cubic
3-area 4-lanczos4 9-auto 10-rand.

pad int, optional, default=’0’ Change size from “[width, height]“ into “[pad + width
+ pad, pad + height + pad]“ by padding pixes

Details

This iterator is identical to “ImageRecordIter“ except for using “uint8“ as the data type instead of
“float“.

Defined in src/io/iter_image_recordio_2.cc:L930

Value

iter The result mx.dataiter

mx.io.ImageRecordUInt8Iter_v1 51

mx.io.ImageRecordUInt8Iter_v1

Iterating on image RecordIO files

Description

.. note::

Usage

mx.io.ImageRecordUInt8Iter_v1(...)

Arguments

path.imglist string, optional, default=” Path to the image list (.lst) file. Generally created
with tools/im2rec.py. Format (Tab separated): <index of record> <one or more
labels> <relative path from root folder>.

path.imgrec string, optional, default=” Path to the image RecordIO (.rec) file or a directory
path. Created with tools/im2rec.py.

path.imgidx string, optional, default=” Path to the image RecordIO index (.idx) file. Created
with tools/im2rec.py.

aug.seq string, optional, default=’aug_default’ The augmenter names to represent se-
quence of augmenters to be applied, seperated by comma. Additional keyword
parameters will be seen by these augmenters.

label.width int, optional, default=’1’ The number of labels per image.
preprocess.threads

int, optional, default=’4’ The number of threads to do preprocessing.

verbose boolean, optional, default=1 If or not output verbose information.

num.parts int, optional, default=’1’ Virtually partition the data into these many parts.

part.index int, optional, default=’0’ The *i*-th virtual partition to be read.
shuffle.chunk.size

long (non-negative), optional, default=0 The data shuffle buffer size in MB. Only
valid if shuffle is true.

shuffle.chunk.seed

int, optional, default=’0’ The random seed for shuffling

seed.aug int or None, optional, default=’None’ Random seed for augmentations.

shuffle boolean, optional, default=0 Whether to shuffle data randomly or not.

seed int, optional, default=’0’ The random seed.

batch.size int (non-negative), required Batch size.

round.batch boolean, optional, default=1 Whether to use round robin to handle overflow
batch or not.

prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

52 mx.io.ImageRecordUInt8Iter_v1

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

resize int, optional, default=’-1’ Down scale the shorter edge to a new size before
applying other augmentations.

rand.crop boolean, optional, default=0 If or not randomly crop the image
random.resized.crop

boolean, optional, default=0 If or not perform random resized cropping on the
image, as a standard preprocessing for resnet training on ImageNet data.

max.rotate.angle

int, optional, default=’0’ Rotate by a random degree in “[-v, v]“
max.aspect.ratio

float, optional, default=0 Change the aspect (namely width/height) to a ran-
dom value. If min_aspect_ratio is None then the aspect ratio ins sampled from
[1 - max_aspect_ratio, 1 + max_aspect_ratio], else it is in “[min_aspect_ratio,
max_aspect_ratio]“

min.aspect.ratio

float or None, optional, default=None Change the aspect (namely width/height)
to a random value in “[min_aspect_ratio, max_aspect_ratio]“

max.shear.ratio

float, optional, default=0 Apply a shear transformation (namely “(x,y)->(x+my,y)“)
with “m“ randomly chose from “[-max_shear_ratio, max_shear_ratio]“

max.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

min.crop.size int, optional, default=’-1’ Crop both width and height into a random size in
“[min_crop_size, max_crop_size].“Ignored if “random_resized_crop“ is True.

max.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“. Ignored if “random_resized_crop“
is True.

min.random.scale

float, optional, default=1 Resize into “[width*s, height*s]“ with “s“ randomly
chosen from “[min_random_scale, max_random_scale]“Ignored if “random_resized_crop“
is True.

max.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

min.random.area

float, optional, default=1 Change the area (namely width * height) to a random
value in “[min_random_area, max_random_area]“. Ignored if “random_resized_crop“
is False.

mx.io.ImageRecordUInt8Iter_v1 53

max.img.size float, optional, default=1e+10 Set the maximal width and height after all resize
and rotate argumentation are applied

min.img.size float, optional, default=0 Set the minimal width and height after all resize and
rotate argumentation are applied

brightness float, optional, default=0 Add a random value in “[-brightness, brightness]“ to
the brightness of image.

contrast float, optional, default=0 Add a random value in “[-contrast, contrast]“ to the
contrast of image.

saturation float, optional, default=0 Add a random value in “[-saturation, saturation]“ to
the saturation of image.

pca.noise float, optional, default=0 Add PCA based noise to the image.

random.h int, optional, default=’0’ Add a random value in “[-random_h, random_h]“ to
the H channel in HSL color space.

random.s int, optional, default=’0’ Add a random value in “[-random_s, random_s]“ to
the S channel in HSL color space.

random.l int, optional, default=’0’ Add a random value in “[-random_l, random_l]“ to the
L channel in HSL color space.

rotate int, optional, default=’-1’ Rotate by an angle. If set, it overwrites the “max_rotate_angle“
option.

fill.value int, optional, default=’255’ Set the padding pixels value to “fill_value“.

data.shape Shape(tuple), required The shape of a output image.

inter.method int, optional, default=’1’ The interpolation method: 0-NN 1-bilinear 2-cubic
3-area 4-lanczos4 9-auto 10-rand.

pad int, optional, default=’0’ Change size from “[width, height]“ into “[pad + width
+ pad, pad + height + pad]“ by padding pixes

Details

“ImageRecordUInt8Iter_v1“ is deprecated. Use “ImageRecordUInt8Iter“ instead.

This iterator is identical to “ImageRecordIter“ except for using “uint8“ as the data type instead of
“float“.

Defined in src/io/iter_image_recordio.cc:L377

Value

iter The result mx.dataiter

54 mx.io.LibSVMIter

mx.io.LibSVMIter Returns the LibSVM iterator which returns data with ‘csr‘ storage
type. This iterator is experimental and should be used with care.

Description

The input data is stored in a format similar to LibSVM file format, except that the **indices
are expected to be zero-based instead of one-based, and the column indices for each row are
expected to be sorted in ascending order**. Details of the LibSVM format are available ‘here.
<https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/>‘_

Usage

mx.io.LibSVMIter(...)

Arguments

data.libsvm string, required The input zero-base indexed LibSVM data file or a directory
path.

data.shape Shape(tuple), required The shape of one example.

label.libsvm string, optional, default=’NULL’ The input LibSVM label file or a directory
path. If NULL, all labels will be read from “data_libsvm“.

label.shape Shape(tuple), optional, default=[1] The shape of one label.

num.parts int, optional, default=’1’ partition the data into multiple parts

part.index int, optional, default=’0’ the index of the part will read

batch.size int (non-negative), required Batch size.

round.batch boolean, optional, default=1 Whether to use round robin to handle overflow
batch or not.

prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

mx.io.LibSVMIter 55

Details

The ‘data_shape‘ parameter is used to set the shape of each line of the data. The dimension of both
‘data_shape‘ and ‘label_shape‘ are expected to be 1.

The ‘data_libsvm‘ parameter is used to set the path input LibSVM file. When it is set to a directory,
all the files in the directory will be read.

When ‘label_libsvm‘ is set to “NULL“, both data and label are read from the file specified by
‘data_libsvm‘. In this case, the data is stored in ‘csr‘ storage type, while the label is a 1D dense
array.

The ‘LibSVMIter‘ only support ‘round_batch‘ parameter set to “True“. Therefore, if ‘batch_size‘
is 3 and there are 4 total rows in libsvm file, 2 more examples are consumed at the first round.

When ‘num_parts‘ and ‘part_index‘ are provided, the data is split into ‘num_parts‘ partitions, and
the iterator only reads the ‘part_index‘-th partition. However, the partitions are not guaranteed to
be even.

“reset()“ is expected to be called only after a complete pass of data.

Example::

Contents of libsvm file “data.t“. 1.0 0:0.5 2:1.2 -2.0 -3.0 0:0.6 1:2.4 2:1.2 4 2:-1.2

Creates a ‘LibSVMIter‘ with ‘batch_size‘=3. »> data_iter = mx.io.LibSVMIter(data_libsvm =
’data.t’, data_shape = (3,), batch_size = 3) # The data of the first batch is stored in csr storage type
»> batch = data_iter.next() »> csr = batch.data[0] <CSRNDArray 3x3 @cpu(0)> »> csr.asnumpy()
[[0.5 0. 1.2] [0. 0. 0.] [0.6 2.4 1.2]] # The label of first batch »> label = batch.label[0] »> label [
1. -2. -3.] <NDArray 3 @cpu(0)>

»> second_batch = data_iter.next() # The data of the second batch »> second_batch.data[0].asnumpy()
[[0. 0. -1.2] [0.5 0. 1.2] [0. 0. 0.]] # The label of the second batch »> second_batch.label[0].asnumpy()
[4. 1. -2.]

»> data_iter.reset() # To restart the iterator for the second pass of the data

When ‘label_libsvm‘ is set to the path to another LibSVM file, data is read from ‘data_libsvm‘ and
label from ‘label_libsvm‘. In this case, both data and label are stored in the csr format. If the label
column in the ‘data_libsvm‘ file is ignored.

Example::

Contents of libsvm file “label.t“ 1.0 -2.0 0:0.125 -3.0 2:1.2 4 1:1.0 2:-1.2

Creates a ‘LibSVMIter‘ with specified label file »> data_iter = mx.io.LibSVMIter(data_libsvm =
’data.t’, data_shape = (3,), label_libsvm = ’label.t’, label_shape = (3,), batch_size = 3)

Both data and label are in csr storage type »> batch = data_iter.next() »> csr_data = batch.data[0]
<CSRNDArray 3x3 @cpu(0)> »> csr_data.asnumpy() [[0.5 0. 1.2] [0. 0. 0.] [0.6 2.4 1.2]]
»> csr_label = batch.label[0] <CSRNDArray 3x3 @cpu(0)> »> csr_label.asnumpy() [[0. 0. 0.] [
0.125 0. 0.] [0. 0. 1.2]]

Defined in src/io/iter_libsvm.cc:L298

Value

iter The result mx.dataiter

56 mx.io.MNISTIter

mx.io.MNISTIter Iterating on the MNIST dataset.

Description

One can download the dataset from http://yann.lecun.com/exdb/mnist/

Usage

mx.io.MNISTIter(...)

Arguments

image string, optional, default=’./train-images-idx3-ubyte’ Dataset Param: Mnist im-
age path.

label string, optional, default=’./train-labels-idx1-ubyte’ Dataset Param: Mnist label
path.

batch.size int, optional, default=’128’ Batch Param: Batch Size.

shuffle boolean, optional, default=1 Augmentation Param: Whether to shuffle data.

flat boolean, optional, default=0 Augmentation Param: Whether to flat the data into
1D.

seed int, optional, default=’0’ Augmentation Param: Random Seed.

silent boolean, optional, default=0 Auxiliary Param: Whether to print out data info.

num.parts int, optional, default=’1’ partition the data into multiple parts

part.index int, optional, default=’0’ the index of the part will read
prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

Details

Defined in src/io/iter_mnist.cc:L265

Value

iter The result mx.dataiter

mx.io.RandomSampler 57

mx.io.RandomSampler Returns the random sampler iterator.

Description

Defined in src/io/iter_sampler.cc:L168

Usage

mx.io.RandomSampler(...)

Arguments

length long (non-negative), required Length of the sequence.

batch.size int (non-negative), required Batch size.

last.batch ’discard’, ’keep’, ’rollover’,optional, default=’keep’ Specifies how the last batch
is handled if batch_size does not evenly divide sequence length. If ’keep’, the
last batch will be returned directly, but will contain less element than ‘batch_size‘
requires. If ’discard’, the last batch will be discarded. If ’rollover’, the remain-
ing elements will be rolled over to the next iteration. Note: legacy batch param
with round_batch will always round data in order to always provide full batchs.
Rollover behavior will instead result in different iteration sizes for each epoch.

Value

iter The result mx.dataiter

mx.io.SequentialSampler

Returns the sequential sampler iterator.

Description

Defined in src/io/iter_sampler.cc:L97

Usage

mx.io.SequentialSampler(...)

58 mx.io.ThreadedDataLoader

Arguments

length long (non-negative), required Length of the sequence.

start int, optional, default=’0’ Start of the index.

batch.size int (non-negative), required Batch size.

last.batch ’discard’, ’keep’, ’rollover’,optional, default=’keep’ Specifies how the last batch
is handled if batch_size does not evenly divide sequence length. If ’keep’, the
last batch will be returned directly, but will contain less element than ‘batch_size‘
requires. If ’discard’, the last batch will be discarded. If ’rollover’, the remain-
ing elements will be rolled over to the next iteration. Note: legacy batch param
with round_batch will always round data in order to always provide full batchs.
Rollover behavior will instead result in different iteration sizes for each epoch.

Value

iter The result mx.dataiter

mx.io.ThreadedDataLoader

Returns a threaded data loader iterator.

Description

Defined in src/io/dataloader.cc:L180

Usage

mx.io.ThreadedDataLoader(...)

Arguments

num.workers int, optional, default=’0’ Number of thread workers.

dataset long, required Pointer to shared Dataset.

sampler long, required Pointer to Sampler.

batchify.fn long, required Pointer to Batchify function.

pin.device.id int, optional, default=’-1’ If not negative, will move data to pinned memory.
prefetch.buffer

long (non-negative), optional, default=4 Maximum number of batches to prefetch.

ctx ’cpu’, ’cpu_pinned’, ’gpu’,optional, default=’gpu’ Context data loader opti-
mized for. Note that it only indicates the optimization strategy for devices, by
no means the prefetcher will load data to GPUs. If ctx is ’cpu_pinned’ and
device_id is not -1, it will use cpu_pinned(device_id) as ctx

device.id int, optional, default=’-1’ The default device id for context. -1 indicate it’s on
default device

dtype None, ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’None’ Output data type. “None“ means no change.

mx.kv.create 59

Value

iter The result mx.dataiter

mx.kv.create Create a mxnet KVStore.

Description

Create a mxnet KVStore.

Arguments

type string(default="local") The type of kvstore.

Value

The kvstore.

mx.lr_scheduler.FactorScheduler

Learning rate scheduler. Reduction based on a factor value.

Description

Learning rate scheduler. Reduction based on a factor value.

Usage

mx.lr_scheduler.FactorScheduler(
step,
factor_val,
stop_factor_lr = 1e-08,
verbose = TRUE

)

Arguments

step (integer) Schedule learning rate after n updates

factor (double) The factor for reducing the learning rate

Value

scheduler function

60 mx.metric.accuracy

mx.lr_scheduler.MultiFactorScheduler

Multifactor learning rate scheduler. Reduction based on a factor value
at different steps.

Description

Multifactor learning rate scheduler. Reduction based on a factor value at different steps.

Usage

mx.lr_scheduler.MultiFactorScheduler(
step,
factor_val,
stop_factor_lr = 1e-08,
verbose = TRUE

)

Arguments

step (array of integer) Schedule learning rate after n updates

factor (double) The factor for reducing the learning rate

Value

scheduler function

mx.metric.accuracy Accuracy metric for classification

Description

Accuracy metric for classification

Usage

mx.metric.accuracy

Format

An object of class mx.metric of length 3.

mx.metric.custom 61

mx.metric.custom Helper function to create a customized metric

Description

Helper function to create a customized metric

Usage

mx.metric.custom(name, feval)

mx.metric.logistic_acc

Accuracy metric for logistic regression

Description

Accuracy metric for logistic regression

Usage

mx.metric.logistic_acc

Format

An object of class mx.metric of length 3.

mx.metric.logloss LogLoss metric for logistic regression

Description

LogLoss metric for logistic regression

Usage

mx.metric.logloss

Format

An object of class mx.metric of length 3.

62 mx.metric.Perplexity

mx.metric.mae MAE (Mean Absolute Error) metric for regression

Description

MAE (Mean Absolute Error) metric for regression

Usage

mx.metric.mae

Format

An object of class mx.metric of length 3.

mx.metric.mse MSE (Mean Squared Error) metric for regression

Description

MSE (Mean Squared Error) metric for regression

Usage

mx.metric.mse

Format

An object of class mx.metric of length 3.

mx.metric.Perplexity Perplexity metric for language model

Description

Perplexity metric for language model

Usage

mx.metric.Perplexity

Format

An object of class mx.metric of length 3.

mx.metric.rmse 63

mx.metric.rmse RMSE (Root Mean Squared Error) metric for regression

Description

RMSE (Root Mean Squared Error) metric for regression

Usage

mx.metric.rmse

Format

An object of class mx.metric of length 3.

mx.metric.rmsle RMSLE (Root Mean Squared Logarithmic Error) metric for regression

Description

RMSLE (Root Mean Squared Logarithmic Error) metric for regression

Usage

mx.metric.rmsle

Format

An object of class mx.metric of length 3.

mx.metric.top_k_accuracy

Top-k accuracy metric for classification

Description

Top-k accuracy metric for classification

Usage

mx.metric.top_k_accuracy

Format

An object of class mx.metric of length 3.

64 mx.model.FeedForward.create

mx.model.buckets Train RNN with bucket support

Description

Train RNN with bucket support

Usage

mx.model.buckets(
symbol,
train.data,
eval.data = NULL,
metric = NULL,
arg.params = NULL,
aux.params = NULL,
fixed.params = NULL,
num.round = 1,
begin.round = 1,
initializer = mx.init.uniform(0.01),
optimizer = "sgd",
ctx = NULL,
batch.end.callback = NULL,
epoch.end.callback = NULL,
kvstore = "local",
verbose = TRUE,
metric_cpu = TRUE

)

Arguments

symbol Symbol or list of Symbols representing the model

train.data Training data created by mx.io.bucket.iter

eval.data Evaluation data created by mx.io.bucket.iter

num.round int, number of epoch

verbose

mx.model.FeedForward.create

Create a MXNet Feedforward neural net model with the specified
training.

Description

Create a MXNet Feedforward neural net model with the specified training.

mx.model.FeedForward.create 65

Usage

mx.model.FeedForward.create(
symbol,
X,
y = NULL,
ctx = NULL,
begin.round = 1,
num.round = 10,
optimizer = "sgd",
initializer = mx.init.uniform(0.01),
eval.data = NULL,
eval.metric = NULL,
epoch.end.callback = NULL,
batch.end.callback = NULL,
array.batch.size = 128,
array.layout = "auto",
kvstore = "local",
verbose = TRUE,
arg.params = NULL,
aux.params = NULL,
input.names = NULL,
output.names = NULL,
fixed.param = NULL,
allow.extra.params = FALSE,
metric_cpu = TRUE,
...

)

Arguments

symbol The symbolic configuration of the neural network.

X mx.io.DataIter or R array/matrix The training data.

y R array, optional label of the data This is only used when X is R array.

ctx mx.context or list of mx.context, optional The devices used to perform training.

begin.round integer (default=1) The initial iteration over the training data to train the model.

num.round integer (default=10) The number of iterations over training data to train the
model.

optimizer string, default="sgd" The optimization method.

initializer, initializer object. default=mx.init.uniform(0.01) The initialization scheme for
parameters.

eval.data mx.io.DataIter or list(data=R.array, label=R.array), optional The validation set
used for validation evaluation during the progress

eval.metric function, optional The evaluation function on the results.
epoch.end.callback

function, optional The callback when iteration ends.

66 mx.model.init.params

batch.end.callback

function, optional The callback when one mini-batch iteration ends.
array.batch.size

integer (default=128) The batch size used for R array training.
array.layout can be "auto", "colmajor", "rowmajor", (detault=auto) The layout of array. "row-

major" is only supported for two dimensional array. For matrix, "rowmajor"
means dim(X) = c(nexample, nfeatures), "colmajor" means dim(X) = c(nfeatures,
nexample) "auto" will auto detect the layout by match the feature size, and will
report error when X is a square matrix to ask user to explicitly specify layout.

kvstore string (default="local") The parameter synchronization scheme in multiple de-
vices.

verbose logical (default=TRUE) Specifies whether to print information on the iterations
during training.

arg.params list, optional Model parameter, list of name to NDArray of net’s weights.
aux.params list, optional Model parameter, list of name to NDArray of net’s auxiliary states.
input.names optional The names of the input symbols.
output.names optional The names of the output symbols.
fixed.param The parameters to be fixed during training. For these parameters, not gradients

will be calculated and thus no space will be allocated for the gradient.
allow.extra.params

Whether allow extra parameters that are not needed by symbol. If this is TRUE,
no error will be thrown when arg_params or aux_params contain extra parame-
ters that is not needed by the executor.

Value

model A trained mxnet model.

mx.model.init.params Parameter initialization

Description

Parameter initialization

Usage

mx.model.init.params(symbol, input.shape, output.shape, initializer, ctx)

Arguments

symbol The symbolic configuration of the neural network.
input.shape The shape of the input for the neural network.
output.shape The shape of the output for the neural network. It can be NULL.
initializer, initializer object. The initialization scheme for parameters.
ctx mx.context. The devices used to perform initialization.

mx.model.load 67

mx.model.load Load model checkpoint from file.

Description

Load model checkpoint from file.

Usage

mx.model.load(prefix, iteration)

Arguments

prefix string prefix of the model name

iteration integer Iteration number of model we would like to load.

mx.model.save Save model checkpoint into file.

Description

Save model checkpoint into file.

Usage

mx.model.save(model, prefix, iteration)

Arguments

model The feedforward model to be saved.

prefix string prefix of the model name

iteration integer Iteration number of model we would like to load.

68 mx.nd.Activation

mx.nd.abs Returns element-wise absolute value of the input.

Description

Example::

Arguments

data NDArray-or-Symbol The input array.

Details

abs([-2, 0, 3]) = [2, 0, 3]

The storage type of “abs“ output depends upon the input storage type:

- abs(default) = default - abs(row_sparse) = row_sparse - abs(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L721

Value

out The result mx.ndarray

mx.nd.Activation Applies an activation function element-wise to the input.

Description

The following activation functions are supported:

Arguments

data NDArray-or-Symbol The input array.

act.type ’relu’, ’sigmoid’, ’softrelu’, ’softsign’, ’tanh’, required Activation function to be
applied.

Details

- ‘relu‘: Rectified Linear Unit, :math:‘y = max(x, 0)‘ - ‘sigmoid‘: :math:‘y = \frac11 + exp(-x)‘
- ‘tanh‘: Hyperbolic tangent, :math:‘y = \fracexp(x) - exp(-x)exp(x) + exp(-x)‘ - ‘softrelu‘: Soft
ReLU, or SoftPlus, :math:‘y = log(1 + exp(x))‘ - ‘softsign‘: :math:‘y = \fracx1 + abs(x)‘

Defined in src/operator/nn/activation.cc:L175

Value

out The result mx.ndarray

mx.nd.adam.update 69

mx.nd.adam.update Update function for Adam optimizer. Adam is seen as a generalization
of AdaGrad.

Description

Adam update consists of the following steps, where g represents gradient and m, v are 1st and 2nd
order moment estimates (mean and variance).

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mean NDArray-or-Symbol Moving mean

var NDArray-or-Symbol Moving variance

lr float, required Learning rate

beta1 float, optional, default=0.899999976 The decay rate for the 1st moment esti-
mates.

beta2 float, optional, default=0.999000013 The decay rate for the 2nd moment esti-
mates.

epsilon float, optional, default=9.99999994e-09 A small constant for numerical stability.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse and all of w, m and v have the same stype

Details

.. math::

g_t = \nabla J(W_t-1)\ m_t = \beta_1 m_t-1 + (1 - \beta_1) g_t\ v_t = \beta_2 v_t-1 + (1 - \beta_2)
g_t^2\ W_t = W_t-1 - \alpha \frac m_t \sqrt v_t + \epsilon

It updates the weights using::

m = beta1*m + (1-beta1)*grad v = beta2*v + (1-beta2)*(grad**2) w += - learning_rate * m / (sqrt(v)
+ epsilon)

However, if grad’s storage type is “row_sparse“, “lazy_update“ is True and the storage type of
weight is the same as those of m and v, only the row slices whose indices appear in grad.indices are
updated (for w, m and v)::

70 mx.nd.all.finite

for row in grad.indices: m[row] = beta1*m[row] + (1-beta1)*grad[row] v[row] = beta2*v[row] +
(1-beta2)*(grad[row]**2) w[row] += - learning_rate * m[row] / (sqrt(v[row]) + epsilon)

Defined in src/operator/optimizer_op.cc:L679

Value

out The result mx.ndarray

mx.nd.add.n Adds all input arguments element-wise.

Description

.. math:: add_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n

Arguments

args NDArray-or-Symbol[] Positional input arguments

Details

“add_n“ is potentially more efficient than calling “add“ by ‘n‘ times.

The storage type of “add_n“ output depends on storage types of inputs

- add_n(row_sparse, row_sparse, ..) = row_sparse - add_n(default, csr, default) = default - add_n(any
input combinations longer than 4 (>4) with at least one default type) = default - otherwise, “add_n“
falls all inputs back to default storage and generates default storage

Defined in src/operator/tensor/elemwise_sum.cc:L155

Value

out The result mx.ndarray

mx.nd.all.finite Check if all the float numbers in the array are finite (used for AMP)

Description

Defined in src/operator/contrib/all_finite.cc:L101

Arguments

data NDArray Array
init.output boolean, optional, default=1 Initialize output to 1.

Value

out The result mx.ndarray

mx.nd.amp.cast 71

mx.nd.amp.cast Cast function between low precision float/FP32 used by AMP.

Description

It casts only between low precision float/FP32 and does not do anything for other types.

Arguments

data NDArray-or-Symbol The input.

dtype ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’, required
Output data type.

Details

Defined in src/operator/tensor/amp_cast.cc:L121

Value

out The result mx.ndarray

mx.nd.amp.multicast Cast function used by AMP, that casts its inputs to the common widest
type.

Description

It casts only between low precision float/FP32 and does not do anything for other types.

Arguments

data NDArray-or-Symbol[] Weights

num.outputs int, required Number of input/output pairs to be casted to the widest type.

cast.narrow boolean, optional, default=0 Whether to cast to the narrowest type

Details

Defined in src/operator/tensor/amp_cast.cc:L165

Value

out The result mx.ndarray

72 mx.nd.arccosh

mx.nd.arccos Returns element-wise inverse cosine of the input array.

Description

The input should be in range ‘[-1, 1]‘. The output is in the closed interval :math:‘[0, \pi]‘

Arguments

data NDArray-or-Symbol The input array.

Details

.. math:: arccos([-1, -.707, 0, .707, 1]) = [\pi, 3\pi/4, \pi/2, \pi/4, 0]

The storage type of “arccos“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L233

Value

out The result mx.ndarray

mx.nd.arccosh Returns the element-wise inverse hyperbolic cosine of the input array,
\ computed element-wise.

Description

The storage type of “arccosh“ output is always dense

Arguments

data NDArray-or-Symbol The input array.

Details

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L535

Value

out The result mx.ndarray

mx.nd.arcsin 73

mx.nd.arcsin Returns element-wise inverse sine of the input array.

Description

The input should be in the range ‘[-1, 1]‘. The output is in the closed interval of [:math:‘-\pi/2‘,
:math:‘\pi/2‘].

Arguments

data NDArray-or-Symbol The input array.

Details

.. math:: arcsin([-1, -.707, 0, .707, 1]) = [-\pi/2, -\pi/4, 0, \pi/4, \pi/2]

The storage type of “arcsin“ output depends upon the input storage type:

- arcsin(default) = default - arcsin(row_sparse) = row_sparse - arcsin(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L187

Value

out The result mx.ndarray

mx.nd.arcsinh Returns the element-wise inverse hyperbolic sine of the input array, \
computed element-wise.

Description

The storage type of “arcsinh“ output depends upon the input storage type:

Arguments

data NDArray-or-Symbol The input array.

Details

- arcsinh(default) = default - arcsinh(row_sparse) = row_sparse - arcsinh(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L494

Value

out The result mx.ndarray

74 mx.nd.arctanh

mx.nd.arctan Returns element-wise inverse tangent of the input array.

Description

The output is in the closed interval :math:‘[-\pi/2, \pi/2]‘

Arguments

data NDArray-or-Symbol The input array.

Details

.. math:: arctan([-1, 0, 1]) = [-\pi/4, 0, \pi/4]

The storage type of “arctan“ output depends upon the input storage type:

- arctan(default) = default - arctan(row_sparse) = row_sparse - arctan(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L282

Value

out The result mx.ndarray

mx.nd.arctanh Returns the element-wise inverse hyperbolic tangent of the input array,
\ computed element-wise.

Description

The storage type of “arctanh“ output depends upon the input storage type:

Arguments

data NDArray-or-Symbol The input array.

Details

- arctanh(default) = default - arctanh(row_sparse) = row_sparse - arctanh(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L579

Value

out The result mx.ndarray

mx.nd.argmax 75

mx.nd.argmax Returns indices of the maximum values along an axis.

Description

In the case of multiple occurrences of maximum values, the indices corresponding to the first oc-
currence are returned.

Arguments

data NDArray-or-Symbol The input

axis int or None, optional, default=’None’ The axis along which to perform the re-
duction. Negative values means indexing from right to left. “Requires axis to be
set as int, because global reduction is not supported yet.“

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axis is left in the
result as dimension with size one.

Details

Examples::

x = [[0., 1., 2.], [3., 4., 5.]]

// argmax along axis 0 argmax(x, axis=0) = [1., 1., 1.]

// argmax along axis 1 argmax(x, axis=1) = [2., 2.]

// argmax along axis 1 keeping same dims as an input array argmax(x, axis=1, keepdims=True) = [[
2.], [2.]]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L52

Value

out The result mx.ndarray

mx.nd.argmax.channel Returns argmax indices of each channel from the input array.

Description

The result will be an NDArray of shape (num_channel,).

Arguments

data NDArray-or-Symbol The input array

76 mx.nd.argmin

Details

In case of multiple occurrences of the maximum values, the indices corresponding to the first oc-
currence are returned.

Examples::

x = [[0., 1., 2.], [3., 4., 5.]]

argmax_channel(x) = [2., 2.]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L97

Value

out The result mx.ndarray

mx.nd.argmin Returns indices of the minimum values along an axis.

Description

In the case of multiple occurrences of minimum values, the indices corresponding to the first occur-
rence are returned.

Arguments

data NDArray-or-Symbol The input

axis int or None, optional, default=’None’ The axis along which to perform the re-
duction. Negative values means indexing from right to left. “Requires axis to be
set as int, because global reduction is not supported yet.“

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axis is left in the
result as dimension with size one.

Details

Examples::

x = [[0., 1., 2.], [3., 4., 5.]]

// argmin along axis 0 argmin(x, axis=0) = [0., 0., 0.]

// argmin along axis 1 argmin(x, axis=1) = [0., 0.]

// argmin along axis 1 keeping same dims as an input array argmin(x, axis=1, keepdims=True) = [[
0.], [0.]]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L77

Value

out The result mx.ndarray

mx.nd.argsort 77

mx.nd.argsort Returns the indices that would sort an input array along the given axis.

Description

This function performs sorting along the given axis and returns an array of indices having same
shape as an input array that index data in sorted order.

Arguments

data NDArray-or-Symbol The input array

axis int or None, optional, default=’-1’ Axis along which to sort the input tensor. If
not given, the flattened array is used. Default is -1.

is.ascend boolean, optional, default=1 Whether to sort in ascending or descending order.

dtype ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’uint8’,optional, default=’float32’
DType of the output indices. It is only valid when ret_typ is "indices" or "both".
An error will be raised if the selected data type cannot precisely represent the
indices.

Details

Examples::

x = [[0.3, 0.2, 0.4], [0.1, 0.3, 0.2]]

// sort along axis -1 argsort(x) = [[1., 0., 2.], [0., 2., 1.]]

// sort along axis 0 argsort(x, axis=0) = [[1., 0., 1.] [0., 1., 0.]]

// flatten and then sort argsort(x, axis=None) = [3., 1., 5., 0., 4., 2.]

Defined in src/operator/tensor/ordering_op.cc:L185

Value

out The result mx.ndarray

mx.nd.array Create a new mx.ndarray that copies the content from src on ctx.

Description

Create a new mx.ndarray that copies the content from src on ctx.

Usage

mx.nd.array(src.array, ctx = NULL)

78 mx.nd.batch.dot

Arguments

src.array Source array data of class array, vector or matrix.

ctx optional The context device of the array. mx.ctx.default() will be used in default.

Value

An mx.ndarray

An Rcpp_MXNDArray object

Examples

mat = mx.nd.array(x)
mat = 1 - mat + (2 * mat)/(mat + 0.5)
as.array(mat)

mx.nd.batch.dot Batchwise dot product.

Description

“batch_dot“ is used to compute dot product of “x“ and “y“ when “x“ and “y“ are data in batch,
namely N-D (N >= 3) arrays in shape of ‘(B0, ..., B_i, :, :)‘.

Arguments

lhs NDArray-or-Symbol The first input

rhs NDArray-or-Symbol The second input

transpose.a boolean, optional, default=0 If true then transpose the first input before dot.

transpose.b boolean, optional, default=0 If true then transpose the second input before dot.

forward.stype None, ’csr’, ’default’, ’row_sparse’,optional, default=’None’ The desired stor-
age type of the forward output given by user, if thecombination of input storage
types and this hint does not matchany implemented ones, the dot operator will
perform fallback operationand still produce an output of the desired storage type.

Details

For example, given “x“ with shape ‘(B_0, ..., B_i, N, M)‘ and “y“ with shape ‘(B_0, ..., B_i, M,
K)‘, the result array will have shape ‘(B_0, ..., B_i, N, K)‘, which is computed by::

batch_dot(x,y)[b_0, ..., b_i, :, :] = dot(x[b_0, ..., b_i, :, :], y[b_0, ..., b_i, :, :])

Defined in src/operator/tensor/dot.cc:L127

Value

out The result mx.ndarray

mx.nd.batch.take 79

mx.nd.batch.take Takes elements from a data batch.

Description

.. note:: ‘batch_take‘ is deprecated. Use ‘pick‘ instead.

Arguments

a NDArray-or-Symbol The input array

indices NDArray-or-Symbol The index array

Details

Given an input array of shape “(d0, d1)“ and indices of shape “(i0,)“, the result will be an output
array of shape “(i0,)“ with::

output[i] = input[i, indices[i]]

Examples::

x = [[1., 2.], [3., 4.], [5., 6.]]

// takes elements with specified indices batch_take(x, [0,1,0]) = [1. 4. 5.]

Defined in src/operator/tensor/indexing_op.cc:L750

Value

out The result mx.ndarray

mx.nd.BatchNorm Batch normalization.

Description

Normalizes a data batch by mean and variance, and applies a scale “gamma“ as well as offset “beta“.

Arguments

data NDArray-or-Symbol Input data to batch normalization

gamma NDArray-or-Symbol gamma array

beta NDArray-or-Symbol beta array

moving.mean NDArray-or-Symbol running mean of input

moving.var NDArray-or-Symbol running variance of input

eps double, optional, default=0.0010000000474974513 Epsilon to prevent div 0.
Must be no less than CUDNN_BN_MIN_EPSILON defined in cudnn.h when
using cudnn (usually 1e-5)

80 mx.nd.BatchNorm

momentum float, optional, default=0.899999976 Momentum for moving average

fix.gamma boolean, optional, default=1 Fix gamma while training
use.global.stats

boolean, optional, default=0 Whether use global moving statistics instead of
local batch-norm. This will force change batch-norm into a scale shift operator.

output.mean.var

boolean, optional, default=0 Output the mean and inverse std

axis int, optional, default=’1’ Specify which shape axis the channel is specified

cudnn.off boolean, optional, default=0 Do not select CUDNN operator, if available
min.calib.range

float or None, optional, default=None The minimum scalar value in the form of
float32 obtained through calibration. If present, it will be used to by quantized
batch norm op to calculate primitive scale.Note: this calib_range is to calib bn
output.

max.calib.range

float or None, optional, default=None The maximum scalar value in the form of
float32 obtained through calibration. If present, it will be used to by quantized
batch norm op to calculate primitive scale.Note: this calib_range is to calib bn
output.

Details

Assume the input has more than one dimension and we normalize along axis 1. We first compute
the mean and variance along this axis:

.. math::

data_mean[i] = mean(data[:,i,:,...]) \ data_var[i] = var(data[:,i,:,...])

Then compute the normalized output, which has the same shape as input, as following:

.. math::

out[:,i,:,...] = \fracdata[:,i,:,...] - data_mean[i]\sqrtdata_var[i]+\epsilon * gamma[i] + beta[i]

Both *mean* and *var* returns a scalar by treating the input as a vector.

Assume the input has size *k* on axis 1, then both “gamma“ and “beta“ have shape *(k,)*. If
“output_mean_var“ is set to be true, then outputs both “data_mean“ and the inverse of “data_var“,
which are needed for the backward pass. Note that gradient of these two outputs are blocked.

Besides the inputs and the outputs, this operator accepts two auxiliary states, “moving_mean“ and
“moving_var“, which are *k*-length vectors. They are global statistics for the whole dataset, which
are updated by::

moving_mean = moving_mean * momentum + data_mean * (1 - momentum) moving_var = mov-
ing_var * momentum + data_var * (1 - momentum)

If “use_global_stats“ is set to be true, then “moving_mean“ and “moving_var“ are used instead of
“data_mean“ and “data_var“ to compute the output. It is often used during inference.

The parameter “axis“ specifies which axis of the input shape denotes the ’channel’ (separately
normalized groups). The default is 1. Specifying -1 sets the channel axis to be the last item in the
input shape.

mx.nd.BilinearSampler 81

Both “gamma“ and “beta“ are learnable parameters. But if “fix_gamma“ is true, then set “gamma“
to 1 and its gradient to 0.

.. Note:: When “fix_gamma“ is set to True, no sparse support is provided. If “fix_gamma is“ set to
False, the sparse tensors will fallback.

Defined in src/operator/nn/batch_norm.cc:L602

Value

out The result mx.ndarray

mx.nd.BilinearSampler Applies bilinear sampling to input feature map.

Description

Bilinear Sampling is the key of [NIPS2015] \"Spatial Transformer Networks\". The usage of the
operator is very similar to remap function in OpenCV, except that the operator has the backward
pass.

Arguments

data NDArray-or-Symbol Input data to the BilinearsamplerOp.

grid NDArray-or-Symbol Input grid to the BilinearsamplerOp.grid has two channels:
x_src, y_src

cudnn.off boolean or None, optional, default=None whether to turn cudnn off

Details

Given :math:‘data‘ and :math:‘grid‘, then the output is computed by

.. math:: x_src = grid[batch, 0, y_dst, x_dst] \ y_src = grid[batch, 1, y_dst, x_dst] \ output[batch,
channel, y_dst, x_dst] = G(data[batch, channel, y_src, x_src)

:math:‘x_dst‘, :math:‘y_dst‘ enumerate all spatial locations in :math:‘output‘, and :math:‘G()‘ de-
notes the bilinear interpolation kernel. The out-boundary points will be padded with zeros.The
shape of the output will be (data.shape[0], data.shape[1], grid.shape[2], grid.shape[3]).

The operator assumes that :math:‘data‘ has ’NCHW’ layout and :math:‘grid‘ has been normalized
to [-1, 1].

BilinearSampler often cooperates with GridGenerator which generates sampling grids for Bilin-
earSampler. GridGenerator supports two kinds of transformation: “affine“ and “warp“. If users
want to design a CustomOp to manipulate :math:‘grid‘, please firstly refer to the code of GridGen-
erator.

Example 1::

Zoom out data two times data = array([[[[1, 4, 3, 6], [1, 8, 8, 9], [0, 4, 1, 5], [1, 0, 1, 3]]]])

affine_matrix = array([[2, 0, 0], [0, 2, 0]])

affine_matrix = reshape(affine_matrix, shape=(1, 6))

82 mx.nd.BlockGrad

grid = GridGenerator(data=affine_matrix, transform_type=’affine’, target_shape=(4, 4))

out = BilinearSampler(data, grid)

out [[[[0, 0, 0, 0], [0, 3.5, 6.5, 0], [0, 1.25, 2.5, 0], [0, 0, 0, 0]]]

Example 2::

shift data horizontally by -1 pixel

data = array([[[[1, 4, 3, 6], [1, 8, 8, 9], [0, 4, 1, 5], [1, 0, 1, 3]]]])

warp_maxtrix = array([[[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0,
0, 0, 0], [0, 0, 0, 0]]]])

grid = GridGenerator(data=warp_matrix, transform_type=’warp’) out = BilinearSampler(data, grid)

out [[[[4, 3, 6, 0], [8, 8, 9, 0], [4, 1, 5, 0], [0, 1, 3, 0]]]

Defined in src/operator/bilinear_sampler.cc:L256

Value

out The result mx.ndarray

mx.nd.BlockGrad Stops gradient computation.

Description

Stops the accumulated gradient of the inputs from flowing through this operator in the backward
direction. In other words, this operator prevents the contribution of its inputs to be taken into
account for computing gradients.

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

v1 = [1, 2] v2 = [0, 1] a = Variable(’a’) b = Variable(’b’) b_stop_grad = stop_gradient(3 * b) loss =
MakeLoss(b_stop_grad + a)

executor = loss.simple_bind(ctx=cpu(), a=(1,2), b=(1,2)) executor.forward(is_train=True, a=v1, b=v2)
executor.outputs [1. 5.]

executor.backward() executor.grad_arrays [0. 0.] [1. 1.]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L326

Value

out The result mx.ndarray

mx.nd.broadcast.add 83

mx.nd.broadcast.add Returns element-wise sum of the input arrays with broadcasting.

Description

‘broadcast_plus‘ is an alias to the function ‘broadcast_add‘.

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_add(x, y) = [[1., 1., 1.], [2., 2., 2.]]

broadcast_plus(x, y) = [[1., 1., 1.], [2., 2., 2.]]

Supported sparse operations:

broadcast_add(csr, dense(1D)) = dense broadcast_add(dense(1D), csr) = dense

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L58

Value

out The result mx.ndarray

mx.nd.broadcast.axes Broadcasts the input array over particular axes.

Description

Broadcasting is allowed on axes with size 1, such as from ‘(2,1,3,1)‘ to ‘(2,8,3,9)‘. Elements will
be duplicated on the broadcasted axes.

Arguments

data NDArray-or-Symbol The input

axis Shape(tuple), optional, default=[] The axes to perform the broadcasting.

size Shape(tuple), optional, default=[] Target sizes of the broadcasting axes.

84 mx.nd.broadcast.axis

Details

‘broadcast_axes‘ is an alias to the function ‘broadcast_axis‘.

Example::

// given x of shape (1,2,1) x = [[[1.], [2.]]]

// broadcast x on on axis 2 broadcast_axis(x, axis=2, size=3) = [[[1., 1., 1.], [2., 2., 2.]]] // broadcast
x on on axes 0 and 2 broadcast_axis(x, axis=(0,2), size=(2,3)) = [[[1., 1., 1.], [2., 2., 2.]], [[1., 1.,
1.], [2., 2., 2.]]]

Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L93

Value

out The result mx.ndarray

mx.nd.broadcast.axis Broadcasts the input array over particular axes.

Description

Broadcasting is allowed on axes with size 1, such as from ‘(2,1,3,1)‘ to ‘(2,8,3,9)‘. Elements will
be duplicated on the broadcasted axes.

Arguments

data NDArray-or-Symbol The input

axis Shape(tuple), optional, default=[] The axes to perform the broadcasting.

size Shape(tuple), optional, default=[] Target sizes of the broadcasting axes.

Details

‘broadcast_axes‘ is an alias to the function ‘broadcast_axis‘.

Example::

// given x of shape (1,2,1) x = [[[1.], [2.]]]

// broadcast x on on axis 2 broadcast_axis(x, axis=2, size=3) = [[[1., 1., 1.], [2., 2., 2.]]] // broadcast
x on on axes 0 and 2 broadcast_axis(x, axis=(0,2), size=(2,3)) = [[[1., 1., 1.], [2., 2., 2.]], [[1., 1.,
1.], [2., 2., 2.]]]

Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L93

Value

out The result mx.ndarray

mx.nd.broadcast.div 85

mx.nd.broadcast.div Returns element-wise division of the input arrays with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[6., 6., 6.], [6., 6., 6.]]

y = [[2.], [3.]]

broadcast_div(x, y) = [[3., 3., 3.], [2., 2., 2.]]

Supported sparse operations:

broadcast_div(csr, dense(1D)) = csr

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L187

Value

out The result mx.ndarray

mx.nd.broadcast.equal Returns the result of element-wise **equal to** (==) comparison op-
eration with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_equal(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L46

86 mx.nd.broadcast.greater.equal

Value

out The result mx.ndarray

mx.nd.broadcast.greater

Returns the result of element-wise **greater than** (>) comparison
operation with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_greater(x, y) = [[1., 1., 1.], [0., 0., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L82

Value

out The result mx.ndarray

mx.nd.broadcast.greater.equal

Returns the result of element-wise **greater than or equal to** (>=)
comparison operation with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

mx.nd.broadcast.hypot 87

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_greater_equal(x, y) = [[1., 1., 1.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L100

Value

out The result mx.ndarray

mx.nd.broadcast.hypot Returns the hypotenuse of a right angled triangle, given its "legs" with
broadcasting.

Description

It is equivalent to doing :math:‘sqrt(x_1^2 + x_2^2)‘.

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

Example::

x = [[3., 3., 3.]]

y = [[4.], [4.]]

broadcast_hypot(x, y) = [[5., 5., 5.], [5., 5., 5.]]

z = [[0.], [4.]]

broadcast_hypot(x, z) = [[3., 3., 3.], [5., 5., 5.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L158

Value

out The result mx.ndarray

88 mx.nd.broadcast.lesser.equal

mx.nd.broadcast.lesser

Returns the result of element-wise **lesser than** (<) comparison
operation with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function
rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_lesser(x, y) = [[0., 0., 0.], [0., 0., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L118

Value

out The result mx.ndarray

mx.nd.broadcast.lesser.equal

Returns the result of element-wise **lesser than or equal to** (<=)
comparison operation with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function
rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_lesser_equal(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L136

mx.nd.broadcast.like 89

Value

out The result mx.ndarray

mx.nd.broadcast.like Broadcasts lhs to have the same shape as rhs.

Description

Broadcasting is a mechanism that allows NDArrays to perform arithmetic operations with arrays
of different shapes efficiently without creating multiple copies of arrays. Also see, ‘Broadcasting
<https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>‘_ for more explanation.

Arguments

lhs NDArray-or-Symbol First input.

rhs NDArray-or-Symbol Second input.

lhs.axes Shape or None, optional, default=None Axes to perform broadcast on in the first
input array

rhs.axes Shape or None, optional, default=None Axes to copy from the second input
array

Details

Broadcasting is allowed on axes with size 1, such as from ‘(2,1,3,1)‘ to ‘(2,8,3,9)‘. Elements will
be duplicated on the broadcasted axes.

For example::

broadcast_like([[1,2,3]], [[5,6,7],[7,8,9]]) = [[1., 2., 3.], [1., 2., 3.]])

broadcast_like([9], [1,2,3,4,5], lhs_axes=(0,), rhs_axes=(-1,)) = [9,9,9,9,9]

Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L180

Value

out The result mx.ndarray

90 mx.nd.broadcast.logical.or

mx.nd.broadcast.logical.and

Returns the result of element-wise **logical and** with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_logical_and(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L154

Value

out The result mx.ndarray

mx.nd.broadcast.logical.or

Returns the result of element-wise **logical or** with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 0.], [1., 1., 0.]]

y = [[1.], [0.]]

broadcast_logical_or(x, y) = [[1., 1., 1.], [1., 1., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L172

mx.nd.broadcast.logical.xor 91

Value

out The result mx.ndarray

mx.nd.broadcast.logical.xor

Returns the result of element-wise **logical xor** with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 0.], [1., 1., 0.]]

y = [[1.], [0.]]

broadcast_logical_xor(x, y) = [[0., 0., 1.], [1., 1., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L190

Value

out The result mx.ndarray

mx.nd.broadcast.maximum

Returns element-wise maximum of the input arrays with broadcasting.

Description

This function compares two input arrays and returns a new array having the element-wise maxima.

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

92 mx.nd.broadcast.minimum

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_maximum(x, y) = [[1., 1., 1.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L81

Value

out The result mx.ndarray

mx.nd.broadcast.minimum

Returns element-wise minimum of the input arrays with broadcasting.

Description

This function compares two input arrays and returns a new array having the element-wise minima.

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_maximum(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L117

Value

out The result mx.ndarray

mx.nd.broadcast.minus 93

mx.nd.broadcast.minus Returns element-wise difference of the input arrays with broadcasting.

Description

‘broadcast_minus‘ is an alias to the function ‘broadcast_sub‘.

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_sub(x, y) = [[1., 1., 1.], [0., 0., 0.]]

broadcast_minus(x, y) = [[1., 1., 1.], [0., 0., 0.]]

Supported sparse operations:

broadcast_sub/minus(csr, dense(1D)) = dense broadcast_sub/minus(dense(1D), csr) = dense

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L106

Value

out The result mx.ndarray

mx.nd.broadcast.mod Returns element-wise modulo of the input arrays with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

94 mx.nd.broadcast.mul

Details

x = [[8., 8., 8.], [8., 8., 8.]]

y = [[2.], [3.]]

broadcast_mod(x, y) = [[0., 0., 0.], [2., 2., 2.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L222

Value

out The result mx.ndarray

mx.nd.broadcast.mul Returns element-wise product of the input arrays with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_mul(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Supported sparse operations:

broadcast_mul(csr, dense(1D)) = csr

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L146

Value

out The result mx.ndarray

mx.nd.broadcast.not.equal 95

mx.nd.broadcast.not.equal

Returns the result of element-wise **not equal to** (!=) comparison
operation with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_not_equal(x, y) = [[1., 1., 1.], [0., 0., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L64

Value

out The result mx.ndarray

mx.nd.broadcast.plus Returns element-wise sum of the input arrays with broadcasting.

Description

‘broadcast_plus‘ is an alias to the function ‘broadcast_add‘.

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

96 mx.nd.broadcast.power

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_add(x, y) = [[1., 1., 1.], [2., 2., 2.]]

broadcast_plus(x, y) = [[1., 1., 1.], [2., 2., 2.]]

Supported sparse operations:

broadcast_add(csr, dense(1D)) = dense broadcast_add(dense(1D), csr) = dense

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L58

Value

out The result mx.ndarray

mx.nd.broadcast.power Returns result of first array elements raised to powers from second
array, element-wise with broadcasting.

Description

Example::

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_power(x, y) = [[2., 2., 2.], [4., 4., 4.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L45

Value

out The result mx.ndarray

mx.nd.broadcast.sub 97

mx.nd.broadcast.sub Returns element-wise difference of the input arrays with broadcasting.

Description

‘broadcast_minus‘ is an alias to the function ‘broadcast_sub‘.

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_sub(x, y) = [[1., 1., 1.], [0., 0., 0.]]

broadcast_minus(x, y) = [[1., 1., 1.], [0., 0., 0.]]

Supported sparse operations:

broadcast_sub/minus(csr, dense(1D)) = dense broadcast_sub/minus(dense(1D), csr) = dense

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L106

Value

out The result mx.ndarray

mx.nd.broadcast.to Broadcasts the input array to a new shape.

Description

Broadcasting is a mechanism that allows NDArrays to perform arithmetic operations with arrays
of different shapes efficiently without creating multiple copies of arrays. Also see, ‘Broadcasting
<https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>‘_ for more explanation.

Arguments

data NDArray-or-Symbol The input

shape Shape(tuple), optional, default=[] The shape of the desired array. We can set the
dim to zero if it’s same as the original. E.g ‘A = broadcast_to(B, shape=(10, 0,
0))‘ has the same meaning as ‘A = broadcast_axis(B, axis=0, size=10)‘.

98 mx.nd.Cast

Details

Broadcasting is allowed on axes with size 1, such as from ‘(2,1,3,1)‘ to ‘(2,8,3,9)‘. Elements will
be duplicated on the broadcasted axes.

For example::

broadcast_to([[1,2,3]], shape=(2,3)) = [[1., 2., 3.], [1., 2., 3.]])

The dimension which you do not want to change can also be kept as ‘0‘ which means copy the
original value. So with ‘shape=(2,0)‘, we will obtain the same result as in the above example.

Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L117

Value

out The result mx.ndarray

mx.nd.Cast Casts all elements of the input to a new type.

Description

.. note:: “Cast“ is deprecated. Use “cast“ instead.

Arguments

data NDArray-or-Symbol The input.

dtype ’bfloat16’, ’bool’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,
required Output data type.

Details

Example::

cast([0.9, 1.3], dtype=’int32’) = [0, 1] cast([1e20, 11.1], dtype=’float16’) = [inf, 11.09375] cast([300,
11.1, 10.9, -1, -3], dtype=’uint8’) = [44, 11, 10, 255, 253]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L665

Value

out The result mx.ndarray

mx.nd.cast 99

mx.nd.cast Casts all elements of the input to a new type.

Description

.. note:: “Cast“ is deprecated. Use “cast“ instead.

Arguments

data NDArray-or-Symbol The input.

dtype ’bfloat16’, ’bool’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,
required Output data type.

Details

Example::

cast([0.9, 1.3], dtype=’int32’) = [0, 1] cast([1e20, 11.1], dtype=’float16’) = [inf, 11.09375] cast([300,
11.1, 10.9, -1, -3], dtype=’uint8’) = [44, 11, 10, 255, 253]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L665

Value

out The result mx.ndarray

mx.nd.cast.storage Casts tensor storage type to the new type.

Description

When an NDArray with default storage type is cast to csr or row_sparse storage, the result is com-
pact, which means:

Arguments

data NDArray-or-Symbol The input.

stype ’csr’, ’default’, ’row_sparse’, required Output storage type.

100 mx.nd.cbrt

Details

- for csr, zero values will not be retained - for row_sparse, row slices of all zeros will not be retained

The storage type of “cast_storage“ output depends on stype parameter:

- cast_storage(csr, ’default’) = default - cast_storage(row_sparse, ’default’) = default - cast_storage(default,
’csr’) = csr - cast_storage(default, ’row_sparse’) = row_sparse - cast_storage(csr, ’csr’) = csr -
cast_storage(row_sparse, ’row_sparse’) = row_sparse

Example::

dense = [[0., 1., 0.], [2., 0., 3.], [0., 0., 0.], [0., 0., 0.]]

cast to row_sparse storage type rsp = cast_storage(dense, ’row_sparse’) rsp.indices = [0, 1]
rsp.values = [[0., 1., 0.], [2., 0., 3.]]

cast to csr storage type csr = cast_storage(dense, ’csr’) csr.indices = [1, 0, 2] csr.values = [1., 2.,
3.] csr.indptr = [0, 1, 3, 3, 3]

Defined in src/operator/tensor/cast_storage.cc:L71

Value

out The result mx.ndarray

mx.nd.cbrt Returns element-wise cube-root value of the input.

Description

.. math:: cbrt(x) = \sqrt[3]x

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

cbrt([1, 8, -125]) = [1, 2, -5]

The storage type of “cbrt“ output depends upon the input storage type:

- cbrt(default) = default - cbrt(row_sparse) = row_sparse - cbrt(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L270

Value

out The result mx.ndarray

mx.nd.ceil 101

mx.nd.ceil Returns element-wise ceiling of the input.

Description

The ceil of the scalar x is the smallest integer i, such that i >= x.

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

ceil([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-2., -1., 2., 2., 3.]

The storage type of “ceil“ output depends upon the input storage type:

- ceil(default) = default - ceil(row_sparse) = row_sparse - ceil(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L818

Value

out The result mx.ndarray

mx.nd.choose.element.0index

Picks elements from an input array according to the input indices
along the given axis.

Description

Given an input array of shape “(d0, d1)“ and indices of shape “(i0,)“, the result will be an output
array of shape “(i0,)“ with::

Arguments

data NDArray-or-Symbol The input array
index NDArray-or-Symbol The index array
axis int or None, optional, default=’-1’ int or None. The axis to picking the elements.

Negative values means indexing from right to left. If is ‘None‘, the elements in
the index w.r.t the flattened input will be picked.

keepdims boolean, optional, default=0 If true, the axis where we pick the elements is left
in the result as dimension with size one.

mode ’clip’, ’wrap’,optional, default=’clip’ Specify how out-of-bound indices behave.
Default is "clip". "clip" means clip to the range. So, if all indices mentioned are
too large, they are replaced by the index that addresses the last element along an
axis. "wrap" means to wrap around.

102 mx.nd.clip

Details

output[i] = input[i, indices[i]]

By default, if any index mentioned is too large, it is replaced by the index that addresses the last
element along an axis (the ‘clip‘ mode).

This function supports n-dimensional input and (n-1)-dimensional indices arrays.

Examples::

x = [[1., 2.], [3., 4.], [5., 6.]]

// picks elements with specified indices along axis 0 pick(x, y=[0,1], 0) = [1., 4.]

// picks elements with specified indices along axis 1 pick(x, y=[0,1,0], 1) = [1., 4., 5.]

// picks elements with specified indices along axis 1 using ’wrap’ mode // to place indicies that
would normally be out of bounds pick(x, y=[2,-1,-2], 1, mode=’wrap’) = [1., 4., 5.]

y = [[1.], [0.], [2.]]

// picks elements with specified indices along axis 1 and dims are maintained pick(x, y, 1, keep-
dims=True) = [[2.], [3.], [6.]]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L151

Value

out The result mx.ndarray

mx.nd.clip Clips (limits) the values in an array. Given an interval, values outside
the interval are clipped to the interval edges. Clipping “x“ between
‘a_min‘ and ‘a_max‘ would be:: .. math:: clip(x, a_min, a_max) =
\max(\min(x, a_max), a_min)) Example:: x = [0, 1, 2, 3, 4, 5, 6, 7, 8,
9] clip(x,1,8) = [1., 1., 2., 3., 4., 5., 6., 7., 8., 8.] The storage type
of “clip“ output depends on storage types of inputs and the a_min,
a_max \ parameter values: - clip(default) = default - clip(row_sparse,
a_min <= 0, a_max >= 0) = row_sparse - clip(csr, a_min <= 0,
a_max >= 0) = csr - clip(row_sparse, a_min < 0, a_max < 0) = de-
fault - clip(row_sparse, a_min > 0, a_max > 0) = default - clip(csr,
a_min < 0, a_max < 0) = csr - clip(csr, a_min > 0, a_max > 0) = csr

Description

Defined in src/operator/tensor/matrix_op.cc:L677

Arguments

data NDArray-or-Symbol Input array.

a.min float, required Minimum value

a.max float, required Maximum value

mx.nd.col2im 103

Value

out The result mx.ndarray

mx.nd.col2im Combining the output column matrix of im2col back to image array.

Description

Like :class:‘~mxnet.ndarray.im2col‘, this operator is also used in the vanilla convolution implemen-
tation. Despite the name, col2im is not the reverse operation of im2col. Since there may be overlaps
between neighbouring sliding blocks, the column elements cannot be directly put back into image.
Instead, they are accumulated (i.e., summed) in the input image just like the gradient computation,
so col2im is the gradient of im2col and vice versa.

Arguments

data NDArray-or-Symbol Input array to combine sliding blocks.

output.size Shape(tuple), required The spatial dimension of image array: (w,), (h, w) or (d,
h, w).

kernel Shape(tuple), required Sliding kernel size: (w,), (h, w) or (d, h, w).

stride Shape(tuple), optional, default=[] The stride between adjacent sliding blocks in
spatial dimension: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

dilate Shape(tuple), optional, default=[] The spacing between adjacent kernel points:
(w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

pad Shape(tuple), optional, default=[] The zero-value padding size on both sides of
spatial dimension: (w,), (h, w) or (d, h, w). Defaults to no padding.

Details

Using the notation in im2col, given an input column array of shape :math:‘(N, C \times \prod(\textkernel),
W)‘, this operator accumulates the column elements into output array of shape :math:‘(N, C, \textout-
put_size[0], \textoutput_size[1], . . .)‘. Only 1-D, 2-D and 3-D of spatial dimension is supported in
this operator.

Defined in src/operator/nn/im2col.cc:L182

Value

out The result mx.ndarray

104 mx.nd.concat

mx.nd.Concat Joins input arrays along a given axis.

Description

.. note:: ‘Concat‘ is deprecated. Use ‘concat‘ instead.

Arguments

data NDArray-or-Symbol[] List of arrays to concatenate

num.args int, required Number of inputs to be concated.

dim int, optional, default=’1’ the dimension to be concated.

Details

The dimensions of the input arrays should be the same except the axis along which they will be
concatenated. The dimension of the output array along the concatenated axis will be equal to the
sum of the corresponding dimensions of the input arrays.

The storage type of “concat“ output depends on storage types of inputs

- concat(csr, csr, ..., csr, dim=0) = csr - otherwise, “concat“ generates output with default storage

Example::

x = [[1,1],[2,2]] y = [[3,3],[4,4],[5,5]] z = [[6,6], [7,7],[8,8]]

concat(x,y,z,dim=0) = [[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.], [6., 6.], [7., 7.], [8., 8.]]

Note that you cannot concat x,y,z along dimension 1 since dimension 0 is not the same for all the
input arrays.

concat(y,z,dim=1) = [[3., 3., 6., 6.], [4., 4., 7., 7.], [5., 5., 8., 8.]]

Defined in src/operator/nn/concat.cc:L385

Value

out The result mx.ndarray

mx.nd.concat Joins input arrays along a given axis.

Description

.. note:: ‘Concat‘ is deprecated. Use ‘concat‘ instead.

mx.nd.Convolution 105

Arguments

data NDArray-or-Symbol[] List of arrays to concatenate

num.args int, required Number of inputs to be concated.

dim int, optional, default=’1’ the dimension to be concated.

Details

The dimensions of the input arrays should be the same except the axis along which they will be
concatenated. The dimension of the output array along the concatenated axis will be equal to the
sum of the corresponding dimensions of the input arrays.

The storage type of “concat“ output depends on storage types of inputs

- concat(csr, csr, ..., csr, dim=0) = csr - otherwise, “concat“ generates output with default storage

Example::

x = [[1,1],[2,2]] y = [[3,3],[4,4],[5,5]] z = [[6,6], [7,7],[8,8]]

concat(x,y,z,dim=0) = [[1., 1.], [2., 2.], [3., 3.], [4., 4.], [5., 5.], [6., 6.], [7., 7.], [8., 8.]]

Note that you cannot concat x,y,z along dimension 1 since dimension 0 is not the same for all the
input arrays.

concat(y,z,dim=1) = [[3., 3., 6., 6.], [4., 4., 7., 7.], [5., 5., 8., 8.]]

Defined in src/operator/nn/concat.cc:L385

Value

out The result mx.ndarray

mx.nd.Convolution Compute *N*-D convolution on *(N+2)*-D input.

Description

In the 2-D convolution, given input data with shape *(batch_size, channel, height, width)*, the
output is computed by

Arguments

data NDArray-or-Symbol Input data to the ConvolutionOp.

weight NDArray-or-Symbol Weight matrix.

bias NDArray-or-Symbol Bias parameter.

kernel Shape(tuple), required Convolution kernel size: (w,), (h, w) or (d, h, w)

stride Shape(tuple), optional, default=[] Convolution stride: (w,), (h, w) or (d, h, w).
Defaults to 1 for each dimension.

dilate Shape(tuple), optional, default=[] Convolution dilate: (w,), (h, w) or (d, h, w).
Defaults to 1 for each dimension.

106 mx.nd.Convolution

pad Shape(tuple), optional, default=[] Zero pad for convolution: (w,), (h, w) or (d,
h, w). Defaults to no padding.

num.filter int (non-negative), required Convolution filter(channel) number

num.group int (non-negative), optional, default=1 Number of group partitions.

workspace long (non-negative), optional, default=1024 Maximum temporary workspace al-
lowed (MB) in convolution.This parameter has two usages. When CUDNN is
not used, it determines the effective batch size of the convolution kernel. When
CUDNN is used, it controls the maximum temporary storage used for tuning the
best CUDNN kernel when ‘limited_workspace‘ strategy is used.

no.bias boolean, optional, default=0 Whether to disable bias parameter.

cudnn.tune None, ’fastest’, ’limited_workspace’, ’off’,optional, default=’None’ Whether to
pick convolution algo by running performance test.

cudnn.off boolean, optional, default=0 Turn off cudnn for this layer.

layout None, ’NCDHW’, ’NCHW’, ’NCW’, ’NDHWC’, ’NHWC’,optional, default=’None’
Set layout for input, output and weight. Empty for default layout: NCW for 1d,
NCHW for 2d and NCDHW for 3d.NHWC and NDHWC are only supported on
GPU.

Details

.. math::

out[n,i,:,:] = bias[i] + \sum_j=0^channel data[n,j,:,:] \star weight[i,j,:,:]

where :math:‘\star‘ is the 2-D cross-correlation operator.

For general 2-D convolution, the shapes are

- **data**: *(batch_size, channel, height, width)* - **weight**: *(num_filter, channel, kernel[0],
kernel[1])* - **bias**: *(num_filter,)* - **out**: *(batch_size, num_filter, out_height, out_width)*.

Define::

f(x,k,p,s,d) = floor((x+2*p-d*(k-1)-1)/s)+1

then we have::

out_height=f(height, kernel[0], pad[0], stride[0], dilate[0]) out_width=f(width, kernel[1], pad[1],
stride[1], dilate[1])

If “no_bias“ is set to be true, then the “bias“ term is ignored.

The default data “layout“ is *NCHW*, namely *(batch_size, channel, height, width)*. We can
choose other layouts such as *NWC*.

If “num_group“ is larger than 1, denoted by *g*, then split the input “data“ evenly into *g* parts
along the channel axis, and also evenly split “weight“ along the first dimension. Next compute the
convolution on the *i*-th part of the data with the *i*-th weight part. The output is obtained by
concatenating all the *g* results.

1-D convolution does not have *height* dimension but only *width* in space.

- **data**: *(batch_size, channel, width)* - **weight**: *(num_filter, channel, kernel[0])* -
bias: *(num_filter,)* - **out**: *(batch_size, num_filter, out_width)*.

mx.nd.Convolution.v1 107

3-D convolution adds an additional *depth* dimension besides *height* and *width*. The shapes
are

- **data**: *(batch_size, channel, depth, height, width)* - **weight**: *(num_filter, channel,
kernel[0], kernel[1], kernel[2])* - **bias**: *(num_filter,)* - **out**: *(batch_size, num_filter,
out_depth, out_height, out_width)*.

Both “weight“ and “bias“ are learnable parameters.

There are other options to tune the performance.

- **cudnn_tune**: enable this option leads to higher startup time but may give faster speed. Options
are

- **off**: no tuning - **limited_workspace**:run test and pick the fastest algorithm that doesn’t
exceed workspace limit. - **fastest**: pick the fastest algorithm and ignore workspace limit. -
None (default): the behavior is determined by environment variable “MXNET_CUDNN_AUTOTUNE_DEFAULT“.
0 for off, 1 for limited workspace (default), 2 for fastest.

- **workspace**: A large number leads to more (GPU) memory usage but may improve the per-
formance.

Defined in src/operator/nn/convolution.cc:L476

Value

out The result mx.ndarray

mx.nd.Convolution.v1 This operator is DEPRECATED. Apply convolution to input then add
a bias.

Description

This operator is DEPRECATED. Apply convolution to input then add a bias.

Arguments

data NDArray-or-Symbol Input data to the ConvolutionV1Op.

weight NDArray-or-Symbol Weight matrix.

bias NDArray-or-Symbol Bias parameter.

kernel Shape(tuple), required convolution kernel size: (h, w) or (d, h, w)

stride Shape(tuple), optional, default=[] convolution stride: (h, w) or (d, h, w)

dilate Shape(tuple), optional, default=[] convolution dilate: (h, w) or (d, h, w)

pad Shape(tuple), optional, default=[] pad for convolution: (h, w) or (d, h, w)

num.filter int (non-negative), required convolution filter(channel) number

num.group int (non-negative), optional, default=1 Number of group partitions. Equivalent
to slicing input into num_group partitions, apply convolution on each, then con-
catenate the results

108 mx.nd.copyto

workspace long (non-negative), optional, default=1024 Maximum temporary workspace al-
lowed for convolution (MB).This parameter determines the effective batch size
of the convolution kernel, which may be smaller than the given batch size. Also,
the workspace will be automatically enlarged to make sure that we can run the
kernel with batch_size=1

no.bias boolean, optional, default=0 Whether to disable bias parameter.

cudnn.tune None, ’fastest’, ’limited_workspace’, ’off’,optional, default=’None’ Whether to
pick convolution algo by running performance test. Leads to higher startup time
but may give faster speed. Options are: ’off’: no tuning ’limited_workspace’:
run test and pick the fastest algorithm that doesn’t exceed workspace limit.
’fastest’: pick the fastest algorithm and ignore workspace limit. If set to None
(default), behavior is determined by environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT:
0 for off, 1 for limited workspace (default), 2 for fastest.

cudnn.off boolean, optional, default=0 Turn off cudnn for this layer.

layout None, ’NCDHW’, ’NCHW’, ’NDHWC’, ’NHWC’,optional, default=’None’ Set
layout for input, output and weight. Empty for default layout: NCHW for 2d
and NCDHW for 3d.

Value

out The result mx.ndarray

mx.nd.copyto Generate an mx.ndarray object on ctx, with data copied from src

Description

Generate an mx.ndarray object on ctx, with data copied from src

Usage

mx.nd.copyto(src, ctx)

Arguments

src The source mx.ndarray object.

ctx The target context.

mx.nd.Correlation 109

mx.nd.Correlation Applies correlation to inputs.

Description

The correlation layer performs multiplicative patch comparisons between two feature maps.

Arguments

data1 NDArray-or-Symbol Input data1 to the correlation.

data2 NDArray-or-Symbol Input data2 to the correlation.

kernel.size int (non-negative), optional, default=1 kernel size for Correlation must be an
odd number

max.displacement

int (non-negative), optional, default=1 Max displacement of Correlation

stride1 int (non-negative), optional, default=1 stride1 quantize data1 globally

stride2 int (non-negative), optional, default=1 stride2 quantize data2 within the neigh-
borhood centered around data1

pad.size int (non-negative), optional, default=0 pad for Correlation

is.multiply boolean, optional, default=1 operation type is either multiplication or subduction

Details

Given two multi-channel feature maps :math:‘f_1, f_2‘, with :math:‘w‘, :math:‘h‘, and :math:‘c‘
being their width, height, and number of channels, the correlation layer lets the network compare
each patch from :math:‘f_1‘ with each patch from :math:‘f_2‘.

For now we consider only a single comparison of two patches. The ’correlation’ of two patches
centered at :math:‘x_1‘ in the first map and :math:‘x_2‘ in the second map is then defined as:

.. math::

c(x_1, x_2) = \sum_o \in [-k,k] \times [-k,k] <f_1(x_1 + o), f_2(x_2 + o)>

for a square patch of size :math:‘K:=2k+1‘.

Note that the equation above is identical to one step of a convolution in neural networks, but instead
of convolving data with a filter, it convolves data with other data. For this reason, it has no training
weights.

Computing :math:‘c(x_1, x_2)‘ involves :math:‘c * K^2‘ multiplications. Comparing all patch
combinations involves :math:‘w^2*h^2‘ such computations.

Given a maximum displacement :math:‘d‘, for each location :math:‘x_1‘ it computes correlations
:math:‘c(x_1, x_2)‘ only in a neighborhood of size :math:‘D:=2d+1‘, by limiting the range of
:math:‘x_2‘. We use strides :math:‘s_1, s_2‘, to quantize :math:‘x_1‘ globally and to quantize
:math:‘x_2‘ within the neighborhood centered around :math:‘x_1‘.

The final output is defined by the following expression:

.. math:: out[n, q, i, j] = c(x_i, j, x_q)

110 mx.nd.cosh

where :math:‘i‘ and :math:‘j‘ enumerate spatial locations in :math:‘f_1‘, and :math:‘q‘ denotes the
:math:‘q^th‘ neighborhood of :math:‘x_i,j‘.

Defined in src/operator/correlation.cc:L198

Value

out The result mx.ndarray

mx.nd.cos Computes the element-wise cosine of the input array.

Description

The input should be in radians (:math:‘2\pi‘ rad equals 360 degrees).

Arguments

data NDArray-or-Symbol The input array.

Details

.. math:: cos([0, \pi/4, \pi/2]) = [1, 0.707, 0]

The storage type of “cos“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L90

Value

out The result mx.ndarray

mx.nd.cosh Returns the hyperbolic cosine of the input array, computed element-
wise.

Description

.. math:: cosh(x) = 0.5\times(exp(x) + exp(-x))

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “cosh“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L409

mx.nd.Crop 111

Value

out The result mx.ndarray

mx.nd.Crop .. note:: ‘Crop‘ is deprecated. Use ‘slice‘ instead.

Description

Crop the 2nd and 3rd dim of input data, with the corresponding size of h_w or with width and height
of the second input symbol, i.e., with one input, we need h_w to specify the crop height and width,
otherwise the second input symbol’s size will be used

Arguments

data Symbol or Symbol[] Tensor or List of Tensors, the second input will be used as
crop_like shape reference

num.args int, required Number of inputs for crop, if equals one, then we will use the
h_wfor crop height and width, else if equals two, then we will use the heightand
width of the second input symbol, we name crop_like here

offset Shape(tuple), optional, default=[0,0] crop offset coordinate: (y, x)

h.w Shape(tuple), optional, default=[0,0] crop height and width: (h, w)

center.crop boolean, optional, default=0 If set to true, then it will use be the center_crop,or
it will crop using the shape of crop_like

Details

Defined in src/operator/crop.cc:L50

Value

out The result mx.ndarray

112 mx.nd.crop

mx.nd.crop Slices a region of the array. .. note:: “crop“ is deprecated. Use
“slice“ instead. This function returns a sliced array between the in-
dices given by ‘begin‘ and ‘end‘ with the corresponding ‘step‘. For
an input array of “shape=(d_0, d_1, ..., d_n-1)“, slice operation
with “begin=(b_0, b_1...b_m-1)“, “end=(e_0, e_1, ..., e_m-1)“, and
“step=(s_0, s_1, ..., s_m-1)“, where m <= n, results in an array with
the shape “(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-
1)“. The resulting array’s *k*-th dimension contains elements from
the *k*-th dimension of the input array starting from index “b_k“ (in-
clusive) with step “s_k“ until reaching “e_k“ (exclusive). If the *k*-th
elements are ‘None‘ in the sequence of ‘begin‘, ‘end‘, and ‘step‘, the
following rule will be used to set default values. If ‘s_k‘ is ‘None‘, set
‘s_k=1‘. If ‘s_k > 0‘, set ‘b_k=0‘, ‘e_k=d_k‘; else, set ‘b_k=d_k-1‘,
‘e_k=-1‘. The storage type of “slice“ output depends on storage types
of inputs - slice(csr) = csr - otherwise, “slice“ generates output with
default storage .. note:: When input data storage type is csr, it only
supports step=(), or step=(None,), or step=(1,) to generate a csr out-
put. For other step parameter values, it falls back to slicing a dense
tensor. Example:: x = [[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11.,
12.]] slice(x, begin=(0,1), end=(2,4)) = [[2., 3., 4.], [6., 7., 8.]]
slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.],
[5., 7.], [1., 3.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L482

Arguments

data NDArray-or-Symbol Source input

begin Shape(tuple), required starting indices for the slice operation, supports negative
indices.

end Shape(tuple), required ending indices for the slice operation, supports negative
indices.

step Shape(tuple), optional, default=[] step for the slice operation, supports negative
values.

Value

out The result mx.ndarray

mx.nd.ctc.loss 113

mx.nd.ctc.loss Connectionist Temporal Classification Loss.

Description

.. note:: The existing alias “contrib_CTCLoss“ is deprecated.

Arguments

data NDArray-or-Symbol Input ndarray

label NDArray-or-Symbol Ground-truth labels for the loss.

data.lengths NDArray-or-Symbol Lengths of data for each of the samples. Only required
when use_data_lengths is true.

label.lengths NDArray-or-Symbol Lengths of labels for each of the samples. Only required
when use_label_lengths is true.

use.data.lengths

boolean, optional, default=0 Whether the data lenghts are decided by ‘data_lengths‘.
If false, the lengths are equal to the max sequence length.

use.label.lengths

boolean, optional, default=0 Whether the label lenghts are decided by ‘label_lengths‘,
or derived from ‘padding_mask‘. If false, the lengths are derived from the first
occurrence of the value of ‘padding_mask‘. The value of ‘padding_mask‘ is “0“
when first CTC label is reserved for blank, and “-1“ when last label is reserved
for blank. See ‘blank_label‘.

blank.label ’first’, ’last’,optional, default=’first’ Set the label that is reserved for blank la-
bel.If "first", 0-th label is reserved, and label values for tokens in the vocabulary
are between “1“ and “alphabet_size-1“, and the padding mask is “-1“. If "last",
last label value “alphabet_size-1“ is reserved for blank label instead, and label
values for tokens in the vocabulary are between “0“ and “alphabet_size-2“, and
the padding mask is “0“.

Details

The shapes of the inputs and outputs:

- **data**: ‘(sequence_length, batch_size, alphabet_size)‘ - **label**: ‘(batch_size, label_sequence_length)‘
- **out**: ‘(batch_size)‘

The ‘data‘ tensor consists of sequences of activation vectors (without applying softmax), with i-
th channel in the last dimension corresponding to i-th label for i between 0 and alphabet_size-1
(i.e always 0-indexed). Alphabet size should include one additional value reserved for blank label.
When ‘blank_label‘ is “"first"“, the “0“-th channel is be reserved for activation of blank label, or
otherwise if it is "last", “(alphabet_size-1)“-th channel should be reserved for blank label.

“label“ is an index matrix of integers. When ‘blank_label‘ is “"first"“, the value 0 is then reserved
for blank label, and should not be passed in this matrix. Otherwise, when ‘blank_label‘ is “"last"“,
the value ‘(alphabet_size-1)‘ is reserved for blank label.

114 mx.nd.CTCLoss

If a sequence of labels is shorter than *label_sequence_length*, use the special padding value at the
end of the sequence to conform it to the correct length. The padding value is ‘0‘ when ‘blank_label‘
is “"first"“, and ‘-1‘ otherwise.

For example, suppose the vocabulary is ‘[a, b, c]‘, and in one batch we have three sequences ’ba’,
’cbb’, and ’abac’. When ‘blank_label‘ is “"first"“, we can index the labels as ‘’a’: 1, ’b’: 2, ’c’: 3‘,
and we reserve the 0-th channel for blank label in data tensor. The resulting ‘label‘ tensor should
be padded to be::

[[2, 1, 0, 0], [3, 2, 2, 0], [1, 2, 1, 3]]

When ‘blank_label‘ is “"last"“, we can index the labels as ‘’a’: 0, ’b’: 1, ’c’: 2‘, and we reserve the
channel index 3 for blank label in data tensor. The resulting ‘label‘ tensor should be padded to be::

[[1, 0, -1, -1], [2, 1, 1, -1], [0, 1, 0, 2]]

“out“ is a list of CTC loss values, one per example in the batch.

See *Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recur-
rent Neural Networks*, A. Graves *et al*. for more information on the definition and the algorithm.

Defined in src/operator/nn/ctc_loss.cc:L100

Value

out The result mx.ndarray

mx.nd.CTCLoss Connectionist Temporal Classification Loss.

Description

.. note:: The existing alias “contrib_CTCLoss“ is deprecated.

Arguments

data NDArray-or-Symbol Input ndarray

label NDArray-or-Symbol Ground-truth labels for the loss.

data.lengths NDArray-or-Symbol Lengths of data for each of the samples. Only required
when use_data_lengths is true.

label.lengths NDArray-or-Symbol Lengths of labels for each of the samples. Only required
when use_label_lengths is true.

use.data.lengths

boolean, optional, default=0 Whether the data lenghts are decided by ‘data_lengths‘.
If false, the lengths are equal to the max sequence length.

use.label.lengths

boolean, optional, default=0 Whether the label lenghts are decided by ‘label_lengths‘,
or derived from ‘padding_mask‘. If false, the lengths are derived from the first
occurrence of the value of ‘padding_mask‘. The value of ‘padding_mask‘ is “0“
when first CTC label is reserved for blank, and “-1“ when last label is reserved
for blank. See ‘blank_label‘.

mx.nd.CTCLoss 115

blank.label ’first’, ’last’,optional, default=’first’ Set the label that is reserved for blank la-
bel.If "first", 0-th label is reserved, and label values for tokens in the vocabulary
are between “1“ and “alphabet_size-1“, and the padding mask is “-1“. If "last",
last label value “alphabet_size-1“ is reserved for blank label instead, and label
values for tokens in the vocabulary are between “0“ and “alphabet_size-2“, and
the padding mask is “0“.

Details

The shapes of the inputs and outputs:

- **data**: ‘(sequence_length, batch_size, alphabet_size)‘ - **label**: ‘(batch_size, label_sequence_length)‘
- **out**: ‘(batch_size)‘

The ‘data‘ tensor consists of sequences of activation vectors (without applying softmax), with i-
th channel in the last dimension corresponding to i-th label for i between 0 and alphabet_size-1
(i.e always 0-indexed). Alphabet size should include one additional value reserved for blank label.
When ‘blank_label‘ is “"first"“, the “0“-th channel is be reserved for activation of blank label, or
otherwise if it is "last", “(alphabet_size-1)“-th channel should be reserved for blank label.

“label“ is an index matrix of integers. When ‘blank_label‘ is “"first"“, the value 0 is then reserved
for blank label, and should not be passed in this matrix. Otherwise, when ‘blank_label‘ is “"last"“,
the value ‘(alphabet_size-1)‘ is reserved for blank label.

If a sequence of labels is shorter than *label_sequence_length*, use the special padding value at the
end of the sequence to conform it to the correct length. The padding value is ‘0‘ when ‘blank_label‘
is “"first"“, and ‘-1‘ otherwise.

For example, suppose the vocabulary is ‘[a, b, c]‘, and in one batch we have three sequences ’ba’,
’cbb’, and ’abac’. When ‘blank_label‘ is “"first"“, we can index the labels as ‘’a’: 1, ’b’: 2, ’c’: 3‘,
and we reserve the 0-th channel for blank label in data tensor. The resulting ‘label‘ tensor should
be padded to be::

[[2, 1, 0, 0], [3, 2, 2, 0], [1, 2, 1, 3]]

When ‘blank_label‘ is “"last"“, we can index the labels as ‘’a’: 0, ’b’: 1, ’c’: 2‘, and we reserve the
channel index 3 for blank label in data tensor. The resulting ‘label‘ tensor should be padded to be::

[[1, 0, -1, -1], [2, 1, 1, -1], [0, 1, 0, 2]]

“out“ is a list of CTC loss values, one per example in the batch.

See *Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recur-
rent Neural Networks*, A. Graves *et al*. for more information on the definition and the algorithm.

Defined in src/operator/nn/ctc_loss.cc:L100

Value

out The result mx.ndarray

116 mx.nd.Custom

mx.nd.cumsum Return the cumulative sum of the elements along a given axis.

Description

Defined in src/operator/numpy/np_cumsum.cc:L70

Arguments

a NDArray-or-Symbol Input ndarray

axis int or None, optional, default=’None’ Axis along which the cumulative sum is
computed. The default (None) is to compute the cumsum over the flattened
array.

dtype None, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’,optional, default=’None’
Type of the returned array and of the accumulator in which the elements are
summed. If dtype is not specified, it defaults to the dtype of a, unless a has an
integer dtype with a precision less than that of the default platform integer. In
that case, the default platform integer is used.

Value

out The result mx.ndarray

mx.nd.Custom Apply a custom operator implemented in a frontend language (like
Python).

Description

Custom operators should override required methods like ‘forward‘ and ‘backward‘. The custom op-
erator must be registered before it can be used. Please check the tutorial here: https://mxnet.incubator.apache.org/api/faq/new_op

Arguments

data NDArray-or-Symbol[] Input data for the custom operator.

op.type string Name of the custom operator. This is the name that is passed to ‘mx.operator.register‘
to register the operator.

Details

Defined in src/operator/custom/custom.cc:L547

Value

out The result mx.ndarray

mx.nd.Deconvolution 117

mx.nd.Deconvolution Computes 1D or 2D transposed convolution (aka fractionally strided
convolution) of the input tensor. This operation can be seen as the gra-
dient of Convolution operation with respect to its input. Convolution
usually reduces the size of the input. Transposed convolution works
the other way, going from a smaller input to a larger output while
preserving the connectivity pattern.

Description

Computes 1D or 2D transposed convolution (aka fractionally strided convolution) of the input ten-
sor. This operation can be seen as the gradient of Convolution operation with respect to its input.
Convolution usually reduces the size of the input. Transposed convolution works the other way,
going from a smaller input to a larger output while preserving the connectivity pattern.

Arguments

data NDArray-or-Symbol Input tensor to the deconvolution operation.

weight NDArray-or-Symbol Weights representing the kernel.

bias NDArray-or-Symbol Bias added to the result after the deconvolution operation.

kernel Shape(tuple), required Deconvolution kernel size: (w,), (h, w) or (d, h, w). This
is same as the kernel size used for the corresponding convolution

stride Shape(tuple), optional, default=[] The stride used for the corresponding convo-
lution: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

dilate Shape(tuple), optional, default=[] Dilation factor for each dimension of the in-
put: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

pad Shape(tuple), optional, default=[] The amount of implicit zero padding added
during convolution for each dimension of the input: (w,), (h, w) or (d, h, w).
“(kernel-1)/2“ is usually a good choice. If ‘target_shape‘ is set, ‘pad‘ will be
ignored and a padding that will generate the target shape will be used. Defaults
to no padding.

adj Shape(tuple), optional, default=[] Adjustment for output shape: (w,), (h, w) or
(d, h, w). If ‘target_shape‘ is set, ‘adj‘ will be ignored and computed accord-
ingly.

target.shape Shape(tuple), optional, default=[] Shape of the output tensor: (w,), (h, w) or (d,
h, w).

num.filter int (non-negative), required Number of output filters.

num.group int (non-negative), optional, default=1 Number of groups partition.

workspace long (non-negative), optional, default=512 Maximum temporary workspace al-
lowed (MB) in deconvolution.This parameter has two usages. When CUDNN
is not used, it determines the effective batch size of the deconvolution kernel.
When CUDNN is used, it controls the maximum temporary storage used for
tuning the best CUDNN kernel when ‘limited_workspace‘ strategy is used.

118 mx.nd.degrees

no.bias boolean, optional, default=1 Whether to disable bias parameter.

cudnn.tune None, ’fastest’, ’limited_workspace’, ’off’,optional, default=’None’ Whether to
pick convolution algorithm by running performance test.

cudnn.off boolean, optional, default=0 Turn off cudnn for this layer.

layout None, ’NCDHW’, ’NCHW’, ’NCW’, ’NDHWC’, ’NHWC’,optional, default=’None’
Set layout for input, output and weight. Empty for default layout, NCW for 1d,
NCHW for 2d and NCDHW for 3d.NHWC and NDHWC are only supported on
GPU.

Value

out The result mx.ndarray

mx.nd.degrees Converts each element of the input array from radians to degrees.

Description

.. math:: degrees([0, \pi/2, \pi, 3\pi/2, 2\pi]) = [0, 90, 180, 270, 360]

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “degrees“ output depends upon the input storage type:

- degrees(default) = default - degrees(row_sparse) = row_sparse - degrees(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L332

Value

out The result mx.ndarray

mx.nd.depth.to.space 119

mx.nd.depth.to.space Rearranges(permutes) data from depth into blocks of spa-
tial data. Similar to ONNX DepthToSpace operator:
https://github.com/onnx/onnx/blob/master/docs/Operators.md#DepthToSpace.
The output is a new tensor where the values from depth dimension are
moved in spatial blocks to height and width dimension. The reverse of
this operation is “space_to_depth“. .. math:: \begingather* x \prime
= reshape(x, [N, block_size, block_size, C / (block_size ^ 2), H *
block_size, W * block_size]) \ x \prime \prime = transpose(x \prime,
[0, 3, 4, 1, 5, 2]) \ y = reshape(x \prime \prime, [N, C / (block_size ^
2), H * block_size, W * block_size]) \endgather* where :math:‘x‘ is
an input tensor with default layout as :math:‘[N, C, H, W]‘: [batch,
channels, height, width] and :math:‘y‘ is the output tensor of layout
:math:‘[N, C / (block_size ^ 2), H * block_size, W * block_size]‘
Example:: x = [[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13,
14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]] depth_to_space(x, 2)
= [[[[0, 6, 1, 7, 2, 8], [12, 18, 13, 19, 14, 20], [3, 9, 4, 10, 5, 11], [15,
21, 16, 22, 17, 23]]]]

Description

Defined in src/operator/tensor/matrix_op.cc:L972

Arguments

data NDArray-or-Symbol Input ndarray

block.size int, required Blocks of [block_size. block_size] are moved

Value

out The result mx.ndarray

mx.nd.diag Extracts a diagonal or constructs a diagonal array.

Description

“diag“’s behavior depends on the input array dimensions:

Arguments

data NDArray-or-Symbol Input ndarray

k int, optional, default=’0’ Diagonal in question. The default is 0. Use k>0 for
diagonals above the main diagonal, and k<0 for diagonals below the main diag-
onal. If input has shape (S0 S1) k must be between -S0 and S1

120 mx.nd.digamma

axis1 int, optional, default=’0’ The first axis of the sub-arrays of interest. Ignored
when the input is a 1-D array.

axis2 int, optional, default=’1’ The second axis of the sub-arrays of interest. Ignored
when the input is a 1-D array.

Details

- 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero. - N-D
arrays: extracts the diagonals of the sub-arrays with axes specified by “axis1“ and “axis2“. The
output shape would be decided by removing the axes numbered “axis1“ and “axis2“ from the input
shape and appending to the result a new axis with the size of the diagonals in question.

For example, when the input shape is ‘(2, 3, 4, 5)‘, “axis1“ and “axis2“ are 0 and 2 respectively and
“k“ is 0, the resulting shape would be ‘(3, 5, 2)‘.

Examples::

x = [[1, 2, 3], [4, 5, 6]]

diag(x) = [1, 5]

diag(x, k=1) = [2, 6]

diag(x, k=-1) = [4]

x = [1, 2, 3]

diag(x) = [[1, 0, 0], [0, 2, 0], [0, 0, 3]]

diag(x, k=1) = [[0, 1, 0], [0, 0, 2], [0, 0, 0]]

diag(x, k=-1) = [[0, 0, 0], [1, 0, 0], [0, 2, 0]]

x = [[[1, 2], [3, 4]],

[[5, 6], [7, 8]]]

diag(x) = [[1, 7], [2, 8]]

diag(x, k=1) = [[3], [4]]

diag(x, axis1=-2, axis2=-1) = [[1, 4], [5, 8]]

Defined in src/operator/tensor/diag_op.cc:L87

Value

out The result mx.ndarray

mx.nd.digamma Returns element-wise log derivative of the gamma function \ of the
input.

Description

The storage type of “digamma“ output is always dense

mx.nd.dot 121

Arguments

data NDArray-or-Symbol The input array.

Value

out The result mx.ndarray

mx.nd.dot Dot product of two arrays.

Description

“dot“’s behavior depends on the input array dimensions:

Arguments

lhs NDArray-or-Symbol The first input

rhs NDArray-or-Symbol The second input

transpose.a boolean, optional, default=0 If true then transpose the first input before dot.

transpose.b boolean, optional, default=0 If true then transpose the second input before dot.

forward.stype None, ’csr’, ’default’, ’row_sparse’,optional, default=’None’ The desired stor-
age type of the forward output given by user, if thecombination of input storage
types and this hint does not matchany implemented ones, the dot operator will
perform fallback operationand still produce an output of the desired storage type.

Details

- 1-D arrays: inner product of vectors - 2-D arrays: matrix multiplication - N-D arrays: a sum
product over the last axis of the first input and the first axis of the second input

For example, given 3-D “x“ with shape ‘(n,m,k)‘ and “y“ with shape ‘(k,r,s)‘, the result array will
have shape ‘(n,m,r,s)‘. It is computed by::

dot(x,y)[i,j,a,b] = sum(x[i,j,:]*y[:,a,b])

Example::

x = reshape([0,1,2,3,4,5,6,7], shape=(2,2,2)) y = reshape([7,6,5,4,3,2,1,0], shape=(2,2,2)) dot(x,y)[0,0,1,1]
= 0 sum(x[0,0,:]*y[:,1,1]) = 0

The storage type of “dot“ output depends on storage types of inputs, transpose option and for-
ward_stype option for output storage type. Implemented sparse operations include:

- dot(default, default, transpose_a=True/False, transpose_b=True/False) = default - dot(csr, default,
transpose_a=True) = default - dot(csr, default, transpose_a=True) = row_sparse - dot(csr, default)
= default - dot(csr, row_sparse) = default - dot(default, csr) = csr (CPU only) - dot(default, csr,
forward_stype=’default’) = default - dot(default, csr, transpose_b=True, forward_stype=’default’)
= default

If the combination of input storage types and forward_stype does not match any of the above pat-
terns, “dot“ will fallback and generate output with default storage.

122 mx.nd.Dropout

.. Note::

If the storage type of the lhs is "csr", the storage type of gradient w.r.t rhs will be "row_sparse". Only
a subset of optimizers support sparse gradients, including SGD, AdaGrad and Adam. Note that by
default lazy updates is turned on, which may perform differently from standard updates. For more
details, please check the Optimization API at: https://mxnet.incubator.apache.org/api/python/optimization/optimization.html

Defined in src/operator/tensor/dot.cc:L77

Value

out The result mx.ndarray

mx.nd.Dropout Applies dropout operation to input array.

Description

- During training, each element of the input is set to zero with probability p. The whole array is
rescaled by :math:‘1/(1-p)‘ to keep the expected sum of the input unchanged.

Arguments

data NDArray-or-Symbol Input array to which dropout will be applied.

p float, optional, default=0.5 Fraction of the input that gets dropped out during
training time.

mode ’always’, ’training’,optional, default=’training’ Whether to only turn on dropout
during training or to also turn on for inference.

axes Shape(tuple), optional, default=[] Axes for variational dropout kernel.

cudnn.off boolean or None, optional, default=0 Whether to turn off cudnn in dropout op-
erator. This option is ignored if axes is specified.

Details

- During testing, this operator does not change the input if mode is ’training’. If mode is ’always’,
the same computaion as during training will be applied.

Example::

random.seed(998) input_array = array([[3., 0.5, -0.5, 2., 7.], [2., -0.4, 7., 3., 0.2]]) a = sym-
bol.Variable(’a’) dropout = symbol.Dropout(a, p = 0.2) executor = dropout.simple_bind(a = in-
put_array.shape)

If training executor.forward(is_train = True, a = input_array) executor.outputs [[3.75 0.625 -0.
2.5 8.75] [2.5 -0.5 8.75 3.75 0.]]

If testing executor.forward(is_train = False, a = input_array) executor.outputs [[3. 0.5 -0.5 2. 7.
] [2. -0.4 7. 3. 0.2]]

Defined in src/operator/nn/dropout.cc:L96

mx.nd.ElementWiseSum 123

Value

out The result mx.ndarray

mx.nd.ElementWiseSum Adds all input arguments element-wise.

Description

.. math:: add_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n

Arguments

args NDArray-or-Symbol[] Positional input arguments

Details

“add_n“ is potentially more efficient than calling “add“ by ‘n‘ times.

The storage type of “add_n“ output depends on storage types of inputs

- add_n(row_sparse, row_sparse, ..) = row_sparse - add_n(default, csr, default) = default - add_n(any
input combinations longer than 4 (>4) with at least one default type) = default - otherwise, “add_n“
falls all inputs back to default storage and generates default storage

Defined in src/operator/tensor/elemwise_sum.cc:L155

Value

out The result mx.ndarray

mx.nd.elemwise.add Adds arguments element-wise.

Description

The storage type of “elemwise_add“ output depends on storage types of inputs

Arguments

lhs NDArray-or-Symbol first input

rhs NDArray-or-Symbol second input

Details

- elemwise_add(row_sparse, row_sparse) = row_sparse - elemwise_add(csr, csr) = csr - elem-
wise_add(default, csr) = default - elemwise_add(csr, default) = default - elemwise_add(default,
rsp) = default - elemwise_add(rsp, default) = default - otherwise, “elemwise_add“ generates output
with default storage

124 mx.nd.elemwise.mul

Value

out The result mx.ndarray

mx.nd.elemwise.div Divides arguments element-wise.

Description

The storage type of “elemwise_div“ output is always dense

Arguments

lhs NDArray-or-Symbol first input

rhs NDArray-or-Symbol second input

Value

out The result mx.ndarray

mx.nd.elemwise.mul Multiplies arguments element-wise.

Description

The storage type of “elemwise_mul“ output depends on storage types of inputs

Arguments

lhs NDArray-or-Symbol first input

rhs NDArray-or-Symbol second input

Details

- elemwise_mul(default, default) = default - elemwise_mul(row_sparse, row_sparse) = row_sparse -
elemwise_mul(default, row_sparse) = row_sparse - elemwise_mul(row_sparse, default) = row_sparse
- elemwise_mul(csr, csr) = csr - otherwise, “elemwise_mul“ generates output with default storage

Value

out The result mx.ndarray

mx.nd.elemwise.sub 125

mx.nd.elemwise.sub Subtracts arguments element-wise.

Description

The storage type of “elemwise_sub“ output depends on storage types of inputs

Arguments

lhs NDArray-or-Symbol first input

rhs NDArray-or-Symbol second input

Details

- elemwise_sub(row_sparse, row_sparse) = row_sparse - elemwise_sub(csr, csr) = csr - elem-
wise_sub(default, csr) = default - elemwise_sub(csr, default) = default - elemwise_sub(default, rsp)
= default - elemwise_sub(rsp, default) = default - otherwise, “elemwise_sub“ generates output with
default storage

Value

out The result mx.ndarray

mx.nd.Embedding Maps integer indices to vector representations (embeddings).

Description

This operator maps words to real-valued vectors in a high-dimensional space, called word embed-
dings. These embeddings can capture semantic and syntactic properties of the words. For example,
it has been noted that in the learned embedding spaces, similar words tend to be close to each other
and dissimilar words far apart.

Arguments

data NDArray-or-Symbol The input array to the embedding operator.

weight NDArray-or-Symbol The embedding weight matrix.

input.dim int, required Vocabulary size of the input indices.

output.dim int, required Dimension of the embedding vectors.

dtype ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’float32’ Data type of weight.

sparse.grad boolean, optional, default=0 Compute row sparse gradient in the backward cal-
culation. If set to True, the grad’s storage type is row_sparse.

126 mx.nd.erf

Details

For an input array of shape (d1, ..., dK), the shape of an output array is (d1, ..., dK, output_dim).
All the input values should be integers in the range [0, input_dim).

If the input_dim is ip0 and output_dim is op0, then shape of the embedding weight matrix must be
(ip0, op0).

When "sparse_grad" is False, if any index mentioned is too large, it is replaced by the index that
addresses the last vector in an embedding matrix. When "sparse_grad" is True, an error will be
raised if invalid indices are found.

Examples::

input_dim = 4 output_dim = 5

// Each row in weight matrix y represents a word. So, y = (w0,w1,w2,w3) y = [[0., 1., 2., 3., 4.], [
5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.]]

// Input array x represents n-grams(2-gram). So, x = [(w1,w3), (w0,w2)] x = [[1., 3.], [0., 2.]]

// Mapped input x to its vector representation y. Embedding(x, y, 4, 5) = [[[5., 6., 7., 8., 9.], [15.,
16., 17., 18., 19.]],

[[0., 1., 2., 3., 4.], [10., 11., 12., 13., 14.]]]

The storage type of weight can be either row_sparse or default.

.. Note::

If "sparse_grad" is set to True, the storage type of gradient w.r.t weights will be "row_sparse". Only
a subset of optimizers support sparse gradients, including SGD, AdaGrad and Adam. Note that by
default lazy updates is turned on, which may perform differently from standard updates. For more
details, please check the Optimization API at: https://mxnet.incubator.apache.org/api/python/optimization/optimization.html

Defined in src/operator/tensor/indexing_op.cc:L602

Value

out The result mx.ndarray

mx.nd.erf Returns element-wise gauss error function of the input.

Description

Example::

Arguments

data NDArray-or-Symbol The input array.

Details

erf([0, -1., 10.]) = [0., -0.8427, 1.]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L887

mx.nd.erfinv 127

Value

out The result mx.ndarray

mx.nd.erfinv Returns element-wise inverse gauss error function of the input.

Description

Example::

Arguments

data NDArray-or-Symbol The input array.

Details

erfinv([0, 0.5., -1.]) = [0., 0.4769, -inf]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L909

Value

out The result mx.ndarray

mx.nd.exp Returns element-wise exponential value of the input.

Description

.. math:: exp(x) = e^x \approx 2.718^x

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

exp([0, 1, 2]) = [1., 2.71828175, 7.38905621]

The storage type of “exp“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L64

Value

out The result mx.ndarray

128 mx.nd.expm1

mx.nd.expand.dims Inserts a new axis of size 1 into the array shape For example, given
“x“ with shape “(2,3,4)“, then “expand_dims(x, axis=1)“ will return
a new array with shape “(2,1,3,4)“.

Description

Defined in src/operator/tensor/matrix_op.cc:L395

Arguments

data NDArray-or-Symbol Source input

axis int, required Position where new axis is to be inserted. Suppose that the in-
put ‘NDArray‘’s dimension is ‘ndim‘, the range of the inserted axis is ‘[-ndim,
ndim]‘

Value

out The result mx.ndarray

mx.nd.expm1 Returns “exp(x) - 1“ computed element-wise on the input.

Description

This function provides greater precision than “exp(x) - 1“ for small values of “x“.

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “expm1“ output depends upon the input storage type:

- expm1(default) = default - expm1(row_sparse) = row_sparse - expm1(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L244

Value

out The result mx.ndarray

mx.nd.fill.element.0index 129

mx.nd.fill.element.0index

Fill one element of each line(row for python, column for R/Julia) in lhs
according to index indicated by rhs and values indicated by mhs. This
function assume rhs uses 0-based index.

Description

Fill one element of each line(row for python, column for R/Julia) in lhs according to index indicated
by rhs and values indicated by mhs. This function assume rhs uses 0-based index.

Arguments

lhs NDArray Left operand to the function.

mhs NDArray Middle operand to the function.

rhs NDArray Right operand to the function.

Value

out The result mx.ndarray

mx.nd.fix Returns element-wise rounded value to the nearest \ integer towards
zero of the input.

Description

Example::

Arguments

data NDArray-or-Symbol The input array.

Details

fix([-2.1, -1.9, 1.9, 2.1]) = [-2., -1., 1., 2.]

The storage type of “fix“ output depends upon the input storage type:

- fix(default) = default - fix(row_sparse) = row_sparse - fix(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L875

Value

out The result mx.ndarray

130 mx.nd.flatten

mx.nd.Flatten Flattens the input array into a 2-D array by collapsing the higher
dimensions. .. note:: ‘Flatten‘ is deprecated. Use ‘flatten‘ in-
stead. For an input array with shape “(d1, d2, ..., dk)“, ‘flat-
ten‘ operation reshapes the input array into an output array of
shape “(d1, d2*...*dk)“. Note that the behavior of this function
is different from numpy.ndarray.flatten, which behaves similar to
mxnet.ndarray.reshape((-1,)). Example:: x = [[[1,2,3], [4,5,6],
[7,8,9]], [[1,2,3], [4,5,6], [7,8,9]]], flatten(x) = [[1., 2., 3., 4.,
5., 6., 7., 8., 9.], [1., 2., 3., 4., 5., 6., 7., 8., 9.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L250

Arguments

data NDArray-or-Symbol Input array.

Value

out The result mx.ndarray

mx.nd.flatten Flattens the input array into a 2-D array by collapsing the higher
dimensions. .. note:: ‘Flatten‘ is deprecated. Use ‘flatten‘ in-
stead. For an input array with shape “(d1, d2, ..., dk)“, ‘flat-
ten‘ operation reshapes the input array into an output array of
shape “(d1, d2*...*dk)“. Note that the behavior of this function
is different from numpy.ndarray.flatten, which behaves similar to
mxnet.ndarray.reshape((-1,)). Example:: x = [[[1,2,3], [4,5,6],
[7,8,9]], [[1,2,3], [4,5,6], [7,8,9]]], flatten(x) = [[1., 2., 3., 4.,
5., 6., 7., 8., 9.], [1., 2., 3., 4., 5., 6., 7., 8., 9.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L250

Arguments

data NDArray-or-Symbol Input array.

Value

out The result mx.ndarray

mx.nd.flip 131

mx.nd.flip Reverses the order of elements along given axis while preserving array
shape. Note: reverse and flip are equivalent. We use reverse in the
following examples. Examples:: x = [[0., 1., 2., 3., 4.], [5., 6., 7.,
8., 9.]] reverse(x, axis=0) = [[5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.]]
reverse(x, axis=1) = [[4., 3., 2., 1., 0.], [9., 8., 7., 6., 5.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L832

Arguments

data NDArray-or-Symbol Input data array

axis Shape(tuple), required The axis which to reverse elements.

Value

out The result mx.ndarray

mx.nd.floor Returns element-wise floor of the input.

Description

The floor of the scalar x is the largest integer i, such that i <= x.

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

floor([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-3., -2., 1., 1., 2.]

The storage type of “floor“ output depends upon the input storage type:

- floor(default) = default - floor(row_sparse) = row_sparse - floor(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L837

Value

out The result mx.ndarray

132 mx.nd.ftml.update

mx.nd.ftml.update The FTML optimizer described in *FTML - Follow
the Moving Leader in Deep Learning*, available at
http://proceedings.mlr.press/v70/zheng17a/zheng17a.pdf.

Description

.. math::

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

d NDArray-or-Symbol Internal state “d_t“

v NDArray-or-Symbol Internal state “v_t“

z NDArray-or-Symbol Internal state “z_t“

lr float, required Learning rate.

beta1 float, optional, default=0.600000024 Generally close to 0.5.

beta2 float, optional, default=0.999000013 Generally close to 1.

epsilon double, optional, default=9.9999999392252903e-09 Epsilon to prevent div 0.

t int, required Number of update.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.grad float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

Details

g_t = \nabla J(W_t-1)\ v_t = \beta_2 v_t-1 + (1 - \beta_2) g_t^2\ d_t = \frac 1 - \beta_1^t \eta_t (\sqrt
\frac v_t 1 - \beta_2^t + \epsilon) \sigma_t = d_t - \beta_1 d_t-1 z_t = \beta_1 z_ t-1 + (1 - \beta_1^t)
g_t - \sigma_t W_t-1 W_t = - \frac z_t d_t

Defined in src/operator/optimizer_op.cc:L631

Value

out The result mx.ndarray

mx.nd.ftrl.update 133

mx.nd.ftrl.update Update function for Ftrl optimizer. Referenced from *Ad
Click Prediction: a View from the Trenches*, available at
http://dl.acm.org/citation.cfm?id=2488200.

Description

It updates the weights using::

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

z NDArray-or-Symbol z

n NDArray-or-Symbol Square of grad

lr float, required Learning rate

lamda1 float, optional, default=0.00999999978 The L1 regularization coefficient.

beta float, optional, default=1 Per-Coordinate Learning Rate beta.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

Details

rescaled_grad = clip(grad * rescale_grad, clip_gradient) z += rescaled_grad - (sqrt(n + rescaled_grad**2)
- sqrt(n)) * weight / learning_rate n += rescaled_grad**2 w = (sign(z) * lamda1 - z) / ((beta + sqrt(n))
/ learning_rate + wd) * (abs(z) > lamda1)

If w, z and n are all of “row_sparse“ storage type, only the row slices whose indices appear in
grad.indices are updated (for w, z and n)::

for row in grad.indices: rescaled_grad[row] = clip(grad[row] * rescale_grad, clip_gradient) z[row]
+= rescaled_grad[row] - (sqrt(n[row] + rescaled_grad[row]**2) - sqrt(n[row])) * weight[row] /
learning_rate n[row] += rescaled_grad[row]**2 w[row] = (sign(z[row]) * lamda1 - z[row]) / ((beta
+ sqrt(n[row])) / learning_rate + wd) * (abs(z[row]) > lamda1)

Defined in src/operator/optimizer_op.cc:L867

Value

out The result mx.ndarray

134 mx.nd.FullyConnected

mx.nd.FullyConnected Applies a linear transformation: :math:‘Y = XW^T + b‘.

Description

If “flatten“ is set to be true, then the shapes are:

Arguments

data NDArray-or-Symbol Input data.

weight NDArray-or-Symbol Weight matrix.

bias NDArray-or-Symbol Bias parameter.

num.hidden int, required Number of hidden nodes of the output.

no.bias boolean, optional, default=0 Whether to disable bias parameter.

flatten boolean, optional, default=1 Whether to collapse all but the first axis of the input
data tensor.

Details

- **data**: ‘(batch_size, x1, x2, ..., xn)‘ - **weight**: ‘(num_hidden, x1 * x2 * ... * xn)‘ -
bias: ‘(num_hidden,)‘ - **out**: ‘(batch_size, num_hidden)‘

If “flatten“ is set to be false, then the shapes are:

- **data**: ‘(x1, x2, ..., xn, input_dim)‘ - **weight**: ‘(num_hidden, input_dim)‘ - **bias**:
‘(num_hidden,)‘ - **out**: ‘(x1, x2, ..., xn, num_hidden)‘

The learnable parameters include both “weight“ and “bias“.

If “no_bias“ is set to be true, then the “bias“ term is ignored.

.. Note::

The sparse support for FullyConnected is limited to forward evaluation with ‘row_sparse‘ weight
and bias, where the length of ‘weight.indices‘ and ‘bias.indices‘ must be equal to ‘num_hidden‘.
This could be useful for model inference with ‘row_sparse‘ weights trained with importance sam-
pling or noise contrastive estimation.

To compute linear transformation with ’csr’ sparse data, sparse.dot is recommended instead of
sparse.FullyConnected.

Defined in src/operator/nn/fully_connected.cc:L287

Value

out The result mx.ndarray

mx.nd.gamma 135

mx.nd.gamma Returns the gamma function (extension of the factorial function \ to
the reals), computed element-wise on the input array.

Description

The storage type of “gamma“ output is always dense

Arguments

data NDArray-or-Symbol The input array.

Value

out The result mx.ndarray

mx.nd.gammaln Returns element-wise log of the absolute value of the gamma function
\ of the input.

Description

The storage type of “gammaln“ output is always dense

Arguments

data NDArray-or-Symbol The input array.

Value

out The result mx.ndarray

136 mx.nd.GridGenerator

mx.nd.gather.nd Gather elements or slices from ‘data‘ and store to a tensor whose
shape is defined by ‘indices‘.

Description

Given ‘data‘ with shape ‘(X_0, X_1, ..., X_N-1)‘ and indices with shape ‘(M, Y_0, ..., Y_K-1)‘, the
output will have shape ‘(Y_0, ..., Y_K-1, X_M, ..., X_N-1)‘, where ‘M <= N‘. If ‘M == N‘, output
shape will simply be ‘(Y_0, ..., Y_K-1)‘.

Arguments

data NDArray-or-Symbol data
indices NDArray-or-Symbol indices

Details

The elements in output is defined as follows::

output[y_0, ..., y_K-1, x_M, ..., x_N-1] = data[indices[0, y_0, ..., y_K-1], ..., indices[M-1, y_0, ...,
y_K-1], x_M, ..., x_N-1]

Examples::

data = [[0, 1], [2, 3]] indices = [[1, 1, 0], [0, 1, 0]] gather_nd(data, indices) = [2, 3, 0]

data = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] indices = [[0, 1], [1, 0]] gather_nd(data, indices) = [[3, 4], [5,
6]]

Value

out The result mx.ndarray

mx.nd.GridGenerator Generates 2D sampling grid for bilinear sampling.

Description

Generates 2D sampling grid for bilinear sampling.

Arguments

data NDArray-or-Symbol Input data to the function.
transform.type ’affine’, ’warp’, required The type of transformation. For ‘affine‘, input data

should be an affine matrix of size (batch, 6). For ‘warp‘, input data should be an
optical flow of size (batch, 2, h, w).

target.shape Shape(tuple), optional, default=[0,0] Specifies the output shape (H, W). This is
required if transformation type is ‘affine‘. If transformation type is ‘warp‘, this
parameter is ignored.

mx.nd.GroupNorm 137

Value

out The result mx.ndarray

mx.nd.GroupNorm Group normalization.

Description

The input channels are separated into “num_groups“ groups, each containing “num_channels /
num_groups“ channels. The mean and standard-deviation are calculated separately over the each
group.

Arguments

data NDArray-or-Symbol Input data

gamma NDArray-or-Symbol gamma array

beta NDArray-or-Symbol beta array

num.groups int, optional, default=’1’ Total number of groups.

eps float, optional, default=9.99999975e-06 An ‘epsilon‘ parameter to prevent divi-
sion by 0.

output.mean.var

boolean, optional, default=0 Output the mean and std calculated along the given
axis.

Details

.. math::

data = data.reshape((N, num_groups, C // num_groups, ...)) out = \fracdata - mean(data, axis)\sqrtvar(data,
axis) + \epsilon * gamma + beta

Both “gamma“ and “beta“ are learnable parameters.

Defined in src/operator/nn/group_norm.cc:L77

Value

out The result mx.ndarray

138 mx.nd.identity

mx.nd.hard.sigmoid Computes hard sigmoid of x element-wise.

Description

.. math:: y = max(0, min(1, alpha * x + beta))

Arguments

data NDArray-or-Symbol The input array.

alpha float, optional, default=0.200000003 Slope of hard sigmoid

beta float, optional, default=0.5 Bias of hard sigmoid.

Details

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L161

Value

out The result mx.ndarray

mx.nd.identity Returns a copy of the input.

Description

From:src/operator/tensor/elemwise_unary_op_basic.cc:244

Arguments

data NDArray-or-Symbol The input array.

Value

out The result mx.ndarray

mx.nd.IdentityAttachKLSparseReg 139

mx.nd.IdentityAttachKLSparseReg

Apply a sparse regularization to the output a sigmoid activation func-
tion.

Description

Apply a sparse regularization to the output a sigmoid activation function.

Arguments

data NDArray-or-Symbol Input data.
sparseness.target

float, optional, default=0.100000001 The sparseness target

penalty float, optional, default=0.00100000005 The tradeoff parameter for the sparse-
ness penalty

momentum float, optional, default=0.899999976 The momentum for running average

Value

out The result mx.ndarray

mx.nd.im2col Extract sliding blocks from input array.

Description

This operator is used in vanilla convolution implementation to transform the sliding blocks on im-
age to column matrix, then the convolution operation can be computed by matrix multiplication
between column and convolution weight. Due to the close relation between im2col and convolu-
tion, the concept of **kernel**, **stride**, **dilate** and **pad** in this operator are inherited
from convolution operation.

Arguments

data NDArray-or-Symbol Input array to extract sliding blocks.

kernel Shape(tuple), required Sliding kernel size: (w,), (h, w) or (d, h, w).

stride Shape(tuple), optional, default=[] The stride between adjacent sliding blocks in
spatial dimension: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

dilate Shape(tuple), optional, default=[] The spacing between adjacent kernel points:
(w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

pad Shape(tuple), optional, default=[] The zero-value padding size on both sides of
spatial dimension: (w,), (h, w) or (d, h, w). Defaults to no padding.

140 mx.nd.InstanceNorm

Details

Given the input data of shape :math:‘(N, C, *)‘, where :math:‘N‘ is the batch size, :math:‘C‘ is the
channel size, and :math:‘*‘ is the arbitrary spatial dimension, the output column array is always
with shape :math:‘(N, C \times \prod(\textkernel), W)‘, where :math:‘C \times \prod(\textkernel)‘
is the block size, and :math:‘W‘ is the block number which is the spatial size of the convolution
output with same input parameters. Only 1-D, 2-D and 3-D of spatial dimension is supported in this
operator.

Defined in src/operator/nn/im2col.cc:L100

Value

out The result mx.ndarray

mx.nd.InstanceNorm Applies instance normalization to the n-dimensional input array.

Description

This operator takes an n-dimensional input array where (n>2) and normalizes the input using the
following formula:

Arguments

data NDArray-or-Symbol An n-dimensional input array (n > 2) of the form [batch,
channel, spatial_dim1, spatial_dim2, ...].

gamma NDArray-or-Symbol A vector of length ’channel’, which multiplies the normal-
ized input.

beta NDArray-or-Symbol A vector of length ’channel’, which is added to the product
of the normalized input and the weight.

eps float, optional, default=0.00100000005 An ‘epsilon‘ parameter to prevent divi-
sion by 0.

Details

.. math::

out = \fracx - mean[data] \sqrtVar[data] + \epsilon * gamma + beta

This layer is similar to batch normalization layer (‘BatchNorm‘) with two differences: first, the nor-
malization is carried out per example (instance), not over a batch. Second, the same normalization
is applied both at test and train time. This operation is also known as ‘contrast normalization‘.

If the input data is of shape [batch, channel, spacial_dim1, spacial_dim2, ...], ‘gamma‘ and ‘beta‘
parameters must be vectors of shape [channel].

This implementation is based on this paper [1]_

.. [1] Instance Normalization: The Missing Ingredient for Fast Stylization, D. Ulyanov, A. Vedaldi,
V. Lempitsky, 2016 (arXiv:1607.08022v2).

mx.nd.khatri.rao 141

Examples::

// Input of shape (2,1,2) x = [[[1.1, 2.2]], [[3.3, 4.4]]]

// gamma parameter of length 1 gamma = [1.5]

// beta parameter of length 1 beta = [0.5]

// Instance normalization is calculated with the above formula InstanceNorm(x,gamma,beta) = [[[-
0.997527 , 1.99752665]], [[-0.99752653, 1.99752724]]]

Defined in src/operator/instance_norm.cc:L95

Value

out The result mx.ndarray

mx.nd.khatri.rao Computes the Khatri-Rao product of the input matrices.

Description

Given a collection of :math:‘n‘ input matrices,

Arguments

args NDArray-or-Symbol[] Positional input matrices

Details

.. math:: A_1 \in \mathbbR^M_1 \times M, . . . , A_n \in \mathbbR^M_n \times N,

the (column-wise) Khatri-Rao product is defined as the matrix,

.. math:: X = A_1 \otimes \cdots \otimes A_n \in \mathbbR^(M_1 \cdots M_n) \times N,

where the :math:‘k‘ th column is equal to the column-wise outer product :math:‘A_1_k \otimes
\cdots \otimes A_n_k‘ where :math:‘A_i_k‘ is the kth column of the ith matrix.

Example::

»> A = mx.nd.array([[1, -1], »> [2, -3]]) »> B = mx.nd.array([[1, 4], »> [2, 5], »> [3, 6]]) »> C =
mx.nd.khatri_rao(A, B) »> print(C.asnumpy()) [[1. -4.] [2. -5.] [3. -6.] [2. -12.] [4. -15.] [6.
-18.]]

Defined in src/operator/contrib/krprod.cc:L108

Value

out The result mx.ndarray

142 mx.nd.L2Normalization

mx.nd.L2Normalization Normalize the input array using the L2 norm.

Description

For 1-D NDArray, it computes::

Arguments

data NDArray-or-Symbol Input array to normalize.

eps float, optional, default=1.00000001e-10 A small constant for numerical stability.

mode ’channel’, ’instance’, ’spatial’,optional, default=’instance’ Specify the dimen-
sion along which to compute L2 norm.

Details

out = data / sqrt(sum(data ** 2) + eps)

For N-D NDArray, if the input array has shape (N, N, ..., N),

with “mode“ = “instance“, it normalizes each instance in the multidimensional array by its L2
norm.::

for i in 0...N out[i,:,:,...,:] = data[i,:,:,...,:] / sqrt(sum(data[i,:,:,...,:] ** 2) + eps)

with “mode“ = “channel“, it normalizes each channel in the array by its L2 norm.::

for i in 0...N out[:,i,:,...,:] = data[:,i,:,...,:] / sqrt(sum(data[:,i,:,...,:] ** 2) + eps)

with “mode“ = “spatial“, it normalizes the cross channel norm for each position in the array by its
L2 norm.::

for dim in 2...N for i in 0...N out[.....,i,...] = take(out, indices=i, axis=dim) / sqrt(sum(take(out,
indices=i, axis=dim) ** 2) + eps) -dim-

Example::

x = [[[1,2], [3,4]], [[2,2], [5,6]]]

L2Normalization(x, mode=’instance’) =[[[0.18257418 0.36514837] [0.54772252 0.73029673]] [[
0.24077171 0.24077171] [0.60192931 0.72231513]]]

L2Normalization(x, mode=’channel’) =[[[0.31622776 0.44721359] [0.94868326 0.89442718]] [[
0.37139067 0.31622776] [0.92847669 0.94868326]]]

L2Normalization(x, mode=’spatial’) =[[[0.44721359 0.89442718] [0.60000002 0.80000001]] [[
0.70710677 0.70710677] [0.6401844 0.76822126]]]

Defined in src/operator/l2_normalization.cc:L196

Value

out The result mx.ndarray

mx.nd.lamb.update.phase1 143

mx.nd.lamb.update.phase1

Phase I of lamb update it performs the following operations and re-
turns g:.

Description

Link to paper: https://arxiv.org/pdf/1904.00962.pdf

Arguments

weight NDArray-or-Symbol Weight
grad NDArray-or-Symbol Gradient
mean NDArray-or-Symbol Moving mean
var NDArray-or-Symbol Moving variance
beta1 float, optional, default=0.899999976 The decay rate for the 1st moment esti-

mates.
beta2 float, optional, default=0.999000013 The decay rate for the 2nd moment esti-

mates.
epsilon float, optional, default=9.99999997e-07 A small constant for numerical stability.
t int, required Index update count.
bias.correction

boolean, optional, default=1 Whether to use bias correction.
wd float, required Weight decay augments the objective function with a regulariza-

tion term that penalizes large weights. The penalty scales with the square of the
magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

Details

.. math:: \begingather* grad = grad * rescale_grad if (grad < -clip_gradient) then grad = -clip_gradient
if (grad > clip_gradient) then grad = clip_gradient

mean = beta1 * mean + (1 - beta1) * grad; variance = beta2 * variance + (1. - beta2) * grad ^ 2;

if (bias_correction) then mean_hat = mean / (1. - beta1^t); var_hat = var / (1 - beta2^t); g = mean_hat
/ (var_hat^(1/2) + epsilon) + wd * weight; else g = mean / (var_data^(1/2) + epsilon) + wd * weight;
\endgather*

Defined in src/operator/optimizer_op.cc:L944

Value

out The result mx.ndarray

144 mx.nd.LayerNorm

mx.nd.lamb.update.phase2

Phase II of lamb update it performs the following operations and up-
dates grad.

Description

Link to paper: https://arxiv.org/pdf/1904.00962.pdf

Arguments

weight NDArray-or-Symbol Weight

g NDArray-or-Symbol Output of lamb_update_phase 1

r1 NDArray-or-Symbol r1

r2 NDArray-or-Symbol r2

lr float, required Learning rate

lower.bound float, optional, default=-1 Lower limit of norm of weight. If lower_bound <= 0,
Lower limit is not set

upper.bound float, optional, default=-1 Upper limit of norm of weight. If upper_bound <= 0,
Upper limit is not set

Details

.. math:: \begingather* if (lower_bound >= 0) then r1 = max(r1, lower_bound) if (upper_bound >=
0) then r1 = max(r1, upper_bound)

if (r1 == 0 or r2 == 0) then lr = lr else lr = lr * (r1/r2) weight = weight - lr * g \endgather*

Defined in src/operator/optimizer_op.cc:L983

Value

out The result mx.ndarray

mx.nd.LayerNorm Layer normalization.

Description

Normalizes the channels of the input tensor by mean and variance, and applies a scale “gamma“ as
well as offset “beta“.

mx.nd.LeakyReLU 145

Arguments

data NDArray-or-Symbol Input data to layer normalization

gamma NDArray-or-Symbol gamma array

beta NDArray-or-Symbol beta array

axis int, optional, default=’-1’ The axis to perform layer normalization. Usually, this
should be be axis of the channel dimension. Negative values means indexing
from right to left.

eps float, optional, default=9.99999975e-06 An ‘epsilon‘ parameter to prevent divi-
sion by 0.

output.mean.var

boolean, optional, default=0 Output the mean and std calculated along the given
axis.

Details

Assume the input has more than one dimension and we normalize along axis 1. We first compute
the mean and variance along this axis and then compute the normalized output, which has the same
shape as input, as following:

.. math::

out = \fracdata - mean(data, axis)\sqrtvar(data, axis) + \epsilon * gamma + beta

Both “gamma“ and “beta“ are learnable parameters.

Unlike BatchNorm and InstanceNorm, the *mean* and *var* are computed along the channel di-
mension.

Assume the input has size *k* on axis 1, then both “gamma“ and “beta“ have shape *(k,)*. If
“output_mean_var“ is set to be true, then outputs both “data_mean“ and “data_std“. Note that no
gradient will be passed through these two outputs.

The parameter “axis“ specifies which axis of the input shape denotes the ’channel’ (separately
normalized groups). The default is -1, which sets the channel axis to be the last item in the input
shape.

Defined in src/operator/nn/layer_norm.cc:L159

Value

out The result mx.ndarray

mx.nd.LeakyReLU Applies Leaky rectified linear unit activation element-wise to the input.

Description

Leaky ReLUs attempt to fix the "dying ReLU" problem by allowing a small ‘slope‘ when the input
is negative and has a slope of one when input is positive.

146 mx.nd.linalg.det

Arguments

data NDArray-or-Symbol Input data to activation function.

gamma NDArray-or-Symbol Input data to activation function.

act.type ’elu’, ’gelu’, ’leaky’, ’prelu’, ’rrelu’, ’selu’,optional, default=’leaky’ Activation
function to be applied.

slope float, optional, default=0.25 Init slope for the activation. (For leaky and elu only)

lower.bound float, optional, default=0.125 Lower bound of random slope. (For rrelu only)

upper.bound float, optional, default=0.333999991 Upper bound of random slope. (For rrelu
only)

Details

The following modified ReLU Activation functions are supported:

- *elu*: Exponential Linear Unit. ‘y = x > 0 ? x : slope * (exp(x)-1)‘ - *gelu*: Gaussian Error Lin-
ear Unit. ‘y = 0.5 * x * (1 + erf(x / sqrt(2)))‘ - *selu*: Scaled Exponential Linear Unit. ‘y = lambda
* (x > 0 ? x : alpha * (exp(x) - 1))‘ where *lambda = 1.0507009873554804934193349852946*
and *alpha = 1.6732632423543772848170429916717*. - *leaky*: Leaky ReLU. ‘y = x > 0
? x : slope * x‘ - *prelu*: Parametric ReLU. This is same as *leaky* except that ‘slope‘ is
learnt during training. - *rrelu*: Randomized ReLU. same as *leaky* but the ‘slope‘ is uni-
formly and randomly chosen from *[lower_bound, upper_bound)* for training, while fixed to be
(lower_bound+upper_bound)/2 for inference.

Defined in src/operator/leaky_relu.cc:L162

Value

out The result mx.ndarray

mx.nd.linalg.det Compute the determinant of a matrix. Input is a tensor *A* of dimen-
sion *n >= 2*.

Description

If *n=2*, *A* is a square matrix. We compute:

Arguments

A NDArray-or-Symbol Tensor of square matrix

mx.nd.linalg.extractdiag 147

Details

out = *det(A)*

If *n>2*, *det* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only. .. note:: There is no gradient
backwarded when A is non-invertible (which is equivalent to det(A) = 0) because zero is rarely hit
upon in float point computation and the Jacobi’s formula on determinant gradient is not computa-
tionally efficient when A is non-invertible.

Examples::

Single matrix determinant A = [[1., 4.], [2., 3.]] det(A) = [-5.]

Batch matrix determinant A = [[[1., 4.], [2., 3.]], [[2., 3.], [1., 4.]]] det(A) = [-5., 5.]

Defined in src/operator/tensor/la_op.cc:L975

Value

out The result mx.ndarray

mx.nd.linalg.extractdiag

Extracts the diagonal entries of a square matrix. Input is a tensor *A*
of dimension *n >= 2*.

Description

If *n=2*, then *A* represents a single square matrix which diagonal elements get extracted as a
1-dimensional tensor.

Arguments

A NDArray-or-Symbol Tensor of square matrices

offset int, optional, default=’0’ Offset of the diagonal versus the main diagonal. 0
corresponds to the main diagonal, a negative/positive value to diagonals be-
low/above the main diagonal.

Details

If *n>2*, then *A* represents a batch of square matrices on the trailing two dimensions. The
extracted diagonals are returned as an *n-1*-dimensional tensor.

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix diagonal extraction A = [[1.0, 2.0], [3.0, 4.0]]

extractdiag(A) = [1.0, 4.0]

extractdiag(A, 1) = [2.0]

Batch matrix diagonal extraction A = [[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]

148 mx.nd.linalg.extracttrian

extractdiag(A) = [[1.0, 4.0], [5.0, 8.0]]

Defined in src/operator/tensor/la_op.cc:L495

Value

out The result mx.ndarray

mx.nd.linalg.extracttrian

Extracts a triangular sub-matrix from a square matrix. Input is a ten-
sor *A* of dimension *n >= 2*.

Description

If *n=2*, then *A* represents a single square matrix from which a triangular sub-matrix is extracted
as a 1-dimensional tensor.

Arguments

A NDArray-or-Symbol Tensor of square matrices

offset int, optional, default=’0’ Offset of the diagonal versus the main diagonal. 0
corresponds to the main diagonal, a negative/positive value to diagonals be-
low/above the main diagonal.

lower boolean, optional, default=1 Refer to the lower triangular matrix if lower=true,
refer to the upper otherwise. Only relevant when offset=0

Details

If *n>2*, then *A* represents a batch of square matrices on the trailing two dimensions. The
extracted triangular sub-matrices are returned as an *n-1*-dimensional tensor.

The *offset* and *lower* parameters determine the triangle to be extracted:

- When *offset = 0* either the lower or upper triangle with respect to the main diagonal is extracted
depending on the value of parameter *lower*. - When *offset = k > 0* the upper triangle with
respect to the k-th diagonal above the main diagonal is extracted. - When *offset = k < 0* the lower
triangle with respect to the k-th diagonal below the main diagonal is extracted.

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single triagonal extraction A = [[1.0, 2.0], [3.0, 4.0]]

extracttrian(A) = [1.0, 3.0, 4.0] extracttrian(A, lower=False) = [1.0, 2.0, 4.0] extracttrian(A, 1) =
[2.0] extracttrian(A, -1) = [3.0]

Batch triagonal extraction A = [[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]

extracttrian(A) = [[1.0, 3.0, 4.0], [5.0, 7.0, 8.0]]

Defined in src/operator/tensor/la_op.cc:L605

mx.nd.linalg.gelqf 149

Value

out The result mx.ndarray

mx.nd.linalg.gelqf LQ factorization for general matrix. Input is a tensor *A* of dimension
n >= 2.

Description

If *n=2*, we compute the LQ factorization (LAPACK *gelqf*, followed by *orglq*). *A* must
have shape *(x, y)* with *x <= y*, and must have full rank *=x*. The LQ factorization consists of
L with shape *(x, x)* and *Q* with shape *(x, y)*, so that:

Arguments

A NDArray-or-Symbol Tensor of input matrices to be factorized

Details

A = *L* * *Q*

Here, *L* is lower triangular (upper triangle equal to zero) with nonzero diagonal, and *Q* is
row-orthonormal, meaning that

Q * *Q*\ :sup:‘T‘

is equal to the identity matrix of shape *(x, x)*.

If *n>2*, *gelqf* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single LQ factorization A = [[1., 2., 3.], [4., 5., 6.]] Q, L = gelqf(A) Q = [[-0.26726124, -
0.53452248, -0.80178373], [0.87287156, 0.21821789, -0.43643578]] L = [[-3.74165739, 0.], [-
8.55235974, 1.96396101]]

Batch LQ factorization A = [[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]] Q, L = gelqf(A)
Q = [[[-0.26726124, -0.53452248, -0.80178373], [0.87287156, 0.21821789, -0.43643578]], [[-
0.50257071, -0.57436653, -0.64616234], [0.7620735, 0.05862104, -0.64483142]]] L = [[[-3.74165739,
0.], [-8.55235974, 1.96396101]], [[-13.92838828, 0.], [-19.09768702, 0.52758934]]]

Defined in src/operator/tensor/la_op.cc:L798

Value

out The result mx.ndarray

150 mx.nd.linalg.gemm

mx.nd.linalg.gemm Performs general matrix multiplication and accumulation. Input are
tensors *A*, *B*, *C*, each of dimension *n >= 2* and having the
same shape on the leading *n-2* dimensions.

Description

If *n=2*, the BLAS3 function *gemm* is performed:

Arguments

A NDArray-or-Symbol Tensor of input matrices

B NDArray-or-Symbol Tensor of input matrices

C NDArray-or-Symbol Tensor of input matrices

transpose.a boolean, optional, default=0 Multiply with transposed of first input (A).

transpose.b boolean, optional, default=0 Multiply with transposed of second input (B).

alpha double, optional, default=1 Scalar factor multiplied with A*B.

beta double, optional, default=1 Scalar factor multiplied with C.

axis int, optional, default=’-2’ Axis corresponding to the matrix rows.

Details

out = *alpha* * *op*\ (*A*) * *op*\ (*B*) + *beta* * *C*

Here, *alpha* and *beta* are scalar parameters, and *op()* is either the identity or matrix transpo-
sition (depending on *transpose_a*, *transpose_b*).

If *n>2*, *gemm* is performed separately for a batch of matrices. The column indices of the
matrices are given by the last dimensions of the tensors, the row indices by the axis specified with
the *axis* parameter. By default, the trailing two dimensions will be used for matrix encoding.

For a non-default axis parameter, the operation performed is equivalent to a series of swapaxes/gemm/swapaxes
calls. For example let *A*, *B*, *C* be 5 dimensional tensors. Then gemm(*A*, *B*, *C*,
axis=1) is equivalent to the following without the overhead of the additional swapaxis operations::

A1 = swapaxes(A, dim1=1, dim2=3) B1 = swapaxes(B, dim1=1, dim2=3) C = swapaxes(C, dim1=1,
dim2=3) C = gemm(A1, B1, C) C = swapaxis(C, dim1=1, dim2=3)

When the input data is of type float32 and the environment variables MXNET_CUDA_ALLOW_TENSOR_CORE
and MXNET_CUDA_TENSOR_OP_MATH_ALLOW_CONVERSION are set to 1, this operator
will try to use pseudo-float16 precision (float32 math with float16 I/O) precision in order to use
Tensor Cores on suitable NVIDIA GPUs. This can sometimes give significant speedups.

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix multiply-add A = [[1.0, 1.0], [1.0, 1.0]] B = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]] C =
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] gemm(A, B, C, transpose_b=True, alpha=2.0, beta=10.0) = [[14.0,
14.0, 14.0], [14.0, 14.0, 14.0]]

mx.nd.linalg.gemm2 151

Batch matrix multiply-add A = [[[1.0, 1.0]], [[0.1, 0.1]]] B = [[[1.0, 1.0]], [[0.1, 0.1]]] C = [[[10.0]],
[[0.01]]] gemm(A, B, C, transpose_b=True, alpha=2.0 , beta=10.0) = [[[104.0]], [[0.14]]]

Defined in src/operator/tensor/la_op.cc:L89

Value

out The result mx.ndarray

mx.nd.linalg.gemm2 Performs general matrix multiplication. Input are tensors *A*, *B*,
each of dimension *n >= 2* and having the same shape on the leading
n-2 dimensions.

Description

If *n=2*, the BLAS3 function *gemm* is performed:

Arguments

A NDArray-or-Symbol Tensor of input matrices

B NDArray-or-Symbol Tensor of input matrices

transpose.a boolean, optional, default=0 Multiply with transposed of first input (A).

transpose.b boolean, optional, default=0 Multiply with transposed of second input (B).

alpha double, optional, default=1 Scalar factor multiplied with A*B.

axis int, optional, default=’-2’ Axis corresponding to the matrix row indices.

Details

out = *alpha* * *op*\ (*A*) * *op*\ (*B*)

Here *alpha* is a scalar parameter and *op()* is either the identity or the matrix transposition
(depending on *transpose_a*, *transpose_b*).

If *n>2*, *gemm* is performed separately for a batch of matrices. The column indices of the
matrices are given by the last dimensions of the tensors, the row indices by the axis specified with
the *axis* parameter. By default, the trailing two dimensions will be used for matrix encoding.

For a non-default axis parameter, the operation performed is equivalent to a series of swapaxes/gemm/swapaxes
calls. For example let *A*, *B* be 5 dimensional tensors. Then gemm(*A*, *B*, axis=1) is equiv-
alent to the following without the overhead of the additional swapaxis operations::

A1 = swapaxes(A, dim1=1, dim2=3) B1 = swapaxes(B, dim1=1, dim2=3) C = gemm2(A1, B1) C
= swapaxis(C, dim1=1, dim2=3)

When the input data is of type float32 and the environment variables MXNET_CUDA_ALLOW_TENSOR_CORE
and MXNET_CUDA_TENSOR_OP_MATH_ALLOW_CONVERSION are set to 1, this operator
will try to use pseudo-float16 precision (float32 math with float16 I/O) precision in order to use
Tensor Cores on suitable NVIDIA GPUs. This can sometimes give significant speedups.

.. note:: The operator supports float32 and float64 data types only.

152 mx.nd.linalg.inverse

Examples::

Single matrix multiply A = [[1.0, 1.0], [1.0, 1.0]] B = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]] gemm2(A,
B, transpose_b=True, alpha=2.0) = [[4.0, 4.0, 4.0], [4.0, 4.0, 4.0]]

Batch matrix multiply A = [[[1.0, 1.0]], [[0.1, 0.1]]] B = [[[1.0, 1.0]], [[0.1, 0.1]]] gemm2(A, B,
transpose_b=True, alpha=2.0) = [[[4.0]], [[0.04]]]

Defined in src/operator/tensor/la_op.cc:L163

Value

out The result mx.ndarray

mx.nd.linalg.inverse Compute the inverse of a matrix. Input is a tensor *A* of dimension
n >= 2.

Description

If *n=2*, *A* is a square matrix. We compute:

Arguments

A NDArray-or-Symbol Tensor of square matrix

Details

out = *A*\ :sup:‘-1‘

If *n>2*, *inverse* is performed separately on the trailing two dimensions for all inputs (batch
mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix inverse A = [[1., 4.], [2., 3.]] inverse(A) = [[-0.6, 0.8], [0.4, -0.2]]

Batch matrix inverse A = [[[1., 4.], [2., 3.]], [[1., 3.], [2., 4.]]] inverse(A) = [[[-0.6, 0.8], [0.4, -0.2]],
[[-2., 1.5], [1., -0.5]]]

Defined in src/operator/tensor/la_op.cc:L920

Value

out The result mx.ndarray

mx.nd.linalg.makediag 153

mx.nd.linalg.makediag Constructs a square matrix with the input as diagonal. Input is a ten-
sor *A* of dimension *n >= 1*.

Description

If *n=1*, then *A* represents the diagonal entries of a single square matrix. This matrix will be
returned as a 2-dimensional tensor. If *n>1*, then *A* represents a batch of diagonals of square
matrices. The batch of diagonal matrices will be returned as an *n+1*-dimensional tensor.

Arguments

A NDArray-or-Symbol Tensor of diagonal entries

offset int, optional, default=’0’ Offset of the diagonal versus the main diagonal. 0
corresponds to the main diagonal, a negative/positive value to diagonals be-
low/above the main diagonal.

Details

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single diagonal matrix construction A = [1.0, 2.0]

makediag(A) = [[1.0, 0.0], [0.0, 2.0]]

makediag(A, 1) = [[0.0, 1.0, 0.0], [0.0, 0.0, 2.0], [0.0, 0.0, 0.0]]

Batch diagonal matrix construction A = [[1.0, 2.0], [3.0, 4.0]]

makediag(A) = [[[1.0, 0.0], [0.0, 2.0]], [[3.0, 0.0], [0.0, 4.0]]]

Defined in src/operator/tensor/la_op.cc:L547

Value

out The result mx.ndarray

mx.nd.linalg.maketrian

Constructs a square matrix with the input representing a specific trian-
gular sub-matrix. This is basically the inverse of *linalg.extracttrian*.
Input is a tensor *A* of dimension *n >= 1*.

Description

If *n=1*, then *A* represents the entries of a triangular matrix which is lower triangular if *off-
set<0* or *offset=0*, *lower=true*. The resulting matrix is derived by first constructing the square
matrix with the entries outside the triangle set to zero and then adding *offset*-times an additional
diagonal with zero entries to the square matrix.

154 mx.nd.linalg.potrf

Arguments

A NDArray-or-Symbol Tensor of triangular matrices stored as vectors

offset int, optional, default=’0’ Offset of the diagonal versus the main diagonal. 0
corresponds to the main diagonal, a negative/positive value to diagonals be-
low/above the main diagonal.

lower boolean, optional, default=1 Refer to the lower triangular matrix if lower=true,
refer to the upper otherwise. Only relevant when offset=0

Details

If *n>1*, then *A* represents a batch of triangular sub-matrices. The batch of corresponding square
matrices is returned as an *n+1*-dimensional tensor.

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix construction A = [1.0, 2.0, 3.0]

maketrian(A) = [[1.0, 0.0], [2.0, 3.0]]

maketrian(A, lower=false) = [[1.0, 2.0], [0.0, 3.0]]

maketrian(A, offset=1) = [[0.0, 1.0, 2.0], [0.0, 0.0, 3.0], [0.0, 0.0, 0.0]] maketrian(A, offset=-1) =
[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]]

Batch matrix construction A = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]

maketrian(A) = [[[1.0, 0.0], [2.0, 3.0]], [[4.0, 0.0], [5.0, 6.0]]]

maketrian(A, offset=1) = [[[0.0, 1.0, 2.0], [0.0, 0.0, 3.0], [0.0, 0.0, 0.0]], [[0.0, 4.0, 5.0], [0.0, 0.0,
6.0], [0.0, 0.0, 0.0]]]

Defined in src/operator/tensor/la_op.cc:L673

Value

out The result mx.ndarray

mx.nd.linalg.potrf Performs Cholesky factorization of a symmetric positive-definite ma-
trix. Input is a tensor *A* of dimension *n >= 2*.

Description

If *n=2*, the Cholesky factor *B* of the symmetric, positive definite matrix *A* is computed. *B*
is triangular (entries of upper or lower triangle are all zero), has positive diagonal entries, and:

Arguments

A NDArray-or-Symbol Tensor of input matrices to be decomposed

mx.nd.linalg.potri 155

Details

A = *B* * *B*\ :sup:‘T‘ if *lower* = *true* *A* = *B*\ :sup:‘T‘ * *B* if *lower* = *false*

If *n>2*, *potrf* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix factorization A = [[4.0, 1.0], [1.0, 4.25]] potrf(A) = [[2.0, 0], [0.5, 2.0]]

Batch matrix factorization A = [[[4.0, 1.0], [1.0, 4.25]], [[16.0, 4.0], [4.0, 17.0]]] potrf(A) = [[[2.0,
0], [0.5, 2.0]], [[4.0, 0], [1.0, 4.0]]]

Defined in src/operator/tensor/la_op.cc:L214

Value

out The result mx.ndarray

mx.nd.linalg.potri Performs matrix inversion from a Cholesky factorization. Input is a
tensor *A* of dimension *n >= 2*.

Description

If *n=2*, *A* is a triangular matrix (entries of upper or lower triangle are all zero) with positive
diagonal. We compute:

Arguments

A NDArray-or-Symbol Tensor of lower triangular matrices

Details

out = *A*\ :sup:‘-T‘ * *A*\ :sup:‘-1‘ if *lower* = *true* *out* = *A*\ :sup:‘-1‘ * *A*\ :sup:‘-
T‘ if *lower* = *false*

In other words, if *A* is the Cholesky factor of a symmetric positive definite matrix *B* (obtained
by *potrf*), then

out = *B*\ :sup:‘-1‘

If *n>2*, *potri* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

.. note:: Use this operator only if you are certain you need the inverse of *B*, and cannot use the
Cholesky factor *A* (*potrf*), together with backsubstitution (*trsm*). The latter is numerically
much safer, and also cheaper.

Examples::

Single matrix inverse A = [[2.0, 0], [0.5, 2.0]] potri(A) = [[0.26563, -0.0625], [-0.0625, 0.25]]

Batch matrix inverse A = [[[2.0, 0], [0.5, 2.0]], [[4.0, 0], [1.0, 4.0]]] potri(A) = [[[0.26563, -0.0625],
[-0.0625, 0.25]], [[0.06641, -0.01562], [-0.01562, 0,0625]]]

Defined in src/operator/tensor/la_op.cc:L275

156 mx.nd.linalg.slogdet

Value

out The result mx.ndarray

mx.nd.linalg.slogdet Compute the sign and log of the determinant of a matrix. Input is a
tensor *A* of dimension *n >= 2*.

Description

If *n=2*, *A* is a square matrix. We compute:

Arguments

A NDArray-or-Symbol Tensor of square matrix

Details

sign = *sign(det(A))* *logabsdet* = *log(abs(det(A)))*

If *n>2*, *slogdet* is performed separately on the trailing two dimensions for all inputs (batch
mode).

.. note:: The operator supports float32 and float64 data types only. .. note:: The gradient is not
properly defined on sign, so the gradient of it is not backwarded. .. note:: No gradient is backwarded
when A is non-invertible. Please see the docs of operator det for detail.

Examples::

Single matrix signed log determinant A = [[2., 3.], [1., 4.]] sign, logabsdet = slogdet(A) sign = [1.]
logabsdet = [1.609438]

Batch matrix signed log determinant A = [[[2., 3.], [1., 4.]], [[1., 2.], [2., 4.]], [[1., 2.], [4., 3.]]] sign,
logabsdet = slogdet(A) sign = [1., 0., -1.] logabsdet = [1.609438, -inf, 1.609438]

Defined in src/operator/tensor/la_op.cc:L1034

Value

out The result mx.ndarray

mx.nd.linalg.sumlogdiag 157

mx.nd.linalg.sumlogdiag

Computes the sum of the logarithms of the diagonal elements of a
square matrix. Input is a tensor *A* of dimension *n >= 2*.

Description

If *n=2*, *A* must be square with positive diagonal entries. We sum the natural logarithms of the
diagonal elements, the result has shape (1,).

Arguments

A NDArray-or-Symbol Tensor of square matrices

Details

If *n>2*, *sumlogdiag* is performed separately on the trailing two dimensions for all inputs (batch
mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix reduction A = [[1.0, 1.0], [1.0, 7.0]] sumlogdiag(A) = [1.9459]

Batch matrix reduction A = [[[1.0, 1.0], [1.0, 7.0]], [[3.0, 0], [0, 17.0]]] sumlogdiag(A) = [1.9459,
3.9318]

Defined in src/operator/tensor/la_op.cc:L445

Value

out The result mx.ndarray

mx.nd.linalg.syrk Multiplication of matrix with its transpose. Input is a tensor *A* of
dimension *n >= 2*.

Description

If *n=2*, the operator performs the BLAS3 function *syrk*:

Arguments

A NDArray-or-Symbol Tensor of input matrices

transpose boolean, optional, default=0 Use transpose of input matrix.

alpha double, optional, default=1 Scalar factor to be applied to the result.

158 mx.nd.linalg.trmm

Details

out = *alpha* * *A* * *A*\ :sup:‘T‘

if *transpose=False*, or

out = *alpha* * *A*\ :sup:‘T‘ \ * *A*

if *transpose=True*.

If *n>2*, *syrk* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix multiply A = [[1., 2., 3.], [4., 5., 6.]] syrk(A, alpha=1., transpose=False) = [[14., 32.],
[32., 77.]] syrk(A, alpha=1., transpose=True) = [[17., 22., 27.], [22., 29., 36.], [27., 36., 45.]]

Batch matrix multiply A = [[[1., 1.]], [[0.1, 0.1]]] syrk(A, alpha=2., transpose=False) = [[[4.]],
[[0.04]]]

Defined in src/operator/tensor/la_op.cc:L730

Value

out The result mx.ndarray

mx.nd.linalg.trmm Performs multiplication with a lower triangular matrix. Input are ten-
sors *A*, *B*, each of dimension *n >= 2* and having the same shape
on the leading *n-2* dimensions.

Description

If *n=2*, *A* must be triangular. The operator performs the BLAS3 function *trmm*:

Arguments

A NDArray-or-Symbol Tensor of lower triangular matrices

B NDArray-or-Symbol Tensor of matrices

transpose boolean, optional, default=0 Use transposed of the triangular matrix

rightside boolean, optional, default=0 Multiply triangular matrix from the right to non-
triangular one.

lower boolean, optional, default=1 True if the triangular matrix is lower triangular,
false if it is upper triangular.

alpha double, optional, default=1 Scalar factor to be applied to the result.

mx.nd.linalg.trsm 159

Details

out = *alpha* * *op*\ (*A*) * *B*

if *rightside=False*, or

out = *alpha* * *B* * *op*\ (*A*)

if *rightside=True*. Here, *alpha* is a scalar parameter, and *op()* is either the identity or the
matrix transposition (depending on *transpose*).

If *n>2*, *trmm* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single triangular matrix multiply A = [[1.0, 0], [1.0, 1.0]] B = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
trmm(A, B, alpha=2.0) = [[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]]

Batch triangular matrix multiply A = [[[1.0, 0], [1.0, 1.0]], [[1.0, 0], [1.0, 1.0]]] B = [[[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0]], [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]] trmm(A, B, alpha=2.0) = [[[2.0, 2.0, 2.0], [4.0, 4.0,
4.0]], [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]]

Defined in src/operator/tensor/la_op.cc:L333

Value

out The result mx.ndarray

mx.nd.linalg.trsm Solves matrix equation involving a lower triangular matrix. Input are
tensors *A*, *B*, each of dimension *n >= 2* and having the same
shape on the leading *n-2* dimensions.

Description

If *n=2*, *A* must be triangular. The operator performs the BLAS3 function *trsm*, solving for
out in:

Arguments

A NDArray-or-Symbol Tensor of lower triangular matrices

B NDArray-or-Symbol Tensor of matrices

transpose boolean, optional, default=0 Use transposed of the triangular matrix

rightside boolean, optional, default=0 Multiply triangular matrix from the right to non-
triangular one.

lower boolean, optional, default=1 True if the triangular matrix is lower triangular,
false if it is upper triangular.

alpha double, optional, default=1 Scalar factor to be applied to the result.

160 mx.nd.load

Details

op\ (*A*) * *out* = *alpha* * *B*

if *rightside=False*, or

out * *op*\ (*A*) = *alpha* * *B*

if *rightside=True*. Here, *alpha* is a scalar parameter, and *op()* is either the identity or the
matrix transposition (depending on *transpose*).

If *n>2*, *trsm* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix solve A = [[1.0, 0], [1.0, 1.0]] B = [[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]] trsm(A, B, al-
pha=0.5) = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]

Batch matrix solve A = [[[1.0, 0], [1.0, 1.0]], [[1.0, 0], [1.0, 1.0]]] B = [[[2.0, 2.0, 2.0], [4.0, 4.0,
4.0]], [[4.0, 4.0, 4.0], [8.0, 8.0, 8.0]]] trsm(A, B, alpha=0.5) = [[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[2.0,
2.0, 2.0], [2.0, 2.0, 2.0]]]

Defined in src/operator/tensor/la_op.cc:L396

Value

out The result mx.ndarray

mx.nd.load Load an mx.nd.array object on disk

Description

Load an mx.nd.array object on disk

Usage

mx.nd.load(filename)

Arguments

filename the filename (including the path)

Examples

mat = mx.nd.array(1:3)
mx.nd.save(mat, 'temp.mat')
mat2 = mx.nd.load('temp.mat')
as.array(mat)
as.array(mat2)

mx.nd.log 161

mx.nd.log Returns element-wise Natural logarithmic value of the input.

Description

The natural logarithm is logarithm in base *e*, so that “log(exp(x)) = x“

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “log“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L77

Value

out The result mx.ndarray

mx.nd.log.softmax Computes the log softmax of the input. This is equivalent to computing
softmax followed by log.

Description

Examples::

Arguments

data NDArray-or-Symbol The input array.

axis int, optional, default=’-1’ The axis along which to compute softmax.

temperature double or None, optional, default=None Temperature parameter in softmax

dtype None, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to the same as input’s dtype if not
defined (dtype=None).

use.length boolean or None, optional, default=0 Whether to use the length input as a mask
over the data input.

Details

»> x = mx.nd.array([1, 2, .1]) »> mx.nd.log_softmax(x).asnumpy() array([-1.41702998, -0.41702995,
-2.31702995], dtype=float32)

»> x = mx.nd.array([[1, 2, .1],[.1, 2, 1]]) »> mx.nd.log_softmax(x, axis=0).asnumpy() array([[-
0.34115392, -0.69314718, -1.24115396], [-1.24115396, -0.69314718, -0.34115392]], dtype=float32)

162 mx.nd.log1p

Value

out The result mx.ndarray

mx.nd.log10 Returns element-wise Base-10 logarithmic value of the input.

Description

“10**log10(x) = x“

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “log10“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L94

Value

out The result mx.ndarray

mx.nd.log1p Returns element-wise “log(1 + x)“ value of the input.

Description

This function is more accurate than “log(1 + x)“ for small “x“ so that :math:‘1+x\approx 1‘

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “log1p“ output depends upon the input storage type:

- log1p(default) = default - log1p(row_sparse) = row_sparse - log1p(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L199

Value

out The result mx.ndarray

mx.nd.log2 163

mx.nd.log2 Returns element-wise Base-2 logarithmic value of the input.

Description

“2**log2(x) = x“

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “log2“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L106

Value

out The result mx.ndarray

mx.nd.logical.not Returns the result of logical NOT (!) function

Description

Example: logical_not([-2., 0., 1.]) = [0., 1., 0.]

Arguments

data NDArray-or-Symbol The input array.

Value

out The result mx.ndarray

164 mx.nd.make.loss

mx.nd.LRN Applies local response normalization to the input.

Description

The local response normalization layer performs "lateral inhibition" by normalizing over local input
regions.

Arguments

data NDArray-or-Symbol Input data to LRN

alpha float, optional, default=9.99999975e-05 The variance scaling parameter :math:‘\alpha‘
in the LRN expression.

beta float, optional, default=0.75 The power parameter :math:‘\beta‘ in the LRN ex-
pression.

knorm float, optional, default=2 The parameter :math:‘k‘ in the LRN expression.

nsize int (non-negative), required normalization window width in elements.

Details

If :math:‘a_x,y^i‘ is the activity of a neuron computed by applying kernel :math:‘i‘ at position
:math:‘(x, y)‘ and then applying the ReLU nonlinearity, the response-normalized activity :math:‘b_x,y^i‘
is given by the expression:

.. math:: b_x,y^i = \fraca_x,y^i\Bigg(k + \frac\alphan \sum_j=max(0, i-\fracn2)^min(N-1, i+\fracn2)
(a_x,y^j)^2\Bigg)^\beta

where the sum runs over :math:‘n‘ "adjacent" kernel maps at the same spatial position, and :math:‘N‘
is the total number of kernels in the layer.

Defined in src/operator/nn/lrn.cc:L158

Value

out The result mx.ndarray

mx.nd.make.loss Make your own loss function in network construction.

Description

This operator accepts a customized loss function symbol as a terminal loss and the symbol should
be an operator with no backward dependency. The output of this function is the gradient of loss
with respect to the input data.

mx.nd.MakeLoss 165

Arguments

data NDArray-or-Symbol The input array.

Details

For example, if you are a making a cross entropy loss function. Assume “out“ is the predicted
output and “label“ is the true label, then the cross entropy can be defined as::

cross_entropy = label * log(out) + (1 - label) * log(1 - out) loss = make_loss(cross_entropy)

We will need to use “make_loss“ when we are creating our own loss function or we want to combine
multiple loss functions. Also we may want to stop some variables’ gradients from backpropagation.
See more detail in “BlockGrad“ or “stop_gradient“.

The storage type of “make_loss“ output depends upon the input storage type:

- make_loss(default) = default - make_loss(row_sparse) = row_sparse

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L359

Value

out The result mx.ndarray

mx.nd.MakeLoss Make your own loss function in network construction.

Description

This operator accepts a customized loss function symbol as a terminal loss and the symbol should
be an operator with no backward dependency. The output of this function is the gradient of loss
with respect to the input data.

Arguments

data NDArray-or-Symbol Input array.

grad.scale float, optional, default=1 Gradient scale as a supplement to unary and binary
operators

valid.thresh float, optional, default=0 clip each element in the array to 0 when it is less than
“valid_thresh“. This is used when “normalization“ is set to “’valid’“.

normalization ’batch’, ’null’, ’valid’,optional, default=’null’ If this is set to null, the output
gradient will not be normalized. If this is set to batch, the output gradient will
be divided by the batch size. If this is set to valid, the output gradient will be
divided by the number of valid input elements.

166 mx.nd.max

Details

For example, if you are a making a cross entropy loss function. Assume “out“ is the predicted
output and “label“ is the true label, then the cross entropy can be defined as::

cross_entropy = label * log(out) + (1 - label) * log(1 - out) loss = MakeLoss(cross_entropy)

We will need to use “MakeLoss“ when we are creating our own loss function or we want to combine
multiple loss functions. Also we may want to stop some variables’ gradients from backpropagation.
See more detail in “BlockGrad“ or “stop_gradient“.

In addition, we can give a scale to the loss by setting “grad_scale“, so that the gradient of the loss
will be rescaled in the backpropagation.

.. note:: This operator should be used as a Symbol instead of NDArray.

Defined in src/operator/make_loss.cc:L71

Value

out The result mx.ndarray

mx.nd.max Computes the max of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L32

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Value

out The result mx.ndarray

mx.nd.max.axis 167

mx.nd.max.axis Computes the max of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L32

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Value

out The result mx.ndarray

mx.nd.mean Computes the mean of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L84

Arguments

data NDArray-or-Symbol The input

168 mx.nd.min

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Value

out The result mx.ndarray

mx.nd.min Computes the min of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L47

Arguments

data NDArray-or-Symbol The input
axis Shape or None, optional, default=None The axis or axes along which to perform

the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Value

out The result mx.ndarray

mx.nd.min.axis 169

mx.nd.min.axis Computes the min of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L47

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Value

out The result mx.ndarray

mx.nd.moments Calculate the mean and variance of ‘data‘.

Description

The mean and variance are calculated by aggregating the contents of data across axes. If x is 1-D
and axes = [0] this is just the mean and variance of a vector.

Arguments

data NDArray-or-Symbol Input ndarray

axes Shape or None, optional, default=None Array of ints. Axes along which to
compute mean and variance.

keepdims boolean, optional, default=0 produce moments with the same dimensionality as
the input.

170 mx.nd.mp.lamb.update.phase1

Details

Example:

x = [[1, 2, 3], [4, 5, 6]] mean, var = moments(data=x, axes=[0]) mean = [2.5, 3.5, 4.5] var =
[2.25, 2.25, 2.25] mean, var = moments(data=x, axes=[1]) mean = [2.0, 5.0] var = [0.66666667,
0.66666667] mean, var = moments(data=x, axis=[0, 1]) mean = [3.5] var = [2.9166667]

Defined in src/operator/nn/moments.cc:L54

Value

out The result mx.ndarray

mx.nd.mp.lamb.update.phase1

Mixed Precision version of Phase I of lamb update it performs the
following operations and returns g:.

Description

Link to paper: https://arxiv.org/pdf/1904.00962.pdf

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mean NDArray-or-Symbol Moving mean

var NDArray-or-Symbol Moving variance

weight32 NDArray-or-Symbol Weight32

beta1 float, optional, default=0.899999976 The decay rate for the 1st moment esti-
mates.

beta2 float, optional, default=0.999000013 The decay rate for the 2nd moment esti-
mates.

epsilon float, optional, default=9.99999997e-07 A small constant for numerical stability.

t int, required Index update count.
bias.correction

boolean, optional, default=1 Whether to use bias correction.

wd float, required Weight decay augments the objective function with a regulariza-
tion term that penalizes large weights. The penalty scales with the square of the
magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

mx.nd.mp.lamb.update.phase2 171

Details

.. math:: \begingather* grad32 = grad(float16) * rescale_grad if (grad < -clip_gradient) then grad =
-clip_gradient if (grad > clip_gradient) then grad = clip_gradient

mean = beta1 * mean + (1 - beta1) * grad; variance = beta2 * variance + (1. - beta2) * grad ^ 2;

if (bias_correction) then mean_hat = mean / (1. - beta1^t); var_hat = var / (1 - beta2^t); g =
mean_hat / (var_hat^(1/2) + epsilon) + wd * weight32; else g = mean / (var_data^(1/2) + epsilon)
+ wd * weight32; \endgather*

Defined in src/operator/optimizer_op.cc:L1024

Value

out The result mx.ndarray

mx.nd.mp.lamb.update.phase2

Mixed Precision version Phase II of lamb update it performs the fol-
lowing operations and updates grad.

Description

Link to paper: https://arxiv.org/pdf/1904.00962.pdf

Arguments

weight NDArray-or-Symbol Weight

g NDArray-or-Symbol Output of mp_lamb_update_phase 1

r1 NDArray-or-Symbol r1

r2 NDArray-or-Symbol r2

weight32 NDArray-or-Symbol Weight32

lr float, required Learning rate

lower.bound float, optional, default=-1 Lower limit of norm of weight. If lower_bound <= 0,
Lower limit is not set

upper.bound float, optional, default=-1 Upper limit of norm of weight. If upper_bound <= 0,
Upper limit is not set

Details

.. math:: \begingather* if (lower_bound >= 0) then r1 = max(r1, lower_bound) if (upper_bound >=
0) then r1 = max(r1, upper_bound)

if (r1 == 0 or r2 == 0) then lr = lr else lr = lr * (r1/r2) weight32 = weight32 - lr * g weight(float16)
= weight32 \endgather*

Defined in src/operator/optimizer_op.cc:L1066

172 mx.nd.mp.nag.mom.update

Value

out The result mx.ndarray

mx.nd.mp.nag.mom.update

Update function for multi-precision Nesterov Accelerated Gradient(
NAG) optimizer.

Description

Defined in src/operator/optimizer_op.cc:L736

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mom NDArray-or-Symbol Momentum

weight32 NDArray-or-Symbol Weight32

lr float, required Learning rate

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

Value

out The result mx.ndarray

mx.nd.mp.sgd.mom.update 173

mx.nd.mp.sgd.mom.update

Updater function for multi-precision sgd optimizer

Description

Updater function for multi-precision sgd optimizer

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mom NDArray-or-Symbol Momentum

weight32 NDArray-or-Symbol Weight32

lr float, required Learning rate

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse and both weight and momentum have the same stype

Value

out The result mx.ndarray

mx.nd.mp.sgd.update Updater function for multi-precision sgd optimizer

Description

Updater function for multi-precision sgd optimizer

174 mx.nd.multi.all.finite

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol gradient

weight32 NDArray-or-Symbol Weight32

lr float, required Learning rate

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse.

Value

out The result mx.ndarray

mx.nd.multi.all.finite

Check if all the float numbers in all the arrays are finite (used for AMP)

Description

Defined in src/operator/contrib/all_finite.cc:L133

Arguments

data NDArray-or-Symbol[] Arrays

num.arrays int, optional, default=’1’ Number of arrays.

init.output boolean, optional, default=1 Initialize output to 1.

Value

out The result mx.ndarray

mx.nd.multi.lars 175

mx.nd.multi.lars Compute the LARS coefficients of multiple weights and grads from
their sums of square"

Description

Defined in src/operator/contrib/multi_lars.cc:L37

Arguments

lrs NDArray-or-Symbol Learning rates to scale by LARS coefficient
weights.sum.sq NDArray-or-Symbol sum of square of weights arrays
grads.sum.sq NDArray-or-Symbol sum of square of gradients arrays
wds NDArray-or-Symbol weight decays
eta float, required LARS eta
eps float, required LARS eps
rescale.grad float, optional, default=1 Gradient rescaling factor

Value

out The result mx.ndarray

mx.nd.multi.mp.sgd.mom.update

Momentum update function for multi-precision Stochastic Gradient
Descent (SGD) optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Arguments

data NDArray-or-Symbol[] Weights
lrs tuple of <float>, required Learning rates.
wds tuple of <float>, required Weight decay augments the objective function with

a regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.
rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

176 mx.nd.multi.mp.sgd.update

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

Defined in src/operator/optimizer_op.cc:L463

Value

out The result mx.ndarray

mx.nd.multi.mp.sgd.update

Update function for multi-precision Stochastic Gradient Descent
(SDG) optimizer.

Description

It updates the weights using::

Arguments

data NDArray-or-Symbol[] Weights

lrs tuple of <float>, required Learning rates.

wds tuple of <float>, required Weight decay augments the objective function with
a regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

Details

weight = weight - learning_rate * (gradient + wd * weight)

Defined in src/operator/optimizer_op.cc:L408

Value

out The result mx.ndarray

mx.nd.multi.sgd.mom.update 177

mx.nd.multi.sgd.mom.update

Momentum update function for Stochastic Gradient Descent (SGD)
optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Arguments

data NDArray-or-Symbol[] Weights, gradients and momentum

lrs tuple of <float>, required Learning rates.

wds tuple of <float>, required Weight decay augments the objective function with
a regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

Defined in src/operator/optimizer_op.cc:L365

Value

out The result mx.ndarray

178 mx.nd.multi.sum.sq

mx.nd.multi.sgd.update

Update function for Stochastic Gradient Descent (SDG) optimizer.

Description

It updates the weights using::

Arguments

data NDArray-or-Symbol[] Weights
lrs tuple of <float>, required Learning rates.
wds tuple of <float>, required Weight decay augments the objective function with

a regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

Details

weight = weight - learning_rate * (gradient + wd * weight)

Defined in src/operator/optimizer_op.cc:L320

Value

out The result mx.ndarray

mx.nd.multi.sum.sq Compute the sums of squares of multiple arrays

Description

Defined in src/operator/contrib/multi_sum_sq.cc:L36

Arguments

data NDArray-or-Symbol[] Arrays
num.arrays int, required number of input arrays.

Value

out The result mx.ndarray

mx.nd.nag.mom.update 179

mx.nd.nag.mom.update Update function for Nesterov Accelerated Gradient(NAG) optimizer.
It updates the weights using the following formula,

Description

.. math:: v_t = \gamma v_t-1 + \eta * \nabla J(W_t-1 - \gamma v_t-1)\ W_t = W_t-1 - v_t

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mom NDArray-or-Symbol Momentum

lr float, required Learning rate

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

Details

Where :math:‘\eta‘ is the learning rate of the optimizer :math:‘\gamma‘ is the decay rate of the
momentum estimate :math:‘\v_t‘ is the update vector at time step ‘t‘ :math:‘\W_t‘ is the weight
vector at time step ‘t‘

Defined in src/operator/optimizer_op.cc:L717

Value

out The result mx.ndarray

180 mx.nd.nansum

mx.nd.nanprod Computes the product of array elements over given axes treating Not
a Numbers (“NaN“) as one.

Description

Computes the product of array elements over given axes treating Not a Numbers (“NaN“) as one.

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Details

Defined in src/operator/tensor/broadcast_reduce_prod_value.cc:L47

Value

out The result mx.ndarray

mx.nd.nansum Computes the sum of array elements over given axes treating Not a
Numbers (“NaN“) as zero.

Description

Computes the sum of array elements over given axes treating Not a Numbers (“NaN“) as zero.

mx.nd.negative 181

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Details

Defined in src/operator/tensor/broadcast_reduce_sum_value.cc:L102

Value

out The result mx.ndarray

mx.nd.negative Numerical negative of the argument, element-wise.

Description

The storage type of “negative“ output depends upon the input storage type:

Arguments

data NDArray-or-Symbol The input array.

Details

- negative(default) = default - negative(row_sparse) = row_sparse - negative(csr) = csr

Value

out The result mx.ndarray

182 mx.nd.norm

mx.nd.norm Computes the norm on an NDArray.

Description

This operator computes the norm on an NDArray with the specified axis, depending on the value of
the ord parameter. By default, it computes the L2 norm on the entire array. Currently only ord=2
supports sparse ndarrays.

Arguments

data NDArray-or-Symbol The input

ord int, optional, default=’2’ Order of the norm. Currently ord=1 and ord=2 is sup-
ported.

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction. The default, ‘axis=()‘, will compute over all elements into a scalar
array with shape ‘(1,)‘. If ‘axis‘ is int, a reduction is performed on a particular
axis. If ‘axis‘ is a 2-tuple, it specifies the axes that hold 2-D matrices, and the
matrix norms of these matrices are computed.

out.dtype None, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’,optional, default=’None’
The data type of the output.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axis is left in the
result as dimension with size one.

Details

Examples::

x = [[[1, 2], [3, 4]], [[2, 2], [5, 6]]]

norm(x, ord=2, axis=1) = [[3.1622777 4.472136] [5.3851647 6.3245554]]

norm(x, ord=1, axis=1) = [[4., 6.], [7., 8.]]

rsp = x.cast_storage(’row_sparse’)

norm(rsp) = [5.47722578]

csr = x.cast_storage(’csr’)

norm(csr) = [5.47722578]

Defined in src/operator/tensor/broadcast_reduce_norm_value.cc:L89

Value

out The result mx.ndarray

mx.nd.normal 183

mx.nd.normal Draw random samples from a normal (Gaussian) distribution.

Description

.. note:: The existing alias “normal“ is deprecated.

Arguments

loc float, optional, default=0 Mean of the distribution.

scale float, optional, default=1 Standard deviation of the distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

Samples are distributed according to a normal distribution parametrized by *loc* (mean) and *scale*
(standard deviation).

Example::

normal(loc=0, scale=1, shape=(2,2)) = [[1.89171135, -1.16881478], [-1.23474145, 1.55807114]]

Defined in src/operator/random/sample_op.cc:L113

Value

out The result mx.ndarray

mx.nd.one.hot Returns a one-hot array.

Description

The locations represented by ‘indices‘ take value ‘on_value‘, while all other locations take value
‘off_value‘.

184 mx.nd.ones

Arguments

indices NDArray-or-Symbol array of locations where to set on_value

depth int, required Depth of the one hot dimension.

on.value double, optional, default=1 The value assigned to the locations represented by
indices.

off.value double, optional, default=0 The value assigned to the locations not represented
by indices.

dtype ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’float32’ DType of the output

Details

‘one_hot‘ operation with ‘indices‘ of shape “(i0, i1)“ and ‘depth‘ of “d“ would result in an output
array of shape “(i0, i1, d)“ with::

output[i,j,:] = off_value output[i,j,indices[i,j]] = on_value

Examples::

one_hot([1,0,2,0], 3) = [[0. 1. 0.] [1. 0. 0.] [0. 0. 1.] [1. 0. 0.]]

one_hot([1,0,2,0], 3, on_value=8, off_value=1, dtype=’int32’) = [[1 8 1] [8 1 1] [1 1 8] [8 1 1]]

one_hot([[1,0],[1,0],[2,0]], 3) = [[[0. 1. 0.] [1. 0. 0.]]

[[0. 1. 0.] [1. 0. 0.]]

[[0. 0. 1.] [1. 0. 0.]]]

Defined in src/operator/tensor/indexing_op.cc:L797

Value

out The result mx.ndarray

mx.nd.ones Generate an mx.ndarray object with ones

Description

Generate an mx.ndarray object with ones

Usage

mx.nd.ones(shape, ctx = NULL)

Arguments

shape the dimension of the mx.ndarray

ctx optional The context device of the array. mx.ctx.default() will be used in default.

mx.nd.ones.like 185

Examples

mat = mx.nd.ones(10)
as.array(mat)
mat2 = mx.nd.ones(c(5,5))
as.array(mat)
mat3 = mx.nd.ones(c(3,3,3))
as.array(mat3)

mx.nd.ones.like Return an array of ones with the same shape and type as the input
array.

Description

Examples::

Arguments

data NDArray-or-Symbol The input

Details

x = [[0., 0., 0.], [0., 0., 0.]]

ones_like(x) = [[1., 1., 1.], [1., 1., 1.]]

Value

out The result mx.ndarray

mx.nd.Pad Pads an input array with a constant or edge values of the array.

Description

.. note:: ‘Pad‘ is deprecated. Use ‘pad‘ instead.

Arguments

data NDArray-or-Symbol An n-dimensional input array.

mode ’constant’, ’edge’, ’reflect’, required Padding type to use. "constant" pads with
‘constant_value‘ "edge" pads using the edge values of the input array "reflect"
pads by reflecting values with respect to the edges.

186 mx.nd.Pad

pad.width Shape(tuple), required Widths of the padding regions applied to the edges of
each axis. It is a tuple of integer padding widths for each axis of the format “(be-
fore_1, after_1, ... , before_N, after_N)“. It should be of length “2*N“ where
“N“ is the number of dimensions of the array.This is equivalent to pad_width in
numpy.pad, but flattened.

constant.value double, optional, default=0 The value used for padding when ‘mode‘ is "con-
stant".

Details

.. note:: Current implementation only supports 4D and 5D input arrays with padding applied only
on axes 1, 2 and 3. Expects axes 4 and 5 in ‘pad_width‘ to be zero.

This operation pads an input array with either a ‘constant_value‘ or edge values along each axis of
the input array. The amount of padding is specified by ‘pad_width‘.

‘pad_width‘ is a tuple of integer padding widths for each axis of the format “(before_1, after_1,
... , before_N, after_N)“. The ‘pad_width‘ should be of length “2*N“ where “N“ is the number of
dimensions of the array.

For dimension “N“ of the input array, “before_N“ and “after_N“ indicates how many values to
add before and after the elements of the array along dimension “N“. The widths of the higher two
dimensions “before_1“, “after_1“, “before_2“, “after_2“ must be 0.

Example::

x = [[[[1. 2. 3.] [4. 5. 6.]]

[[7. 8. 9.] [10. 11. 12.]]]

[[[11. 12. 13.] [14. 15. 16.]]

[[17. 18. 19.] [20. 21. 22.]]]]

pad(x,mode="edge", pad_width=(0,0,0,0,1,1,1,1)) =

[[[[1. 1. 2. 3. 3.] [1. 1. 2. 3. 3.] [4. 4. 5. 6. 6.] [4. 4. 5. 6. 6.]]

[[7. 7. 8. 9. 9.] [7. 7. 8. 9. 9.] [10. 10. 11. 12. 12.] [10. 10. 11. 12. 12.]]]

[[[11. 11. 12. 13. 13.] [11. 11. 12. 13. 13.] [14. 14. 15. 16. 16.] [14. 14. 15. 16. 16.]]

[[17. 17. 18. 19. 19.] [17. 17. 18. 19. 19.] [20. 20. 21. 22. 22.] [20. 20. 21. 22. 22.]]]]

pad(x, mode="constant", constant_value=0, pad_width=(0,0,0,0,1,1,1,1)) =

[[[[0. 0. 0. 0. 0.] [0. 1. 2. 3. 0.] [0. 4. 5. 6. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 0.] [0. 7. 8. 9. 0.] [0. 10. 11. 12. 0.] [0. 0. 0. 0. 0.]]]

[[[0. 0. 0. 0. 0.] [0. 11. 12. 13. 0.] [0. 14. 15. 16. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 0.] [0. 17. 18. 19. 0.] [0. 20. 21. 22. 0.] [0. 0. 0. 0. 0.]]]]

Defined in src/operator/pad.cc:L766

Value

out The result mx.ndarray

mx.nd.pad 187

mx.nd.pad Pads an input array with a constant or edge values of the array.

Description

.. note:: ‘Pad‘ is deprecated. Use ‘pad‘ instead.

Arguments

data NDArray-or-Symbol An n-dimensional input array.

mode ’constant’, ’edge’, ’reflect’, required Padding type to use. "constant" pads with
‘constant_value‘ "edge" pads using the edge values of the input array "reflect"
pads by reflecting values with respect to the edges.

pad.width Shape(tuple), required Widths of the padding regions applied to the edges of
each axis. It is a tuple of integer padding widths for each axis of the format “(be-
fore_1, after_1, ... , before_N, after_N)“. It should be of length “2*N“ where
“N“ is the number of dimensions of the array.This is equivalent to pad_width in
numpy.pad, but flattened.

constant.value double, optional, default=0 The value used for padding when ‘mode‘ is "con-
stant".

Details

.. note:: Current implementation only supports 4D and 5D input arrays with padding applied only
on axes 1, 2 and 3. Expects axes 4 and 5 in ‘pad_width‘ to be zero.

This operation pads an input array with either a ‘constant_value‘ or edge values along each axis of
the input array. The amount of padding is specified by ‘pad_width‘.

‘pad_width‘ is a tuple of integer padding widths for each axis of the format “(before_1, after_1,
... , before_N, after_N)“. The ‘pad_width‘ should be of length “2*N“ where “N“ is the number of
dimensions of the array.

For dimension “N“ of the input array, “before_N“ and “after_N“ indicates how many values to
add before and after the elements of the array along dimension “N“. The widths of the higher two
dimensions “before_1“, “after_1“, “before_2“, “after_2“ must be 0.

Example::

x = [[[[1. 2. 3.] [4. 5. 6.]]

[[7. 8. 9.] [10. 11. 12.]]]

[[[11. 12. 13.] [14. 15. 16.]]

[[17. 18. 19.] [20. 21. 22.]]]]

pad(x,mode="edge", pad_width=(0,0,0,0,1,1,1,1)) =

[[[[1. 1. 2. 3. 3.] [1. 1. 2. 3. 3.] [4. 4. 5. 6. 6.] [4. 4. 5. 6. 6.]]

[[7. 7. 8. 9. 9.] [7. 7. 8. 9. 9.] [10. 10. 11. 12. 12.] [10. 10. 11. 12. 12.]]]

[[[11. 11. 12. 13. 13.] [11. 11. 12. 13. 13.] [14. 14. 15. 16. 16.] [14. 14. 15. 16. 16.]]

188 mx.nd.pick

[[17. 17. 18. 19. 19.] [17. 17. 18. 19. 19.] [20. 20. 21. 22. 22.] [20. 20. 21. 22. 22.]]]]

pad(x, mode="constant", constant_value=0, pad_width=(0,0,0,0,1,1,1,1)) =

[[[[0. 0. 0. 0. 0.] [0. 1. 2. 3. 0.] [0. 4. 5. 6. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 0.] [0. 7. 8. 9. 0.] [0. 10. 11. 12. 0.] [0. 0. 0. 0. 0.]]]

[[[0. 0. 0. 0. 0.] [0. 11. 12. 13. 0.] [0. 14. 15. 16. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 0.] [0. 17. 18. 19. 0.] [0. 20. 21. 22. 0.] [0. 0. 0. 0. 0.]]]]

Defined in src/operator/pad.cc:L766

Value

out The result mx.ndarray

mx.nd.pick Picks elements from an input array according to the input indices
along the given axis.

Description

Given an input array of shape “(d0, d1)“ and indices of shape “(i0,)“, the result will be an output
array of shape “(i0,)“ with::

Arguments

data NDArray-or-Symbol The input array

index NDArray-or-Symbol The index array

axis int or None, optional, default=’-1’ int or None. The axis to picking the elements.
Negative values means indexing from right to left. If is ‘None‘, the elements in
the index w.r.t the flattened input will be picked.

keepdims boolean, optional, default=0 If true, the axis where we pick the elements is left
in the result as dimension with size one.

mode ’clip’, ’wrap’,optional, default=’clip’ Specify how out-of-bound indices behave.
Default is "clip". "clip" means clip to the range. So, if all indices mentioned are
too large, they are replaced by the index that addresses the last element along an
axis. "wrap" means to wrap around.

Details

output[i] = input[i, indices[i]]

By default, if any index mentioned is too large, it is replaced by the index that addresses the last
element along an axis (the ‘clip‘ mode).

This function supports n-dimensional input and (n-1)-dimensional indices arrays.

Examples::

x = [[1., 2.], [3., 4.], [5., 6.]]

mx.nd.Pooling 189

// picks elements with specified indices along axis 0 pick(x, y=[0,1], 0) = [1., 4.]

// picks elements with specified indices along axis 1 pick(x, y=[0,1,0], 1) = [1., 4., 5.]

// picks elements with specified indices along axis 1 using ’wrap’ mode // to place indicies that
would normally be out of bounds pick(x, y=[2,-1,-2], 1, mode=’wrap’) = [1., 4., 5.]

y = [[1.], [0.], [2.]]

// picks elements with specified indices along axis 1 and dims are maintained pick(x, y, 1, keep-
dims=True) = [[2.], [3.], [6.]]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L151

Value

out The result mx.ndarray

mx.nd.Pooling Performs pooling on the input.

Description

The shapes for 1-D pooling are

Arguments

data NDArray-or-Symbol Input data to the pooling operator.
kernel Shape(tuple), optional, default=[] Pooling kernel size: (y, x) or (d, y, x)
pool.type ’avg’, ’lp’, ’max’, ’sum’,optional, default=’max’ Pooling type to be applied.
global.pool boolean, optional, default=0 Ignore kernel size, do global pooling based on cur-

rent input feature map.
cudnn.off boolean, optional, default=0 Turn off cudnn pooling and use MXNet pooling

operator.
pooling.convention

’full’, ’same’, ’valid’,optional, default=’valid’ Pooling convention to be applied.
stride Shape(tuple), optional, default=[] Stride: for pooling (y, x) or (d, y, x). Defaults

to 1 for each dimension.
pad Shape(tuple), optional, default=[] Pad for pooling: (y, x) or (d, y, x). Defaults to

no padding.
p.value int or None, optional, default=’None’ Value of p for Lp pooling, can be 1 or 2,

required for Lp Pooling.
count.include.pad

boolean or None, optional, default=None Only used for AvgPool, specify whether
to count padding elements for averagecalculation. For example, with a 5*5 ker-
nel on a 3*3 corner of a image,the sum of the 9 valid elements will be divided
by 25 if this is set to true,or it will be divided by 9 if this is set to false. Defaults
to true.

layout None, ’NCDHW’, ’NCHW’, ’NCW’, ’NDHWC’, ’NHWC’, ’NWC’,optional,
default=’None’ Set layout for input and output. Empty for default layout: NCW
for 1d, NCHW for 2d and NCDHW for 3d.

190 mx.nd.Pooling.v1

Details

- **data** and **out**: *(batch_size, channel, width)* (NCW layout) or *(batch_size, width,
channel)* (NWC layout),

The shapes for 2-D pooling are

- **data** and **out**: *(batch_size, channel, height, width)* (NCHW layout) or *(batch_size,
height, width, channel)* (NHWC layout),

out_height = f(height, kernel[0], pad[0], stride[0]) out_width = f(width, kernel[1], pad[1], stride[1])

The definition of *f* depends on “pooling_convention“, which has two options:

- **valid** (default)::

f(x, k, p, s) = floor((x+2*p-k)/s)+1

- **full**, which is compatible with Caffe::

f(x, k, p, s) = ceil((x+2*p-k)/s)+1

When “global_pool“ is set to be true, then global pooling is performed. It will reset “kernel=(height,
width)“ and set the appropiate padding to 0.

Three pooling options are supported by “pool_type“:

- **avg**: average pooling - **max**: max pooling - **sum**: sum pooling - **lp**: Lp pooling

For 3-D pooling, an additional *depth* dimension is added before *height*. Namely the input
data and output will have shape *(batch_size, channel, depth, height, width)* (NCDHW layout) or
(batch_size, depth, height, width, channel) (NDHWC layout).

Notes on Lp pooling:

Lp pooling was first introduced by this paper: https://arxiv.org/pdf/1204.3968.pdf. L-1 pooling is
simply sum pooling, while L-inf pooling is simply max pooling. We can see that Lp pooling stands
between those two, in practice the most common value for p is 2.

For each window “X“, the mathematical expression for Lp pooling is:

:math:‘f(X) = \sqrt[p]\sum_x^X x^p‘

Defined in src/operator/nn/pooling.cc:L419

Value

out The result mx.ndarray

mx.nd.Pooling.v1 This operator is DEPRECATED. Perform pooling on the input.

Description

The shapes for 2-D pooling is

mx.nd.Pooling.v1 191

Arguments

data NDArray-or-Symbol Input data to the pooling operator.

kernel Shape(tuple), optional, default=[] pooling kernel size: (y, x) or (d, y, x)

pool.type ’avg’, ’max’, ’sum’,optional, default=’max’ Pooling type to be applied.

global.pool boolean, optional, default=0 Ignore kernel size, do global pooling based on cur-
rent input feature map.

pooling.convention

’full’, ’valid’,optional, default=’valid’ Pooling convention to be applied.

stride Shape(tuple), optional, default=[] stride: for pooling (y, x) or (d, y, x)

pad Shape(tuple), optional, default=[] pad for pooling: (y, x) or (d, y, x)

Details

- **data**: *(batch_size, channel, height, width)* - **out**: *(batch_size, num_filter, out_height,
out_width)*, with::

out_height = f(height, kernel[0], pad[0], stride[0]) out_width = f(width, kernel[1], pad[1], stride[1])

The definition of *f* depends on “pooling_convention“, which has two options:

- **valid** (default)::

f(x, k, p, s) = floor((x+2*p-k)/s)+1

- **full**, which is compatible with Caffe::

f(x, k, p, s) = ceil((x+2*p-k)/s)+1

But “global_pool“ is set to be true, then do a global pooling, namely reset “kernel=(height, width)“.

Three pooling options are supported by “pool_type“:

- **avg**: average pooling - **max**: max pooling - **sum**: sum pooling

1-D pooling is special case of 2-D pooling with *weight=1* and *kernel[1]=1*.

For 3-D pooling, an additional *depth* dimension is added before *height*. Namely the input data
will have shape *(batch_size, channel, depth, height, width)*.

Defined in src/operator/pooling_v1.cc:L104

Value

out The result mx.ndarray

192 mx.nd.preloaded.multi.mp.sgd.mom.update

mx.nd.preloaded.multi.mp.sgd.mom.update

Momentum update function for multi-precision Stochastic Gradient
Descent (SGD) optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Arguments

data NDArray-or-Symbol[] Weights, gradients, momentums, learning rates and weight
decays

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

Defined in src/operator/contrib/preloaded_multi_sgd.cc:L200

Value

out The result mx.ndarray

mx.nd.preloaded.multi.mp.sgd.update 193

mx.nd.preloaded.multi.mp.sgd.update

Update function for multi-precision Stochastic Gradient Descent
(SDG) optimizer.

Description

It updates the weights using::

Arguments

data NDArray-or-Symbol[] Weights, gradients, learning rates and weight decays

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

Details

weight = weight - learning_rate * (gradient + wd * weight)

Defined in src/operator/contrib/preloaded_multi_sgd.cc:L140

Value

out The result mx.ndarray

mx.nd.preloaded.multi.sgd.mom.update

Momentum update function for Stochastic Gradient Descent (SGD)
optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

194 mx.nd.preloaded.multi.sgd.update

Arguments

data NDArray-or-Symbol[] Weights, gradients, momentum, learning rates and weight
decays

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

Defined in src/operator/contrib/preloaded_multi_sgd.cc:L91

Value

out The result mx.ndarray

mx.nd.preloaded.multi.sgd.update

Update function for Stochastic Gradient Descent (SDG) optimizer.

Description

It updates the weights using::

Arguments

data NDArray-or-Symbol[] Weights, gradients, learning rates and weight decays

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

Details

weight = weight - learning_rate * (gradient + wd * weight)

Defined in src/operator/contrib/preloaded_multi_sgd.cc:L42

mx.nd.prod 195

Value

out The result mx.ndarray

mx.nd.prod Computes the product of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L31

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Value

out The result mx.ndarray

mx.nd.radians Converts each element of the input array from degrees to radians.

Description

.. math:: radians([0, 90, 180, 270, 360]) = [0, \pi/2, \pi, 3\pi/2, 2\pi]

Arguments

data NDArray-or-Symbol The input array.

196 mx.nd.random.exponential

Details

The storage type of “radians“ output depends upon the input storage type:

- radians(default) = default - radians(row_sparse) = row_sparse - radians(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L351

Value

out The result mx.ndarray

mx.nd.random.exponential

Draw random samples from an exponential distribution.

Description

Samples are distributed according to an exponential distribution parametrized by *lambda* (rate).

Arguments

lam float, optional, default=1 Lambda parameter (rate) of the exponential distribu-
tion.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

Example::

exponential(lam=4, shape=(2,2)) = [[0.0097189 , 0.08999364], [0.04146638, 0.31715935]]

Defined in src/operator/random/sample_op.cc:L137

Value

out The result mx.ndarray

mx.nd.random.gamma 197

mx.nd.random.gamma Draw random samples from a gamma distribution.

Description

Samples are distributed according to a gamma distribution parametrized by *alpha* (shape) and
beta (scale).

Arguments

alpha float, optional, default=1 Alpha parameter (shape) of the gamma distribution.

beta float, optional, default=1 Beta parameter (scale) of the gamma distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

Example::

gamma(alpha=9, beta=0.5, shape=(2,2)) = [[7.10486984, 3.37695289], [3.91697288, 3.65933681]]

Defined in src/operator/random/sample_op.cc:L125

Value

out The result mx.ndarray

mx.nd.random.generalized.negative.binomial

Draw random samples from a generalized negative binomial distribu-
tion.

Description

Samples are distributed according to a generalized negative binomial distribution parametrized by
mu (mean) and *alpha* (dispersion). *alpha* is defined as *1/k* where *k* is the failure limit
of the number of unsuccessful experiments (generalized to real numbers). Samples will always be
returned as a floating point data type.

198 mx.nd.random.negative.binomial

Arguments

mu float, optional, default=1 Mean of the negative binomial distribution.
alpha float, optional, default=1 Alpha (dispersion) parameter of the negative binomial

distribution.
shape Shape(tuple), optional, default=None Shape of the output.
ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).

Only used for imperative calls.
dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-

put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

Example::

generalized_negative_binomial(mu=2.0, alpha=0.3, shape=(2,2)) = [[2., 1.], [6., 4.]]

Defined in src/operator/random/sample_op.cc:L179

Value

out The result mx.ndarray

mx.nd.random.negative.binomial

Draw random samples from a negative binomial distribution.

Description

Samples are distributed according to a negative binomial distribution parametrized by *k* (limit of
unsuccessful experiments) and *p* (failure probability in each experiment). Samples will always
be returned as a floating point data type.

Arguments

k int, optional, default=’1’ Limit of unsuccessful experiments.
p float, optional, default=1 Failure probability in each experiment.
shape Shape(tuple), optional, default=None Shape of the output.
ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).

Only used for imperative calls.
dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-

put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

Example::

negative_binomial(k=3, p=0.4, shape=(2,2)) = [[4., 7.], [2., 5.]]

Defined in src/operator/random/sample_op.cc:L164

mx.nd.random.normal 199

Value

out The result mx.ndarray

mx.nd.random.normal Draw random samples from a normal (Gaussian) distribution.

Description

.. note:: The existing alias “normal“ is deprecated.

Arguments

loc float, optional, default=0 Mean of the distribution.

scale float, optional, default=1 Standard deviation of the distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

Samples are distributed according to a normal distribution parametrized by *loc* (mean) and *scale*
(standard deviation).

Example::

normal(loc=0, scale=1, shape=(2,2)) = [[1.89171135, -1.16881478], [-1.23474145, 1.55807114]]

Defined in src/operator/random/sample_op.cc:L113

Value

out The result mx.ndarray

200 mx.nd.random.pdf.exponential

mx.nd.random.pdf.dirichlet

Computes the value of the PDF of *sample* of Dirichlet distributions
with parameter *alpha*.

Description

The shape of *alpha* must match the leftmost subshape of *sample*. That is, *sample* can have the
same shape as *alpha*, in which case the output contains one density per distribution, or *sample*
can be a tensor of tensors with that shape, in which case the output is a tensor of densities such
that the densities at index *i* in the output are given by the samples at index *i* in *sample*
parameterized by the value of *alpha* at index *i*.

Arguments

sample NDArray-or-Symbol Samples from the distributions.

alpha NDArray-or-Symbol Concentration parameters of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

Details

Examples::

random_pdf_dirichlet(sample=[[1,2],[2,3],[3,4]], alpha=[2.5, 2.5]) = [38.413498, 199.60245, 564.56085]

sample = [[[1, 2, 3], [10, 20, 30], [100, 200, 300]], [[0.1, 0.2, 0.3], [0.01, 0.02, 0.03], [0.001, 0.002,
0.003]]]

random_pdf_dirichlet(sample=sample, alpha=[0.1, 0.4, 0.9]) = [[2.3257459e-02, 5.8420084e-04,
1.4674458e-05], [9.2589635e-01, 3.6860607e+01, 1.4674468e+03]]

Defined in src/operator/random/pdf_op.cc:L316

Value

out The result mx.ndarray

mx.nd.random.pdf.exponential

Computes the value of the PDF of *sample* of exponential distribu-
tions with parameters *lam* (rate).

mx.nd.random.pdf.gamma 201

Description

The shape of *lam* must match the leftmost subshape of *sample*. That is, *sample* can have the
same shape as *lam*, in which case the output contains one density per distribution, or *sample*
can be a tensor of tensors with that shape, in which case the output is a tensor of densities such
that the densities at index *i* in the output are given by the samples at index *i* in *sample*
parameterized by the value of *lam* at index *i*.

Arguments

sample NDArray-or-Symbol Samples from the distributions.

lam NDArray-or-Symbol Lambda (rate) parameters of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

Details

Examples::

random_pdf_exponential(sample=[[1, 2, 3]], lam=[1]) = [[0.36787945, 0.13533528, 0.04978707]]

sample = [[1,2,3], [1,2,3], [1,2,3]]

random_pdf_exponential(sample=sample, lam=[1,0.5,0.25]) = [[0.36787945, 0.13533528, 0.04978707],
[0.30326533, 0.18393973, 0.11156508], [0.1947002, 0.15163267, 0.11809164]]

Defined in src/operator/random/pdf_op.cc:L305

Value

out The result mx.ndarray

mx.nd.random.pdf.gamma

Computes the value of the PDF of *sample* of gamma distributions
with parameters *alpha* (shape) and *beta* (rate).

Description

alpha and *beta* must have the same shape, which must match the leftmost subshape of *sam-
ple*. That is, *sample* can have the same shape as *alpha* and *beta*, in which case the output
contains one density per distribution, or *sample* can be a tensor of tensors with that shape, in
which case the output is a tensor of densities such that the densities at index *i* in the output are
given by the samples at index *i* in *sample* parameterized by the values of *alpha* and *beta*
at index *i*.

202 mx.nd.random.pdf.generalized.negative.binomial

Arguments

sample NDArray-or-Symbol Samples from the distributions.

alpha NDArray-or-Symbol Alpha (shape) parameters of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

beta NDArray-or-Symbol Beta (scale) parameters of the distributions.

Details

Examples::

random_pdf_gamma(sample=[[1,2,3,4,5]], alpha=[5], beta=[1]) = [[0.01532831, 0.09022352, 0.16803136,
0.19536681, 0.17546739]]

sample = [[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]]

random_pdf_gamma(sample=sample, alpha=[5,6,7], beta=[1,1,1]) = [[0.01532831, 0.09022352,
0.16803136, 0.19536681, 0.17546739], [0.03608941, 0.10081882, 0.15629345, 0.17546739, 0.16062315],
[0.05040941, 0.10419563, 0.14622283, 0.16062315, 0.14900276]]

Defined in src/operator/random/pdf_op.cc:L303

Value

out The result mx.ndarray

mx.nd.random.pdf.generalized.negative.binomial

Computes the value of the PDF of *sample* of generalized negative bi-
nomial distributions with parameters *mu* (mean) and *alpha* (dis-
persion). This can be understood as a reparameterization of the nega-
tive binomial, where *k* = *1 / alpha* and *p* = *1 / (mu * alpha +
1)*.

Description

mu and *alpha* must have the same shape, which must match the leftmost subshape of *sample*.
That is, *sample* can have the same shape as *mu* and *alpha*, in which case the output contains
one density per distribution, or *sample* can be a tensor of tensors with that shape, in which case
the output is a tensor of densities such that the densities at index *i* in the output are given by the
samples at index *i* in *sample* parameterized by the values of *mu* and *alpha* at index *i*.

Arguments

sample NDArray-or-Symbol Samples from the distributions.

mu NDArray-or-Symbol Means of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

alpha NDArray-or-Symbol Alpha (dispersion) parameters of the distributions.

mx.nd.random.pdf.negative.binomial 203

Details

Examples::

random_pdf_generalized_negative_binomial(sample=[[1, 2, 3, 4]], alpha=[1], mu=[1]) = [[0.25,
0.125, 0.0625, 0.03125]]

sample = [[1,2,3,4], [1,2,3,4]] random_pdf_generalized_negative_binomial(sample=sample, alpha=[1,
0.6666], mu=[1, 1.5]) = [[0.25, 0.125, 0.0625, 0.03125], [0.26517063, 0.16573331, 0.09667706,
0.05437994]]

Defined in src/operator/random/pdf_op.cc:L314

Value

out The result mx.ndarray

mx.nd.random.pdf.negative.binomial

Computes the value of the PDF of samples of negative binomial dis-
tributions with parameters *k* (failure limit) and *p* (failure proba-
bility).

Description

k and *p* must have the same shape, which must match the leftmost subshape of *sample*. That
is, *sample* can have the same shape as *k* and *p*, in which case the output contains one density
per distribution, or *sample* can be a tensor of tensors with that shape, in which case the output is
a tensor of densities such that the densities at index *i* in the output are given by the samples at
index *i* in *sample* parameterized by the values of *k* and *p* at index *i*.

Arguments

sample NDArray-or-Symbol Samples from the distributions.

k NDArray-or-Symbol Limits of unsuccessful experiments.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

p NDArray-or-Symbol Failure probabilities in each experiment.

Details

Examples::

random_pdf_negative_binomial(sample=[[1,2,3,4]], k=[1], p=a[0.5]) = [[0.25, 0.125, 0.0625, 0.03125]]

Note that k may be real-valued sample = [[1,2,3,4], [1,2,3,4]] random_pdf_negative_binomial(sample=sample,
k=[1, 1.5], p=[0.5, 0.5]) = [[0.25, 0.125, 0.0625, 0.03125], [0.26516506, 0.16572815, 0.09667476,
0.05437956]]

Defined in src/operator/random/pdf_op.cc:L310

204 mx.nd.random.pdf.normal

Value

out The result mx.ndarray

mx.nd.random.pdf.normal

Computes the value of the PDF of *sample* of normal distributions
with parameters *mu* (mean) and *sigma* (standard deviation).

Description

mu and *sigma* must have the same shape, which must match the leftmost subshape of *sample*.
That is, *sample* can have the same shape as *mu* and *sigma*, in which case the output contains
one density per distribution, or *sample* can be a tensor of tensors with that shape, in which case
the output is a tensor of densities such that the densities at index *i* in the output are given by the
samples at index *i* in *sample* parameterized by the values of *mu* and *sigma* at index *i*.

Arguments

sample NDArray-or-Symbol Samples from the distributions.

mu NDArray-or-Symbol Means of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

sigma NDArray-or-Symbol Standard deviations of the distributions.

Details

Examples::

sample = [[-2, -1, 0, 1, 2]] random_pdf_normal(sample=sample, mu=[0], sigma=[1]) = [[0.05399097,
0.24197073, 0.3989423, 0.24197073, 0.05399097]]

random_pdf_normal(sample=sample*2, mu=[0,0], sigma=[1,2]) = [[0.05399097, 0.24197073, 0.3989423,
0.24197073, 0.05399097], [0.12098537, 0.17603266, 0.19947115, 0.17603266, 0.12098537]]

Defined in src/operator/random/pdf_op.cc:L300

Value

out The result mx.ndarray

mx.nd.random.pdf.poisson 205

mx.nd.random.pdf.poisson

Computes the value of the PDF of *sample* of Poisson distributions
with parameters *lam* (rate).

Description

The shape of *lam* must match the leftmost subshape of *sample*. That is, *sample* can have the
same shape as *lam*, in which case the output contains one density per distribution, or *sample*
can be a tensor of tensors with that shape, in which case the output is a tensor of densities such
that the densities at index *i* in the output are given by the samples at index *i* in *sample*
parameterized by the value of *lam* at index *i*.

Arguments

sample NDArray-or-Symbol Samples from the distributions.
lam NDArray-or-Symbol Lambda (rate) parameters of the distributions.
is.log boolean, optional, default=0 If set, compute the density of the log-probability

instead of the probability.

Details

Examples::

random_pdf_poisson(sample=[[0,1,2,3]], lam=[1]) = [[0.36787945, 0.36787945, 0.18393973, 0.06131324]]

sample = [[0,1,2,3], [0,1,2,3], [0,1,2,3]]

random_pdf_poisson(sample=sample, lam=[1,2,3]) = [[0.36787945, 0.36787945, 0.18393973, 0.06131324],
[0.13533528, 0.27067056, 0.27067056, 0.18044704], [0.04978707, 0.14936121, 0.22404182, 0.22404182]]

Defined in src/operator/random/pdf_op.cc:L307

Value

out The result mx.ndarray

mx.nd.random.pdf.uniform

Computes the value of the PDF of *sample* of uniform distributions
on the intervals given by *[low,high)*.

Description

low and *high* must have the same shape, which must match the leftmost subshape of *sample*.
That is, *sample* can have the same shape as *low* and *high*, in which case the output contains
one density per distribution, or *sample* can be a tensor of tensors with that shape, in which case
the output is a tensor of densities such that the densities at index *i* in the output are given by the
samples at index *i* in *sample* parameterized by the values of *low* and *high* at index *i*.

206 mx.nd.random.poisson

Arguments

sample NDArray-or-Symbol Samples from the distributions.
low NDArray-or-Symbol Lower bounds of the distributions.
is.log boolean, optional, default=0 If set, compute the density of the log-probability

instead of the probability.
high NDArray-or-Symbol Upper bounds of the distributions.

Details

Examples::

random_pdf_uniform(sample=[[1,2,3,4]], low=[0], high=[10]) = [0.1, 0.1, 0.1, 0.1]

sample = [[[1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3]]] low = [[0, 0], [0, 0]] high = [[5, 10], [15,
20]] random_pdf_uniform(sample=sample, low=low, high=high) = [[[0.2, 0.2, 0.2], [0.1, 0.1, 0.1
]], [[0.06667, 0.06667, 0.06667], [0.05, 0.05, 0.05]]]

Defined in src/operator/random/pdf_op.cc:L298

Value

out The result mx.ndarray

mx.nd.random.poisson Draw random samples from a Poisson distribution.

Description

Samples are distributed according to a Poisson distribution parametrized by *lambda* (rate). Sam-
ples will always be returned as a floating point data type.

Arguments

lam float, optional, default=1 Lambda parameter (rate) of the Poisson distribution.
shape Shape(tuple), optional, default=None Shape of the output.
ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).

Only used for imperative calls.
dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-

put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

Example::

poisson(lam=4, shape=(2,2)) = [[5., 2.], [4., 6.]]

Defined in src/operator/random/sample_op.cc:L150

Value

out The result mx.ndarray

mx.nd.random.randint 207

mx.nd.random.randint Draw random samples from a discrete uniform distribution.

Description

Samples are uniformly distributed over the half-open interval *[low, high)* (includes *low*, but
excludes *high*).

Arguments

low long, required Lower bound of the distribution.

high long, required Upper bound of the distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’int32’, ’int64’,optional, default=’None’ DType of the output in case
this can’t be inferred. Defaults to int32 if not defined (dtype=None).

Details

Example::

randint(low=0, high=5, shape=(2,2)) = [[0, 2], [3, 1]]

Defined in src/operator/random/sample_op.cc:L194

Value

out The result mx.ndarray

mx.nd.random.uniform Draw random samples from a uniform distribution.

Description

.. note:: The existing alias “uniform“ is deprecated.

Arguments

low float, optional, default=0 Lower bound of the distribution.

high float, optional, default=1 Upper bound of the distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

208 mx.nd.ravel.multi.index

Details

Samples are uniformly distributed over the half-open interval *[low, high)* (includes *low*, but
excludes *high*).

Example::

uniform(low=0, high=1, shape=(2,2)) = [[0.60276335, 0.85794562], [0.54488319, 0.84725171]]

Defined in src/operator/random/sample_op.cc:L96

Value

out The result mx.ndarray

mx.nd.ravel.multi.index

Converts a batch of index arrays into an array of flat indices. The
operator follows numpy conventions so a single multi index is given
by a column of the input matrix. The leading dimension may be left
unspecified by using -1 as placeholder.

Description

Examples::

A = [[3,6,6],[4,5,1]] ravel(A, shape=(7,6)) = [22,41,37] ravel(A, shape=(-1,6)) = [22,41,37]

Arguments

data NDArray-or-Symbol Batch of multi-indices

shape Shape(tuple), optional, default=None Shape of the array into which the multi-
indices apply.

Details

Defined in src/operator/tensor/ravel.cc:L42

Value

out The result mx.ndarray

mx.nd.rcbrt 209

mx.nd.rcbrt Returns element-wise inverse cube-root value of the input.

Description

.. math:: rcbrt(x) = 1/\sqrt[3]x

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

rcbrt([1,8,-125]) = [1.0, 0.5, -0.2]

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L323

Value

out The result mx.ndarray

mx.nd.reciprocal Returns the reciprocal of the argument, element-wise.

Description

Calculates 1/x.

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

reciprocal([-2, 1, 3, 1.6, 0.2]) = [-0.5, 1.0, 0.33333334, 0.625, 5.0]

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L43

Value

out The result mx.ndarray

210 mx.nd.repeat

mx.nd.relu Computes rectified linear activation.

Description

.. math:: max(features, 0)

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “relu“ output depends upon the input storage type:

- relu(default) = default - relu(row_sparse) = row_sparse - relu(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L85

Value

out The result mx.ndarray

mx.nd.repeat Repeats elements of an array. By default, “repeat“ flattens the input
array into 1-D and then repeats the elements:: x = [[1, 2], [3, 4]] re-
peat(x, repeats=2) = [1., 1., 2., 2., 3., 3., 4., 4.] The parameter “axis“
specifies the axis along which to perform repeat:: repeat(x, repeats=2,
axis=1) = [[1., 1., 2., 2.], [3., 3., 4., 4.]] repeat(x, repeats=2, axis=0)
= [[1., 2.], [1., 2.], [3., 4.], [3., 4.]] repeat(x, repeats=2, axis=-1)
= [[1., 1., 2., 2.], [3., 3., 4., 4.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L744

Arguments

data NDArray-or-Symbol Input data array

repeats int, required The number of repetitions for each element.

axis int or None, optional, default=’None’ The axis along which to repeat values.
The negative numbers are interpreted counting from the backward. By default,
use the flattened input array, and return a flat output array.

Value

out The result mx.ndarray

mx.nd.reset.arrays 211

mx.nd.reset.arrays Set to zero multiple arrays

Description

Defined in src/operator/contrib/reset_arrays.cc:L36

Arguments

data NDArray-or-Symbol[] Arrays

num.arrays int, required number of input arrays.

Value

out The result mx.ndarray

212 mx.nd.Reshape

mx.nd.Reshape Reshapes the input array. .. note:: “Reshape“ is deprecated, use
“reshape“ Given an array and a shape, this function returns a copy
of the array in the new shape. The shape is a tuple of integers such
as (2,3,4). The size of the new shape should be same as the size of
the input array. Example:: reshape([1,2,3,4], shape=(2,2)) = [[1,2],
[3,4]] Some dimensions of the shape can take special values from the
set 0, -1, -2, -3, -4. The significance of each is explained below: - “0“
copy this dimension from the input to the output shape. Example:: -
input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input
shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - “-1“ infers
the dimension of the output shape by using the remainder of the input
dimensions keeping the size of the new array same as that of the input
array. At most one dimension of shape can be -1. Example:: - input
shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape
= (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape =
(2,3,4), shape=(-1,), output shape = (24,) - “-2“ copy all/remainder
of the input dimensions to the output shape. Example:: - input shape
= (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4),
shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape
= (-2,1,1), output shape = (2,3,4,1,1) - “-3“ use the product of two
consecutive dimensions of the input shape as the output dimension.
Example:: - input shape = (2,3,4), shape = (-3,4), output shape =
(6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20)
- input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input
shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - “-4“ split one
dimension of the input into two dimensions passed subsequent to -4 in
shape (can contain -1). Example:: - input shape = (2,3,4), shape =
(-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape =
(2,-4,-1,3,-2), output shape = (2,1,3,4) If the argument ‘reverse‘ is set
to 1, then the special values are inferred from right to left. Example::
- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output
shape would be (40,5) - with reverse=1, output shape will be (50,4).

Description

Defined in src/operator/tensor/matrix_op.cc:L175

Arguments

data NDArray-or-Symbol Input data to reshape.

shape Shape(tuple), optional, default=[] The target shape

reverse boolean, optional, default=0 If true then the special values are inferred from
right to left

target.shape Shape(tuple), optional, default=[] (Deprecated! Use “shape“ instead.) Target
new shape. One and only one dim can be 0, in which case it will be inferred
from the rest of dims

mx.nd.reshape 213

keep.highest boolean, optional, default=0 (Deprecated! Use “shape“ instead.) Whether keep
the highest dim unchanged.If set to true, then the first dim in target_shape is
ignored,and always fixed as input

Value

out The result mx.ndarray

mx.nd.reshape Reshapes the input array. .. note:: “Reshape“ is deprecated, use
“reshape“ Given an array and a shape, this function returns a copy
of the array in the new shape. The shape is a tuple of integers such
as (2,3,4). The size of the new shape should be same as the size of
the input array. Example:: reshape([1,2,3,4], shape=(2,2)) = [[1,2],
[3,4]] Some dimensions of the shape can take special values from the
set 0, -1, -2, -3, -4. The significance of each is explained below: - “0“
copy this dimension from the input to the output shape. Example:: -
input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input
shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - “-1“ infers
the dimension of the output shape by using the remainder of the input
dimensions keeping the size of the new array same as that of the input
array. At most one dimension of shape can be -1. Example:: - input
shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape
= (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape =
(2,3,4), shape=(-1,), output shape = (24,) - “-2“ copy all/remainder
of the input dimensions to the output shape. Example:: - input shape
= (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4),
shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape
= (-2,1,1), output shape = (2,3,4,1,1) - “-3“ use the product of two
consecutive dimensions of the input shape as the output dimension.
Example:: - input shape = (2,3,4), shape = (-3,4), output shape =
(6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20)
- input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input
shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - “-4“ split one
dimension of the input into two dimensions passed subsequent to -4 in
shape (can contain -1). Example:: - input shape = (2,3,4), shape =
(-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape =
(2,-4,-1,3,-2), output shape = (2,1,3,4) If the argument ‘reverse‘ is set
to 1, then the special values are inferred from right to left. Example::
- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output
shape would be (40,5) - with reverse=1, output shape will be (50,4).

Description

Defined in src/operator/tensor/matrix_op.cc:L175

214 mx.nd.reshape.like

Arguments

data NDArray-or-Symbol Input data to reshape.

shape Shape(tuple), optional, default=[] The target shape

reverse boolean, optional, default=0 If true then the special values are inferred from
right to left

target.shape Shape(tuple), optional, default=[] (Deprecated! Use “shape“ instead.) Target
new shape. One and only one dim can be 0, in which case it will be inferred
from the rest of dims

keep.highest boolean, optional, default=0 (Deprecated! Use “shape“ instead.) Whether keep
the highest dim unchanged.If set to true, then the first dim in target_shape is
ignored,and always fixed as input

Value

out The result mx.ndarray

mx.nd.reshape.like Reshape some or all dimensions of ‘lhs‘ to have the same shape as
some or all dimensions of ‘rhs‘.

Description

Returns a **view** of the ‘lhs‘ array with a new shape without altering any data.

Arguments

lhs NDArray-or-Symbol First input.

rhs NDArray-or-Symbol Second input.

lhs.begin int or None, optional, default=’None’ Defaults to 0. The beginning index along
which the lhs dimensions are to be reshaped. Supports negative indices.

lhs.end int or None, optional, default=’None’ Defaults to None. The ending index along
which the lhs dimensions are to be used for reshaping. Supports negative in-
dices.

rhs.begin int or None, optional, default=’None’ Defaults to 0. The beginning index along
which the rhs dimensions are to be used for reshaping. Supports negative in-
dices.

rhs.end int or None, optional, default=’None’ Defaults to None. The ending index along
which the rhs dimensions are to be used for reshaping. Supports negative in-
dices.

mx.nd.reverse 215

Details

Example::

x = [1, 2, 3, 4, 5, 6] y = [[0, -4], [3, 2], [2, 2]] reshape_like(x, y) = [[1, 2], [3, 4], [5, 6]]

More precise control over how dimensions are inherited is achieved by specifying \ slices over the
‘lhs‘ and ‘rhs‘ array dimensions. Only the sliced ‘lhs‘ dimensions \ are reshaped to the ‘rhs‘ sliced
dimensions, with the non-sliced ‘lhs‘ dimensions staying the same.

Examples::

- lhs shape = (30,7), rhs shape = (15,2,4), lhs_begin=0, lhs_end=1, rhs_begin=0, rhs_end=2, output
shape = (15,2,7) - lhs shape = (3, 5), rhs shape = (1,15,4), lhs_begin=0, lhs_end=2, rhs_begin=1,
rhs_end=2, output shape = (15)

Negative indices are supported, and ‘None‘ can be used for either ‘lhs_end‘ or ‘rhs_end‘ to indicate
the end of the range.

Example::

- lhs shape = (30, 12), rhs shape = (4, 2, 2, 3), lhs_begin=-1, lhs_end=None, rhs_begin=1, rhs_end=None,
output shape = (30, 2, 2, 3)

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L512

Value

out The result mx.ndarray

mx.nd.reverse Reverses the order of elements along given axis while preserving array
shape. Note: reverse and flip are equivalent. We use reverse in the
following examples. Examples:: x = [[0., 1., 2., 3., 4.], [5., 6., 7.,
8., 9.]] reverse(x, axis=0) = [[5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.]]
reverse(x, axis=1) = [[4., 3., 2., 1., 0.], [9., 8., 7., 6., 5.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L832

Arguments

data NDArray-or-Symbol Input data array

axis Shape(tuple), required The axis which to reverse elements.

Value

out The result mx.ndarray

216 mx.nd.rmsprop.update

mx.nd.rint Returns element-wise rounded value to the nearest integer of the input.

Description

.. note:: - For input “n.5“ “rint“ returns “n“ while “round“ returns “n+1“. - For input “-n.5“ both
“rint“ and “round“ returns “-n-1“.

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

rint([-1.5, 1.5, -1.9, 1.9, 2.1]) = [-2., 1., -2., 2., 2.]

The storage type of “rint“ output depends upon the input storage type:

- rint(default) = default - rint(row_sparse) = row_sparse - rint(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L799

Value

out The result mx.ndarray

mx.nd.rmsprop.update Update function for ‘RMSProp‘ optimizer.

Description

‘RMSprop‘ is a variant of stochastic gradient descent where the gradients are divided by a cache
which grows with the sum of squares of recent gradients?

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

n NDArray-or-Symbol n

lr float, required Learning rate

rho float, optional, default=0.949999988 The decay rate of momentum estimates.

epsilon float, optional, default=9.99999994e-09 A small constant for numerical stability.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

mx.nd.rmspropalex.update 217

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

clip.weights float, optional, default=-1 Clip weights to the range of [-clip_weights, clip_weights]
If clip_weights <= 0, weight clipping is turned off. weights = max(min(weights,
clip_weights), -clip_weights).

Details

‘RMSProp‘ is similar to ‘AdaGrad‘, a popular variant of ‘SGD‘ which adaptively tunes the learning
rate of each parameter. ‘AdaGrad‘ lowers the learning rate for each parameter monotonically over
the course of training. While this is analytically motivated for convex optimizations, it may not be
ideal for non-convex problems. ‘RMSProp‘ deals with this heuristically by allowing the learning
rates to rebound as the denominator decays over time.

Define the Root Mean Square (RMS) error criterion of the gradient as :math:‘RMS[g]_t = \sqrtE[g^2]_t
+ \epsilon‘, where :math:‘g‘ represents gradient and :math:‘E[g^2]_t‘ is the decaying average over
past squared gradient.

The :math:‘E[g^2]_t‘ is given by:

.. math:: E[g^2]_t = \rho * E[g^2]_t-1 + (1-\rho) * g_t^2

The update step is

.. math:: \theta_t+1 = \theta_t - \frac\etaRMS[g]_t g_t

The RMSProp code follows the version in http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
Tieleman & Hinton, 2012.

Hinton suggests the momentum term :math:‘\rho‘ to be 0.9 and the learning rate :math:‘\eta‘ to be
0.001.

Defined in src/operator/optimizer_op.cc:L788

Value

out The result mx.ndarray

mx.nd.rmspropalex.update

Update function for RMSPropAlex optimizer.

Description

‘RMSPropAlex‘ is non-centered version of ‘RMSProp‘.

218 mx.nd.rmspropalex.update

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

n NDArray-or-Symbol n

g NDArray-or-Symbol g

delta NDArray-or-Symbol delta

lr float, required Learning rate

rho float, optional, default=0.949999988 Decay rate.

momentum float, optional, default=0.899999976 Decay rate.

epsilon float, optional, default=9.99999994e-09 A small constant for numerical stability.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

clip.weights float, optional, default=-1 Clip weights to the range of [-clip_weights, clip_weights]
If clip_weights <= 0, weight clipping is turned off. weights = max(min(weights,
clip_weights), -clip_weights).

Details

Define :math:‘E[g^2]_t‘ is the decaying average over past squared gradient and :math:‘E[g]_t‘ is
the decaying average over past gradient.

.. math:: E[g^2]_t = \rho * E[g^2]_t-1 + (1 - \rho) * g_t^2\ E[g]_t = \rho * E[g]_t-1 + (1 - \rho) *
g_t\ momentum_t = \gamma * momentum_t-1 - \frac\eta\sqrtE[g^2]_t - E[g]_t^2 + \epsilon g_t\

The update step is

.. math:: \theta_t+1 = \theta_t + momentum_t

The RMSPropAlex code follows the version in http://arxiv.org/pdf/1308.0850v5.pdf Eq(38) - Eq(45)
by Alex Graves, 2013.

Graves suggests the momentum term :math:‘\rho‘ to be 0.95, :math:‘\gamma‘ to be 0.9 and the
learning rate :math:‘\eta‘ to be 0.0001.

Defined in src/operator/optimizer_op.cc:L827

Value

out The result mx.ndarray

mx.nd.RNN 219

mx.nd.RNN Applies recurrent layers to input data. Currently, vanilla RNN, LSTM
and GRU are implemented, with both multi-layer and bidirectional
support.

Description

When the input data is of type float32 and the environment variables MXNET_CUDA_ALLOW_TENSOR_CORE
and MXNET_CUDA_TENSOR_OP_MATH_ALLOW_CONVERSION are set to 1, this operator
will try to use pseudo-float16 precision (float32 math with float16 I/O) precision in order to use
Tensor Cores on suitable NVIDIA GPUs. This can sometimes give significant speedups.

Arguments

data NDArray-or-Symbol Input data to RNN

parameters NDArray-or-Symbol Vector of all RNN trainable parameters concatenated

state NDArray-or-Symbol initial hidden state of the RNN

state.cell NDArray-or-Symbol initial cell state for LSTM networks (only for LSTM)
sequence.length

NDArray-or-Symbol Vector of valid sequence lengths for each element in batch.
(Only used if use_sequence_length kwarg is True)

state.size int (non-negative), required size of the state for each layer

num.layers int (non-negative), required number of stacked layers

bidirectional boolean, optional, default=0 whether to use bidirectional recurrent layers

mode ’gru’, ’lstm’, ’rnn_relu’, ’rnn_tanh’, required the type of RNN to compute

p float, optional, default=0 drop rate of the dropout on the outputs of each RNN
layer, except the last layer.

state.outputs boolean, optional, default=0 Whether to have the states as symbol outputs.
projection.size

int or None, optional, default=’None’ size of project size
lstm.state.clip.min

double or None, optional, default=None Minimum clip value of LSTM states.
This option must be used together with lstm_state_clip_max.

lstm.state.clip.max

double or None, optional, default=None Maximum clip value of LSTM states.
This option must be used together with lstm_state_clip_min.

lstm.state.clip.nan

boolean, optional, default=0 Whether to stop NaN from propagating in state by
clipping it to min/max. If clipping range is not specified, this option is ignored.

use.sequence.length

boolean, optional, default=0 If set to true, this layer takes in an extra input pa-
rameter ‘sequence_length‘ to specify variable length sequence

220 mx.nd.RNN

Details

Vanilla RNN

Applies a single-gate recurrent layer to input X. Two kinds of activation function are supported:
ReLU and Tanh.

With ReLU activation function:

.. math:: h_t = relu(W_ih * x_t + b_ih + W_hh * h_(t-1) + b_hh)

With Tanh activtion function:

.. math:: h_t = \tanh(W_ih * x_t + b_ih + W_hh * h_(t-1) + b_hh)

Reference paper: Finding structure in time - Elman, 1988. https://crl.ucsd.edu/~elman/Papers/fsit.pdf

LSTM

Long Short-Term Memory - Hochreiter, 1997. http://www.bioinf.jku.at/publications/older/2604.pdf

.. math:: \beginarrayll i_t = \mathrmsigmoid(W_ii x_t + b_ii + W_hi h_(t-1) + b_hi) \ f_t = \math-
rmsigmoid(W_if x_t + b_if + W_hf h_(t-1) + b_hf) \ g_t = \tanh(W_ig x_t + b_ig + W_hc h_(t-1)
+ b_hg) \ o_t = \mathrmsigmoid(W_io x_t + b_io + W_ho h_(t-1) + b_ho) \ c_t = f_t * c_(t-1) + i_t
* g_t \ h_t = o_t * \tanh(c_t) \endarray

With the projection size being set, LSTM could use the projection feature to reduce the parameters
size and give some speedups without significant damage to the accuracy.

Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary
Speech Recognition - Sak et al. 2014. https://arxiv.org/abs/1402.1128

.. math:: \beginarrayll i_t = \mathrmsigmoid(W_ii x_t + b_ii + W_ri r_(t-1) + b_ri) \ f_t = \math-
rmsigmoid(W_if x_t + b_if + W_rf r_(t-1) + b_rf) \ g_t = \tanh(W_ig x_t + b_ig + W_rc r_(t-1) +
b_rg) \ o_t = \mathrmsigmoid(W_io x_t + b_o + W_ro r_(t-1) + b_ro) \ c_t = f_t * c_(t-1) + i_t *
g_t \ h_t = o_t * \tanh(c_t) r_t = W_hr h_t \endarray

GRU

Gated Recurrent Unit - Cho et al. 2014. http://arxiv.org/abs/1406.1078

The definition of GRU here is slightly different from paper but compatible with CUDNN.

.. math:: \beginarrayll r_t = \mathrmsigmoid(W_ir x_t + b_ir + W_hr h_(t-1) + b_hr) \ z_t =
\mathrmsigmoid(W_iz x_t + b_iz + W_hz h_(t-1) + b_hz) \ n_t = \tanh(W_in x_t + b_in + r_t *
(W_hn h_(t-1)+ b_hn)) \ h_t = (1 - z_t) * n_t + z_t * h_(t-1) \ \endarray

Defined in src/operator/rnn.cc:L363

Value

out The result mx.ndarray

mx.nd.ROIPooling 221

mx.nd.ROIPooling Performs region of interest(ROI) pooling on the input array.

Description

ROI pooling is a variant of a max pooling layer, in which the output size is fixed and region of
interest is a parameter. Its purpose is to perform max pooling on the inputs of non-uniform sizes
to obtain fixed-size feature maps. ROI pooling is a neural-net layer mostly used in training a ‘Fast
R-CNN‘ network for object detection.

Arguments

data NDArray-or-Symbol The input array to the pooling operator, a 4D Feature maps

rois NDArray-or-Symbol Bounding box coordinates, a 2D array of [[batch_index,
x1, y1, x2, y2]], where (x1, y1) and (x2, y2) are top left and bottom right
corners of designated region of interest. ‘batch_index‘ indicates the index of
corresponding image in the input array

pooled.size Shape(tuple), required ROI pooling output shape (h,w)

spatial.scale float, required Ratio of input feature map height (or w) to raw image height (or
w). Equals the reciprocal of total stride in convolutional layers

Details

This operator takes a 4D feature map as an input array and region proposals as ‘rois‘, then it pools
over sub-regions of input and produces a fixed-sized output array regardless of the ROI size.

To crop the feature map accordingly, you can resize the bounding box coordinates by changing the
parameters ‘rois‘ and ‘spatial_scale‘.

The cropped feature maps are pooled by standard max pooling operation to a fixed size output
indicated by a ‘pooled_size‘ parameter. batch_size will change to the number of region bounding
boxes after ‘ROIPooling‘.

The size of each region of interest doesn’t have to be perfectly divisible by the number of pooling
sections(‘pooled_size‘).

Example::

x = [[[[0., 1., 2., 3., 4., 5.], [6., 7., 8., 9., 10., 11.], [12., 13., 14., 15., 16., 17.], [18., 19., 20., 21.,
22., 23.], [24., 25., 26., 27., 28., 29.], [30., 31., 32., 33., 34., 35.], [36., 37., 38., 39., 40., 41.], [
42., 43., 44., 45., 46., 47.]]]]

// region of interest i.e. bounding box coordinates. y = [[0,0,0,4,4]]

// returns array of shape (2,2) according to the given roi with max pooling. ROIPooling(x, y, (2,2),
1.0) = [[[[14., 16.], [26., 28.]]]]

// region of interest is changed due to the change in ‘spacial_scale‘ parameter. ROIPooling(x, y,
(2,2), 0.7) = [[[[7., 9.], [19., 21.]]]]

Defined in src/operator/roi_pooling.cc:L225

222 mx.nd.rsqrt

Value

out The result mx.ndarray

mx.nd.round Returns element-wise rounded value to the nearest integer of the input.

Description

Example::

Arguments

data NDArray-or-Symbol The input array.

Details

round([-1.5, 1.5, -1.9, 1.9, 2.1]) = [-2., 2., -2., 2., 2.]

The storage type of “round“ output depends upon the input storage type:

- round(default) = default - round(row_sparse) = row_sparse - round(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L778

Value

out The result mx.ndarray

mx.nd.rsqrt Returns element-wise inverse square-root value of the input.

Description

.. math:: rsqrt(x) = 1/\sqrtx

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

rsqrt([4,9,16]) = [0.5, 0.33333334, 0.25]

The storage type of “rsqrt“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L221

Value

out The result mx.ndarray

mx.nd.sample.exponential 223

mx.nd.sample.exponential

Concurrent sampling from multiple exponential distributions with pa-
rameters lambda (rate).

Description

The parameters of the distributions are provided as an input array. Let *[s]* be the shape of the
input array, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the
operator, and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array
with shape *[s]x[t]*.

Arguments

lam NDArray-or-Symbol Lambda (rate) parameters of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

For any valid *n*-dimensional index *i* with respect to the input array, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input value at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input array.

Examples::

lam = [1.0, 8.5]

// Draw a single sample for each distribution sample_exponential(lam) = [0.51837951, 0.09994757]

// Draw a vector containing two samples for each distribution sample_exponential(lam, shape=(2))
= [[0.51837951, 0.19866663], [0.09994757, 0.50447971]]

Defined in src/operator/random/multisample_op.cc:L284

Value

out The result mx.ndarray

224 mx.nd.sample.gamma

mx.nd.sample.gamma Concurrent sampling from multiple gamma distributions with param-
eters *alpha* (shape) and *beta* (scale).

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Arguments

alpha NDArray-or-Symbol Alpha (shape) parameters of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

beta NDArray-or-Symbol Beta (scale) parameters of the distributions.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Examples::

alpha = [0.0, 2.5] beta = [1.0, 0.7]

// Draw a single sample for each distribution sample_gamma(alpha, beta) = [0. , 2.25797319]

// Draw a vector containing two samples for each distribution sample_gamma(alpha, beta, shape=(2))
= [[0. , 0.], [2.25797319, 1.70734084]]

Defined in src/operator/random/multisample_op.cc:L282

Value

out The result mx.ndarray

mx.nd.sample.generalized.negative.binomial 225

mx.nd.sample.generalized.negative.binomial

Concurrent sampling from multiple generalized negative binomial dis-
tributions with parameters *mu* (mean) and *alpha* (dispersion).

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Arguments

mu NDArray-or-Symbol Means of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

alpha NDArray-or-Symbol Alpha (dispersion) parameters of the distributions.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Samples will always be returned as a floating point data type.

Examples::

mu = [2.0, 2.5] alpha = [1.0, 0.1]

// Draw a single sample for each distribution sample_generalized_negative_binomial(mu, alpha) =
[0., 3.]

// Draw a vector containing two samples for each distribution sample_generalized_negative_binomial(mu,
alpha, shape=(2)) = [[0., 3.], [3., 1.]]

Defined in src/operator/random/multisample_op.cc:L293

Value

out The result mx.ndarray

226 mx.nd.sample.multinomial

mx.nd.sample.multinomial

Concurrent sampling from multiple multinomial distributions.

Description

data is an *n* dimensional array whose last dimension has length *k*, where *k* is the number
of possible outcomes of each multinomial distribution. This operator will draw *shape* samples
from each distribution. If shape is empty one sample will be drawn from each distribution.

Arguments

data NDArray-or-Symbol Distribution probabilities. Must sum to one on the last
axis.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

get.prob boolean, optional, default=0 Whether to also return the log probability of sam-
pled result. This is usually used for differentiating through stochastic variables,
e.g. in reinforcement learning.

dtype ’float16’, ’float32’, ’float64’, ’int32’, ’uint8’,optional, default=’int32’ DType of
the output in case this can’t be inferred.

Details

If *get_prob* is true, a second array containing log likelihood of the drawn samples will also be
returned. This is usually used for reinforcement learning where you can provide reward as head
gradient for this array to estimate gradient.

Note that the input distribution must be normalized, i.e. *data* must sum to 1 along its last axis.

Examples::

probs = [[0, 0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1, 0]]

// Draw a single sample for each distribution sample_multinomial(probs) = [3, 0]

// Draw a vector containing two samples for each distribution sample_multinomial(probs, shape=(2))
= [[4, 2], [0, 0]]

// requests log likelihood sample_multinomial(probs, get_prob=True) = [2, 1], [0.2, 0.3]

Value

out The result mx.ndarray

mx.nd.sample.negative.binomial 227

mx.nd.sample.negative.binomial

Concurrent sampling from multiple negative binomial distributions
with parameters *k* (failure limit) and *p* (failure probability).

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Arguments

k NDArray-or-Symbol Limits of unsuccessful experiments.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

p NDArray-or-Symbol Failure probabilities in each experiment.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Samples will always be returned as a floating point data type.

Examples::

k = [20, 49] p = [0.4 , 0.77]

// Draw a single sample for each distribution sample_negative_binomial(k, p) = [15., 16.]

// Draw a vector containing two samples for each distribution sample_negative_binomial(k, p,
shape=(2)) = [[15., 50.], [16., 12.]]

Defined in src/operator/random/multisample_op.cc:L289

Value

out The result mx.ndarray

228 mx.nd.sample.normal

mx.nd.sample.normal Concurrent sampling from multiple normal distributions with param-
eters *mu* (mean) and *sigma* (standard deviation).

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Arguments

mu NDArray-or-Symbol Means of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

sigma NDArray-or-Symbol Standard deviations of the distributions.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Examples::

mu = [0.0, 2.5] sigma = [1.0, 3.7]

// Draw a single sample for each distribution sample_normal(mu, sigma) = [-0.56410581, 0.95934606]

// Draw a vector containing two samples for each distribution sample_normal(mu, sigma, shape=(2))
= [[-0.56410581, 0.2928229], [0.95934606, 4.48287058]]

Defined in src/operator/random/multisample_op.cc:L279

Value

out The result mx.ndarray

mx.nd.sample.poisson 229

mx.nd.sample.poisson Concurrent sampling from multiple Poisson distributions with param-
eters lambda (rate).

Description

The parameters of the distributions are provided as an input array. Let *[s]* be the shape of the
input array, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the
operator, and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array
with shape *[s]x[t]*.

Arguments

lam NDArray-or-Symbol Lambda (rate) parameters of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

For any valid *n*-dimensional index *i* with respect to the input array, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input value at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input array.

Samples will always be returned as a floating point data type.

Examples::

lam = [1.0, 8.5]

// Draw a single sample for each distribution sample_poisson(lam) = [0., 13.]

// Draw a vector containing two samples for each distribution sample_poisson(lam, shape=(2)) = [[
0., 4.], [13., 8.]]

Defined in src/operator/random/multisample_op.cc:L286

Value

out The result mx.ndarray

230 mx.nd.sample.uniform

mx.nd.sample.uniform Concurrent sampling from multiple uniform distributions on the inter-
vals given by *[low,high)*.

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Arguments

low NDArray-or-Symbol Lower bounds of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

high NDArray-or-Symbol Upper bounds of the distributions.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Examples::

low = [0.0, 2.5] high = [1.0, 3.7]

// Draw a single sample for each distribution sample_uniform(low, high) = [0.40451524, 3.18687344]

// Draw a vector containing two samples for each distribution sample_uniform(low, high, shape=(2))
= [[0.40451524, 0.18017688], [3.18687344, 3.68352246]]

Defined in src/operator/random/multisample_op.cc:L277

Value

out The result mx.ndarray

mx.nd.save 231

mx.nd.save Save an mx.nd.array object

Description

Save an mx.nd.array object

Usage

mx.nd.save(ndarray, filename)

Arguments

ndarray the mx.nd.array object

filename the filename (including the path)

Examples

mat = mx.nd.array(1:3)
mx.nd.save(mat, 'temp.mat')
mat2 = mx.nd.load('temp.mat')
as.array(mat)
as.array(mat2[[1]])

mx.nd.scatter.nd Scatters data into a new tensor according to indices.

Description

Given ‘data‘ with shape ‘(Y_0, ..., Y_K-1, X_M, ..., X_N-1)‘ and indices with shape ‘(M, Y_0, ...,
Y_K-1)‘, the output will have shape ‘(X_0, X_1, ..., X_N-1)‘, where ‘M <= N‘. If ‘M == N‘, data
shape should simply be ‘(Y_0, ..., Y_K-1)‘.

Arguments

data NDArray-or-Symbol data

indices NDArray-or-Symbol indices

shape Shape(tuple), required Shape of output.

232 mx.nd.SequenceLast

Details

The elements in output is defined as follows::

output[indices[0, y_0, ..., y_K-1], ..., indices[M-1, y_0, ..., y_K-1], x_M, ..., x_N-1] = data[y_0, ...,
y_K-1, x_M, ..., x_N-1]

all other entries in output are 0.

.. warning::

If the indices have duplicates, the result will be non-deterministic and the gradient of ‘scatter_nd‘
will not be correct!!

Examples::

data = [2, 3, 0] indices = [[1, 1, 0], [0, 1, 0]] shape = (2, 2) scatter_nd(data, indices, shape) = [[0,
0], [2, 3]]

data = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] indices = [[0, 1], [1, 1]] shape = (2, 2, 2, 2) scatter_nd(data,
indices, shape) = [[[[0, 0], [0, 0]],

[[1, 2], [3, 4]]],

[[[0, 0], [0, 0]],

[[5, 6], [7, 8]]]]

Value

out The result mx.ndarray

mx.nd.SequenceLast Takes the last element of a sequence.

Description

This function takes an n-dimensional input array of the form [max_sequence_length, batch_size,
other_feature_dims] and returns a (n-1)-dimensional array of the form [batch_size, other_feature_dims].

Arguments

data NDArray-or-Symbol n-dimensional input array of the form [max_sequence_length,
batch_size, other_feature_dims] where n>2

sequence.length

NDArray-or-Symbol vector of sequence lengths of the form [batch_size]
use.sequence.length

boolean, optional, default=0 If set to true, this layer takes in an extra input pa-
rameter ‘sequence_length‘ to specify variable length sequence

axis int, optional, default=’0’ The sequence axis. Only values of 0 and 1 are currently
supported.

mx.nd.SequenceMask 233

Details

Parameter ‘sequence_length‘ is used to handle variable-length sequences. ‘sequence_length‘ should
be an input array of positive ints of dimension [batch_size]. To use this parameter, set ‘use_sequence_length‘
to ‘True‘, otherwise each example in the batch is assumed to have the max sequence length.

.. note:: Alternatively, you can also use ‘take‘ operator.

Example::

x = [[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]],

[[10., 11., 12.], [13., 14., 15.], [16., 17., 18.]],

[[19., 20., 21.], [22., 23., 24.], [25., 26., 27.]]]

// returns last sequence when sequence_length parameter is not used SequenceLast(x) = [[19., 20.,
21.], [22., 23., 24.], [25., 26., 27.]]

// sequence_length is used SequenceLast(x, sequence_length=[1,1,1], use_sequence_length=True)
= [[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]

// sequence_length is used SequenceLast(x, sequence_length=[1,2,3], use_sequence_length=True)
= [[1., 2., 3.], [13., 14., 15.], [25., 26., 27.]]

Defined in src/operator/sequence_last.cc:L106

Value

out The result mx.ndarray

mx.nd.SequenceMask Sets all elements outside the sequence to a constant value.

Description

This function takes an n-dimensional input array of the form [max_sequence_length, batch_size,
other_feature_dims] and returns an array of the same shape.

Arguments

data NDArray-or-Symbol n-dimensional input array of the form [max_sequence_length,
batch_size, other_feature_dims] where n>2

sequence.length

NDArray-or-Symbol vector of sequence lengths of the form [batch_size]
use.sequence.length

boolean, optional, default=0 If set to true, this layer takes in an extra input pa-
rameter ‘sequence_length‘ to specify variable length sequence

value float, optional, default=0 The value to be used as a mask.

axis int, optional, default=’0’ The sequence axis. Only values of 0 and 1 are currently
supported.

234 mx.nd.SequenceReverse

Details

Parameter ‘sequence_length‘ is used to handle variable-length sequences. ‘sequence_length‘ should
be an input array of positive ints of dimension [batch_size]. To use this parameter, set ‘use_sequence_length‘
to ‘True‘, otherwise each example in the batch is assumed to have the max sequence length and this
operator works as the ‘identity‘ operator.

Example::

x = [[[1., 2., 3.], [4., 5., 6.]],

[[7., 8., 9.], [10., 11., 12.]],

[[13., 14., 15.], [16., 17., 18.]]]

// Batch 1 B1 = [[1., 2., 3.], [7., 8., 9.], [13., 14., 15.]]

// Batch 2 B2 = [[4., 5., 6.], [10., 11., 12.], [16., 17., 18.]]

// works as identity operator when sequence_length parameter is not used SequenceMask(x) = [[[
1., 2., 3.], [4., 5., 6.]],

[[7., 8., 9.], [10., 11., 12.]],

[[13., 14., 15.], [16., 17., 18.]]]

// sequence_length [1,1] means 1 of each batch will be kept // and other rows are masked with
default mask value = 0 SequenceMask(x, sequence_length=[1,1], use_sequence_length=True) = [[[
1., 2., 3.], [4., 5., 6.]],

[[0., 0., 0.], [0., 0., 0.]],

[[0., 0., 0.], [0., 0., 0.]]]

// sequence_length [2,3] means 2 of batch B1 and 3 of batch B2 will be kept // and other rows
are masked with value = 1 SequenceMask(x, sequence_length=[2,3], use_sequence_length=True,
value=1) = [[[1., 2., 3.], [4., 5., 6.]],

[[7., 8., 9.], [10., 11., 12.]],

[[1., 1., 1.], [16., 17., 18.]]]

Defined in src/operator/sequence_mask.cc:L186

Value

out The result mx.ndarray

mx.nd.SequenceReverse Reverses the elements of each sequence.

Description

This function takes an n-dimensional input array of the form [max_sequence_length, batch_size,
other_feature_dims] and returns an array of the same shape.

mx.nd.SequenceReverse 235

Arguments

data NDArray-or-Symbol n-dimensional input array of the form [max_sequence_length,
batch_size, other dims] where n>2

sequence.length

NDArray-or-Symbol vector of sequence lengths of the form [batch_size]
use.sequence.length

boolean, optional, default=0 If set to true, this layer takes in an extra input pa-
rameter ‘sequence_length‘ to specify variable length sequence

axis int, optional, default=’0’ The sequence axis. Only 0 is currently supported.

Details

Parameter ‘sequence_length‘ is used to handle variable-length sequences. ‘sequence_length‘ should
be an input array of positive ints of dimension [batch_size]. To use this parameter, set ‘use_sequence_length‘
to ‘True‘, otherwise each example in the batch is assumed to have the max sequence length.

Example::

x = [[[1., 2., 3.], [4., 5., 6.]],

[[7., 8., 9.], [10., 11., 12.]],

[[13., 14., 15.], [16., 17., 18.]]]

// Batch 1 B1 = [[1., 2., 3.], [7., 8., 9.], [13., 14., 15.]]

// Batch 2 B2 = [[4., 5., 6.], [10., 11., 12.], [16., 17., 18.]]

// returns reverse sequence when sequence_length parameter is not used SequenceReverse(x) = [[[
13., 14., 15.], [16., 17., 18.]],

[[7., 8., 9.], [10., 11., 12.]],

[[1., 2., 3.], [4., 5., 6.]]]

// sequence_length [2,2] means 2 rows of // both batch B1 and B2 will be reversed. SequenceRe-
verse(x, sequence_length=[2,2], use_sequence_length=True) = [[[7., 8., 9.], [10., 11., 12.]],

[[1., 2., 3.], [4., 5., 6.]],

[[13., 14., 15.], [16., 17., 18.]]]

// sequence_length [2,3] means 2 of batch B2 and 3 of batch B3 // will be reversed. SequenceRe-
verse(x, sequence_length=[2,3], use_sequence_length=True) = [[[7., 8., 9.], [16., 17., 18.]],

[[1., 2., 3.], [10., 11., 12.]],

[[13., 14, 15.], [4., 5., 6.]]]

Defined in src/operator/sequence_reverse.cc:L122

Value

out The result mx.ndarray

236 mx.nd.sgd.mom.update

mx.nd.sgd.mom.update Momentum update function for Stochastic Gradient Descent (SGD)
optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Arguments

weight NDArray-or-Symbol Weight
grad NDArray-or-Symbol Gradient
mom NDArray-or-Symbol Momentum
lr float, required Learning rate
momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.
wd float, optional, default=0 Weight decay augments the objective function with a

regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse and both weight and momentum have the same stype

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

However, if grad’s storage type is “row_sparse“, “lazy_update“ is True and weight’s storage type is
the same as momentum’s storage type, only the row slices whose indices appear in grad.indices are
updated (for both weight and momentum)::

for row in gradient.indices: v[row] = momentum[row] * v[row] - learning_rate * gradient[row]
weight[row] += v[row]

Defined in src/operator/optimizer_op.cc:L556

Value

out The result mx.ndarray

mx.nd.sgd.update 237

mx.nd.sgd.update Update function for Stochastic Gradient Descent (SGD) optimizer.

Description

It updates the weights using::

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

lr float, required Learning rate

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse.

Details

weight = weight - learning_rate * (gradient + wd * weight)

However, if gradient is of “row_sparse“ storage type and “lazy_update“ is True, only the row slices
whose indices appear in grad.indices are updated::

for row in gradient.indices: weight[row] = weight[row] - learning_rate * (gradient[row] + wd *
weight[row])

Defined in src/operator/optimizer_op.cc:L515

Value

out The result mx.ndarray

238 mx.nd.shuffle

mx.nd.shape.array Returns a 1D int64 array containing the shape of data.

Description

Example::

Arguments

data NDArray-or-Symbol Input Array.

Details

shape_array([[1,2,3,4], [5,6,7,8]]) = [2,4]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L574

Value

out The result mx.ndarray

mx.nd.shuffle Randomly shuffle the elements.

Description

This shuffles the array along the first axis. The order of the elements in each subarray does not
change. For example, if a 2D array is given, the order of the rows randomly changes, but the order
of the elements in each row does not change.

Arguments

data NDArray-or-Symbol Data to be shuffled.

Value

out The result mx.ndarray

mx.nd.sigmoid 239

mx.nd.sigmoid Computes sigmoid of x element-wise.

Description

.. math:: y = 1 / (1 + exp(-x))

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “sigmoid“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L119

Value

out The result mx.ndarray

mx.nd.sign Returns element-wise sign of the input.

Description

Example::

Arguments

data NDArray-or-Symbol The input array.

Details

sign([-2, 0, 3]) = [-1, 0, 1]

The storage type of “sign“ output depends upon the input storage type:

- sign(default) = default - sign(row_sparse) = row_sparse - sign(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L759

Value

out The result mx.ndarray

240 mx.nd.signum.update

mx.nd.signsgd.update Update function for SignSGD optimizer.

Description

.. math::

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

lr float, required Learning rate

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

Details

g_t = \nabla J(W_t-1)\ W_t = W_t-1 - \eta_t \textsign(g_t)

It updates the weights using::

weight = weight - learning_rate * sign(gradient)

.. note:: - sparse ndarray not supported for this optimizer yet.

Defined in src/operator/optimizer_op.cc:L63

Value

out The result mx.ndarray

mx.nd.signum.update SIGN momentUM (Signum) optimizer.

Description

.. math::

mx.nd.sin 241

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mom NDArray-or-Symbol Momentum

lr float, required Learning rate

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

wd.lh float, optional, default=0 The amount of weight decay that does not go into gra-
dient/momentum calculationsotherwise do weight decay algorithmically only.

Details

g_t = \nabla J(W_t-1)\ m_t = \beta m_t-1 + (1 - \beta) g_t\ W_t = W_t-1 - \eta_t \textsign(m_t)

It updates the weights using:: state = momentum * state + (1-momentum) * gradient weight =
weight - learning_rate * sign(state)

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

.. note:: - sparse ndarray not supported for this optimizer yet.

Defined in src/operator/optimizer_op.cc:L92

Value

out The result mx.ndarray

mx.nd.sin Computes the element-wise sine of the input array.

Description

The input should be in radians (:math:‘2\pi‘ rad equals 360 degrees).

Arguments

data NDArray-or-Symbol The input array.

242 mx.nd.size.array

Details

.. math:: sin([0, \pi/4, \pi/2]) = [0, 0.707, 1]

The storage type of “sin“ output depends upon the input storage type:

- sin(default) = default - sin(row_sparse) = row_sparse - sin(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L47

Value

out The result mx.ndarray

mx.nd.sinh Returns the hyperbolic sine of the input array, computed element-wise.

Description

.. math:: sinh(x) = 0.5\times(exp(x) - exp(-x))

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “sinh“ output depends upon the input storage type:

- sinh(default) = default - sinh(row_sparse) = row_sparse - sinh(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L371

Value

out The result mx.ndarray

mx.nd.size.array Returns a 1D int64 array containing the size of data.

Description

Example::

Arguments

data NDArray-or-Symbol Input Array.

mx.nd.slice.axis 243

Details

size_array([[1,2,3,4], [5,6,7,8]]) = [8]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L625

Value

out The result mx.ndarray

mx.nd.slice.axis Slices along a given axis. Returns an array slice along a given ‘axis‘
starting from the ‘begin‘ index to the ‘end‘ index. Examples:: x = [[
1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]] slice_axis(x, axis=0,
begin=1, end=3) = [[5., 6., 7., 8.], [9., 10., 11., 12.]] slice_axis(x,
axis=1, begin=0, end=2) = [[1., 2.], [5., 6.], [9., 10.]] slice_axis(x,
axis=1, begin=-3, end=-1) = [[2., 3.], [6., 7.], [10., 11.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L571

Arguments

data NDArray-or-Symbol Source input

axis int, required Axis along which to be sliced, supports negative indexes.

begin int, required The beginning index along the axis to be sliced, supports negative
indexes.

end int or None, required The ending index along the axis to be sliced, supports
negative indexes.

Value

out The result mx.ndarray

244 mx.nd.slice.like

mx.nd.slice.like Slices a region of the array like the shape of another array. This func-
tion is similar to “slice“, however, the ‘begin‘ are always ‘0‘s and
‘end‘ of specific axes are inferred from the second input ‘shape_like‘.
Given the second ‘shape_like‘ input of “shape=(d_0, d_1, ..., d_n-1)“,
a “slice_like“ operator with default empty ‘axes‘, it performs the fol-
lowing operation: “ out = slice(input, begin=(0, 0, ..., 0), end=(d_0,
d_1, ..., d_n-1))“. When ‘axes‘ is not empty, it is used to speficy which
axes are being sliced. Given a 4-d input data, “slice_like“ operator
with “axes=(0, 2, -1)“ will perform the following operation: “ out =
slice(input, begin=(0, 0, 0, 0), end=(d_0, None, d_2, d_3))“. Note
that it is allowed to have first and second input with different dimen-
sions, however, you have to make sure the ‘axes‘ are specified and
not exceeding the dimension limits. For example, given ‘input_1‘ with
“shape=(2,3,4,5)“ and ‘input_2‘ with “shape=(1,2,3)“, it is not al-
lowed to use: “ out = slice_like(a, b)“ because ndim of ‘input_1‘ is 4,
and ndim of ‘input_2‘ is 3. The following is allowed in this situation:
“ out = slice_like(a, b, axes=(0, 2))“ Example:: x = [[1., 2., 3., 4.],
[5., 6., 7., 8.], [9., 10., 11., 12.]] y = [[0., 0., 0.], [0., 0., 0.]]
slice_like(x, y) = [[1., 2., 3.] [5., 6., 7.]] slice_like(x, y, axes=(0, 1))
= [[1., 2., 3.] [5., 6., 7.]] slice_like(x, y, axes=(0)) = [[1., 2., 3., 4.]
[5., 6., 7., 8.]] slice_like(x, y, axes=(-1)) = [[1., 2., 3.] [5., 6., 7.] [
9., 10., 11.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L625

Arguments

data NDArray-or-Symbol Source input

shape.like NDArray-or-Symbol Shape like input

axes Shape(tuple), optional, default=[] List of axes on which input data will be sliced
according to the corresponding size of the second input. By default will slice on
all axes. Negative axes are supported.

Value

out The result mx.ndarray

mx.nd.SliceChannel 245

mx.nd.SliceChannel Splits an array along a particular axis into multiple sub-arrays.

Description

.. note:: “SliceChannel“ is deprecated. Use “split“ instead.

Arguments

data NDArray-or-Symbol The input

num.outputs int, required Number of splits. Note that this should evenly divide the length of
the ‘axis‘.

axis int, optional, default=’1’ Axis along which to split.

squeeze.axis boolean, optional, default=0 If true, Removes the axis with length 1 from the
shapes of the output arrays. **Note** that setting ‘squeeze_axis‘ to “true“ re-
moves axis with length 1 only along the ‘axis‘ which it is split. Also ‘squeeze_axis‘
can be set to “true“ only if “input.shape[axis] == num_outputs“.

Details

Note that ‘num_outputs‘ should evenly divide the length of the axis along which to split the
array.

Example::

x = [[[1.] [2.]] [[3.] [4.]] [[5.] [6.]]] x.shape = (3, 2, 1)

y = split(x, axis=1, num_outputs=2) // a list of 2 arrays with shape (3, 1, 1) y = [[[1.]] [[3.]] [[5.]]]

[[[2.]] [[4.]] [[6.]]]

y[0].shape = (3, 1, 1)

z = split(x, axis=0, num_outputs=3) // a list of 3 arrays with shape (1, 2, 1) z = [[[1.] [2.]]]

[[[3.] [4.]]]

[[[5.] [6.]]]

z[0].shape = (1, 2, 1)

‘squeeze_axis=1‘ removes the axis with length 1 from the shapes of the output arrays. **Note**
that setting ‘squeeze_axis‘ to “1“ removes axis with length 1 only along the ‘axis‘ which it is split.
Also ‘squeeze_axis‘ can be set to true only if “input.shape[axis] == num_outputs“.

Example::

z = split(x, axis=0, num_outputs=3, squeeze_axis=1) // a list of 3 arrays with shape (2, 1) z = [[1.]
[2.]]

[[3.] [4.]]

[[5.] [6.]] z[0].shape = (2 ,1)

Defined in src/operator/slice_channel.cc:L107

246 mx.nd.softmax

Value

out The result mx.ndarray

mx.nd.smooth.l1 Calculate Smooth L1 Loss(lhs, scalar) by summing

Description

.. math::

Arguments

data NDArray-or-Symbol source input

scalar float scalar input

Details

f(x) = \begincases (\sigma x)^2/2,& \textif x < 1/\sigma^2\ |x|-0.5/\sigma^2,& \textotherwise \end-
cases

where :math:‘x‘ is an element of the tensor *lhs* and :math:‘\sigma‘ is the scalar.

Example::

smooth_l1([1, 2, 3, 4]) = [0.5, 1.5, 2.5, 3.5] smooth_l1([1, 2, 3, 4], scalar=1) = [0.5, 1.5, 2.5, 3.5]

Defined in src/operator/tensor/elemwise_binary_scalar_op_extended.cc:L108

Value

out The result mx.ndarray

mx.nd.softmax Applies the softmax function.

Description

The resulting array contains elements in the range (0,1) and the elements along the given axis sum
up to 1.

mx.nd.softmax.cross.entropy 247

Arguments

data NDArray-or-Symbol The input array.

length NDArray-or-Symbol The length array.

axis int, optional, default=’-1’ The axis along which to compute softmax.

temperature double or None, optional, default=None Temperature parameter in softmax

dtype None, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to the same as input’s dtype if not
defined (dtype=None).

use.length boolean or None, optional, default=0 Whether to use the length input as a mask
over the data input.

Details

.. math:: softmax(\mathbfz/t)_j = \frace^z_j/t\sum_k=1^K e^z_k/t

for :math:‘j = 1, ..., K‘

t is the temperature parameter in softmax function. By default, t equals 1.0

Example::

x = [[1. 1. 1.] [1. 1. 1.]]

softmax(x,axis=0) = [[0.5 0.5 0.5] [0.5 0.5 0.5]]

softmax(x,axis=1) = [[0.33333334, 0.33333334, 0.33333334], [0.33333334, 0.33333334, 0.33333334]]

Defined in src/operator/nn/softmax.cc:L134

Value

out The result mx.ndarray

mx.nd.softmax.cross.entropy

Calculate cross entropy of softmax output and one-hot label.

Description

- This operator computes the cross entropy in two steps: - Applies softmax function on the input
array. - Computes and returns the cross entropy loss between the softmax output and the labels.

Arguments

data NDArray-or-Symbol Input data

label NDArray-or-Symbol Input label

248 mx.nd.SoftmaxActivation

Details

- The softmax function and cross entropy loss is given by:

- Softmax Function:

.. math:: \textsoftmax(x)_i = \fracexp(x_i)\sum_j exp(x_j)

- Cross Entropy Function:

.. math:: \textCE(label, output) = - \sum_i \textlabel_i \log(\textoutput_i)

Example::

x = [[1, 2, 3], [11, 7, 5]]

label = [2, 0]

softmax(x) = [[0.09003057, 0.24472848, 0.66524094], [0.97962922, 0.01794253, 0.00242826]]

softmax_cross_entropy(data, label) = - log(0.66524084) - log(0.97962922) = 0.4281871

Defined in src/operator/loss_binary_op.cc:L59

Value

out The result mx.ndarray

mx.nd.SoftmaxActivation

Applies softmax activation to input. This is intended for internal lay-
ers.

Description

.. note::

Arguments

data NDArray-or-Symbol The input array.

mode ’channel’, ’instance’,optional, default=’instance’ Specifies how to compute the
softmax. If set to “instance“, it computes softmax for each instance. If set to
“channel“, It computes cross channel softmax for each position of each instance.

Details

This operator has been deprecated, please use ‘softmax‘.

If ‘mode‘ = “instance“, this operator will compute a softmax for each instance in the batch. This is
the default mode.

If ‘mode‘ = “channel“, this operator will compute a k-class softmax at each position of each in-
stance, where ‘k‘ = “num_channel“. This mode can only be used when the input array has at least
3 dimensions. This can be used for ‘fully convolutional network‘, ‘image segmentation‘, etc.

Example::

mx.nd.softmin 249

»> input_array = mx.nd.array([[3., 0.5, -0.5, 2., 7.], »> [2., -.4, 7., 3., 0.2]]) »> softmax_act =
mx.nd.SoftmaxActivation(input_array) »> print softmax_act.asnumpy() [[1.78322066e-02 1.46375655e-
03 5.38485940e-04 6.56010211e-03 9.73605454e-01] [6.56221947e-03 5.95310994e-04 9.73919690e-
01 1.78379621e-02 1.08472735e-03]]

Defined in src/operator/nn/softmax_activation.cc:L59

Value

out The result mx.ndarray

mx.nd.softmin Applies the softmin function.

Description

The resulting array contains elements in the range (0,1) and the elements along the given axis sum
up to 1.

Arguments

data NDArray-or-Symbol The input array.

axis int, optional, default=’-1’ The axis along which to compute softmax.

temperature double or None, optional, default=None Temperature parameter in softmax

dtype None, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to the same as input’s dtype if not
defined (dtype=None).

use.length boolean or None, optional, default=0 Whether to use the length input as a mask
over the data input.

Details

.. math:: softmin(\mathbfz/t)_j = \frace^-z_j/t\sum_k=1^K e^-z_k/t

for :math:‘j = 1, ..., K‘

t is the temperature parameter in softmax function. By default, t equals 1.0

Example::

x = [[1. 2. 3.] [3. 2. 1.]]

softmin(x,axis=0) = [[0.88079703, 0.5, 0.11920292], [0.11920292, 0.5, 0.88079703]]

softmin(x,axis=1) = [[0.66524094, 0.24472848, 0.09003057], [0.09003057, 0.24472848, 0.66524094]]

Defined in src/operator/nn/softmin.cc:L57

Value

out The result mx.ndarray

250 mx.nd.sort

mx.nd.softsign Computes softsign of x element-wise.

Description

.. math:: y = x / (1 + abs(x))

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “softsign“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L191

Value

out The result mx.ndarray

mx.nd.sort Returns a sorted copy of an input array along the given axis.

Description

Examples::

Arguments

data NDArray-or-Symbol The input array
axis int or None, optional, default=’-1’ Axis along which to choose sort the input

tensor. If not given, the flattened array is used. Default is -1.
is.ascend boolean, optional, default=1 Whether to sort in ascending or descending order.

Details

x = [[1, 4], [3, 1]]

// sorts along the last axis sort(x) = [[1., 4.], [1., 3.]]

// flattens and then sorts sort(x, axis=None) = [1., 1., 3., 4.]

// sorts along the first axis sort(x, axis=0) = [[1., 1.], [3., 4.]]

// in a descend order sort(x, is_ascend=0) = [[4., 1.], [3., 1.]]

Defined in src/operator/tensor/ordering_op.cc:L133

Value

out The result mx.ndarray

mx.nd.space.to.depth 251

mx.nd.space.to.depth Rearranges(permutes) blocks of spatial data into
depth. Similar to ONNX SpaceToDepth operator:
https://github.com/onnx/onnx/blob/master/docs/Operators.md#SpaceToDepth
The output is a new tensor where the values from height and width
dimension are moved to the depth dimension. The reverse of this
operation is “depth_to_space“. .. math:: \begingather* x \prime
= reshape(x, [N, C, H / block_size, block_size, W / block_size,
block_size]) \ x \prime \prime = transpose(x \prime, [0, 3, 5, 1,
2, 4]) \ y = reshape(x \prime \prime, [N, C * (block_size ^ 2), H /
block_size, W / block_size]) \endgather* where :math:‘x‘ is an input
tensor with default layout as :math:‘[N, C, H, W]‘: [batch, channels,
height, width] and :math:‘y‘ is the output tensor of layout :math:‘[N,
C * (block_size ^ 2), H / block_size, W / block_size]‘ Example:: x =
[[[[0, 6, 1, 7, 2, 8], [12, 18, 13, 19, 14, 20], [3, 9, 4, 10, 5, 11], [15,
21, 16, 22, 17, 23]]]] space_to_depth(x, 2) = [[[[0, 1, 2], [3, 4, 5]],
[[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21,
22, 23]]]]

Description

Defined in src/operator/tensor/matrix_op.cc:L1019

Arguments

data NDArray-or-Symbol Input ndarray

block.size int, required Blocks of [block_size. block_size] are moved

Value

out The result mx.ndarray

mx.nd.SpatialTransformer

Applies a spatial transformer to input feature map.

Description

Applies a spatial transformer to input feature map.

252 mx.nd.split

Arguments

data NDArray-or-Symbol Input data to the SpatialTransformerOp.

loc NDArray-or-Symbol localisation net, the output dim should be 6 when trans-
form_type is affine. You shold initialize the weight and bias with identity tran-
form.

target.shape Shape(tuple), optional, default=[0,0] output shape(h, w) of spatial transformer:
(y, x)

transform.type ’affine’, required transformation type

sampler.type ’bilinear’, required sampling type

cudnn.off boolean or None, optional, default=None whether to turn cudnn off

Value

out The result mx.ndarray

mx.nd.split Splits an array along a particular axis into multiple sub-arrays.

Description

.. note:: “SliceChannel“ is deprecated. Use “split“ instead.

Arguments

data NDArray-or-Symbol The input

num.outputs int, required Number of splits. Note that this should evenly divide the length of
the ‘axis‘.

axis int, optional, default=’1’ Axis along which to split.

squeeze.axis boolean, optional, default=0 If true, Removes the axis with length 1 from the
shapes of the output arrays. **Note** that setting ‘squeeze_axis‘ to “true“ re-
moves axis with length 1 only along the ‘axis‘ which it is split. Also ‘squeeze_axis‘
can be set to “true“ only if “input.shape[axis] == num_outputs“.

Details

Note that ‘num_outputs‘ should evenly divide the length of the axis along which to split the
array.

Example::

x = [[[1.] [2.]] [[3.] [4.]] [[5.] [6.]]] x.shape = (3, 2, 1)

y = split(x, axis=1, num_outputs=2) // a list of 2 arrays with shape (3, 1, 1) y = [[[1.]] [[3.]] [[5.]]]

[[[2.]] [[4.]] [[6.]]]

y[0].shape = (3, 1, 1)

mx.nd.sqrt 253

z = split(x, axis=0, num_outputs=3) // a list of 3 arrays with shape (1, 2, 1) z = [[[1.] [2.]]]

[[[3.] [4.]]]

[[[5.] [6.]]]

z[0].shape = (1, 2, 1)

‘squeeze_axis=1‘ removes the axis with length 1 from the shapes of the output arrays. **Note**
that setting ‘squeeze_axis‘ to “1“ removes axis with length 1 only along the ‘axis‘ which it is split.
Also ‘squeeze_axis‘ can be set to true only if “input.shape[axis] == num_outputs“.

Example::

z = split(x, axis=0, num_outputs=3, squeeze_axis=1) // a list of 3 arrays with shape (2, 1) z = [[1.]
[2.]]

[[3.] [4.]]

[[5.] [6.]] z[0].shape = (2 ,1)

Defined in src/operator/slice_channel.cc:L107

Value

out The result mx.ndarray

mx.nd.sqrt Returns element-wise square-root value of the input.

Description

.. math:: \textrmsqrt(x) = \sqrtx

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

sqrt([4, 9, 16]) = [2, 3, 4]

The storage type of “sqrt“ output depends upon the input storage type:

- sqrt(default) = default - sqrt(row_sparse) = row_sparse - sqrt(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L170

Value

out The result mx.ndarray

254 mx.nd.squeeze

mx.nd.square Returns element-wise squared value of the input.

Description

.. math:: square(x) = x^2

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

square([2, 3, 4]) = [4, 9, 16]

The storage type of “square“ output depends upon the input storage type:

- square(default) = default - square(row_sparse) = row_sparse - square(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L119

Value

out The result mx.ndarray

mx.nd.squeeze Remove single-dimensional entries from the shape of an array. Same
behavior of defining the output tensor shape as numpy.squeeze for the
most of cases. See the following note for exception. Examples:: data
= [[[0], [1], [2]]] squeeze(data) = [0, 1, 2] squeeze(data, axis=0)
= [[0], [1], [2]] squeeze(data, axis=2) = [[0, 1, 2]] squeeze(data,
axis=(0, 2)) = [0, 1, 2] .. Note:: The output of this operator will keep
at least one dimension not removed. For example, squeeze([[[4]]]) =
[4], while in numpy.squeeze, the output will become a scalar.

Description

Remove single-dimensional entries from the shape of an array. Same behavior of defining the
output tensor shape as numpy.squeeze for the most of cases. See the following note for exception.
Examples:: data = [[[0], [1], [2]]] squeeze(data) = [0, 1, 2] squeeze(data, axis=0) = [[0], [1], [2]]
squeeze(data, axis=2) = [[0, 1, 2]] squeeze(data, axis=(0, 2)) = [0, 1, 2] .. Note:: The output of this
operator will keep at least one dimension not removed. For example, squeeze([[[4]]]) = [4], while
in numpy.squeeze, the output will become a scalar.

mx.nd.stack 255

Arguments

data NDArray-or-Symbol data to squeeze

axis Shape or None, optional, default=None Selects a subset of the single-dimensional
entries in the shape. If an axis is selected with shape entry greater than one, an
error is raised.

Value

out The result mx.ndarray

mx.nd.stack Join a sequence of arrays along a new axis. The axis parameter spec-
ifies the index of the new axis in the dimensions of the result. For
example, if axis=0 it will be the first dimension and if axis=-1 it will
be the last dimension. Examples:: x = [1, 2] y = [3, 4] stack(x, y) =
[[1, 2], [3, 4]] stack(x, y, axis=1) = [[1, 3], [2, 4]]

Description

Join a sequence of arrays along a new axis. The axis parameter specifies the index of the new axis
in the dimensions of the result. For example, if axis=0 it will be the first dimension and if axis=-1
it will be the last dimension. Examples:: x = [1, 2] y = [3, 4] stack(x, y) = [[1, 2], [3, 4]] stack(x, y,
axis=1) = [[1, 3], [2, 4]]

Arguments

data NDArray-or-Symbol[] List of arrays to stack

axis int, optional, default=’0’ The axis in the result array along which the input arrays
are stacked.

num.args int, required Number of inputs to be stacked.

Value

out The result mx.ndarray

256 mx.nd.sum

mx.nd.stop.gradient Stops gradient computation.

Description

Stops the accumulated gradient of the inputs from flowing through this operator in the backward
direction. In other words, this operator prevents the contribution of its inputs to be taken into
account for computing gradients.

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

v1 = [1, 2] v2 = [0, 1] a = Variable(’a’) b = Variable(’b’) b_stop_grad = stop_gradient(3 * b) loss =
MakeLoss(b_stop_grad + a)

executor = loss.simple_bind(ctx=cpu(), a=(1,2), b=(1,2)) executor.forward(is_train=True, a=v1, b=v2)
executor.outputs [1. 5.]

executor.backward() executor.grad_arrays [0. 0.] [1. 1.]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L326

Value

out The result mx.ndarray

mx.nd.sum Computes the sum of array elements over given axes.

Description

.. Note::

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.

mx.nd.sum.axis 257

If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Details

‘sum‘ and ‘sum_axis‘ are equivalent. For ndarray of csr storage type summation along axis 0 and
axis 1 is supported. Setting keepdims or exclude to True will cause a fallback to dense operator.

Example::

data = [[[1, 2], [2, 3], [1, 3]], [[1, 4], [4, 3], [5, 2]], [[7, 1], [7, 2], [7, 3]]]

sum(data, axis=1) [[4. 8.] [10. 9.] [21. 6.]]

sum(data, axis=[1,2]) [12. 19. 27.]

data = [[1, 2, 0], [3, 0, 1], [4, 1, 0]]

csr = cast_storage(data, ’csr’)

sum(csr, axis=0) [8. 3. 1.]

sum(csr, axis=1) [3. 4. 5.]

Defined in src/operator/tensor/broadcast_reduce_sum_value.cc:L67

Value

out The result mx.ndarray

mx.nd.sum.axis Computes the sum of array elements over given axes.

Description

.. Note::

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.

258 mx.nd.swapaxes

If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

Details

‘sum‘ and ‘sum_axis‘ are equivalent. For ndarray of csr storage type summation along axis 0 and
axis 1 is supported. Setting keepdims or exclude to True will cause a fallback to dense operator.

Example::

data = [[[1, 2], [2, 3], [1, 3]], [[1, 4], [4, 3], [5, 2]], [[7, 1], [7, 2], [7, 3]]]

sum(data, axis=1) [[4. 8.] [10. 9.] [21. 6.]]

sum(data, axis=[1,2]) [12. 19. 27.]

data = [[1, 2, 0], [3, 0, 1], [4, 1, 0]]

csr = cast_storage(data, ’csr’)

sum(csr, axis=0) [8. 3. 1.]

sum(csr, axis=1) [3. 4. 5.]

Defined in src/operator/tensor/broadcast_reduce_sum_value.cc:L67

Value

out The result mx.ndarray

mx.nd.swapaxes Interchanges two axes of an array.

Description

Examples::

Arguments

data NDArray-or-Symbol Input array.
dim1 int, optional, default=’0’ the first axis to be swapped.
dim2 int, optional, default=’0’ the second axis to be swapped.

Details

x = [[1, 2, 3]]) swapaxes(x, 0, 1) = [[1], [2], [3]]

x = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] // (2,2,2) array

swapaxes(x, 0, 2) = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]]

Defined in src/operator/swapaxis.cc:L70

mx.nd.SwapAxis 259

Value

out The result mx.ndarray

mx.nd.SwapAxis Interchanges two axes of an array.

Description

Examples::

Arguments

data NDArray-or-Symbol Input array.
dim1 int, optional, default=’0’ the first axis to be swapped.
dim2 int, optional, default=’0’ the second axis to be swapped.

Details

x = [[1, 2, 3]]) swapaxes(x, 0, 1) = [[1], [2], [3]]

x = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] // (2,2,2) array

swapaxes(x, 0, 2) = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]]

Defined in src/operator/swapaxis.cc:L70

Value

out The result mx.ndarray

mx.nd.take Takes elements from an input array along the given axis.

Description

This function slices the input array along a particular axis with the provided indices.

Arguments

a NDArray-or-Symbol The input array.
indices NDArray-or-Symbol The indices of the values to be extracted.
axis int, optional, default=’0’ The axis of input array to be taken.For input tensor of

rank r, it could be in the range of [-r, r-1]
mode ’clip’, ’raise’, ’wrap’,optional, default=’clip’ Specify how out-of-bound indices

bahave. Default is "clip". "clip" means clip to the range. So, if all indices
mentioned are too large, they are replaced by the index that addresses the last
element along an axis. "wrap" means to wrap around. "raise" means to raise an
error when index out of range.

260 mx.nd.tan

Details

Given data tensor of rank r >= 1, and indices tensor of rank q, gather entries of the axis dimension of
data (by default outer-most one as axis=0) indexed by indices, and concatenates them in an output
tensor of rank q + (r - 1).

Examples::

x = [4. 5. 6.]

// Trivial case, take the second element along the first axis.

take(x, [1]) = [5.]

// The other trivial case, axis=-1, take the third element along the first axis

take(x, [3], axis=-1, mode=’clip’) = [6.]

x = [[1., 2.], [3., 4.], [5., 6.]]

// In this case we will get rows 0 and 1, then 1 and 2. Along axis 0

take(x, [[0,1],[1,2]]) = [[[1., 2.], [3., 4.]],

[[3., 4.], [5., 6.]]]

// In this case we will get rows 0 and 1, then 1 and 2 (calculated by wrapping around). // Along axis
1

take(x, [[0, 3], [-1, -2]], axis=1, mode=’wrap’) = [[[1. 2.] [2. 1.]]

[[3. 4.] [4. 3.]]

[[5. 6.] [6. 5.]]]

The storage type of “take“ output depends upon the input storage type:

- take(default, default) = default - take(csr, default, axis=0) = csr

Defined in src/operator/tensor/indexing_op.cc:L691

Value

out The result mx.ndarray

mx.nd.tan Computes the element-wise tangent of the input array.

Description

The input should be in radians (:math:‘2\pi‘ rad equals 360 degrees).

Arguments

data NDArray-or-Symbol The input array.

mx.nd.tanh 261

Details

.. math:: tan([0, \pi/4, \pi/2]) = [0, 1, -inf]

The storage type of “tan“ output depends upon the input storage type:

- tan(default) = default - tan(row_sparse) = row_sparse - tan(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L140

Value

out The result mx.ndarray

mx.nd.tanh Returns the hyperbolic tangent of the input array, computed element-
wise.

Description

.. math:: tanh(x) = sinh(x) / cosh(x)

Arguments

data NDArray-or-Symbol The input array.

Details

The storage type of “tanh“ output depends upon the input storage type:

- tanh(default) = default - tanh(row_sparse) = row_sparse - tanh(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L451

Value

out The result mx.ndarray

262 mx.nd.topk

mx.nd.tile Repeats the whole array multiple times. If “reps“ has length *d*, and
input array has dimension of *n*. There are three cases: - **n=d**.
Repeat *i*-th dimension of the input by “reps[i]“ times:: x = [[1, 2],
[3, 4]] tile(x, reps=(2,3)) = [[1., 2., 1., 2., 1., 2.], [3., 4., 3., 4., 3.,
4.], [1., 2., 1., 2., 1., 2.], [3., 4., 3., 4., 3., 4.]] - **n>d**. “reps“
is promoted to length *n* by pre-pending 1’s to it. Thus for an input
shape “(2,3)“, “repos=(2,)“ is treated as “(1,2)“:: tile(x, reps=(2,))
= [[1., 2., 1., 2.], [3., 4., 3., 4.]] - **n<d**. The input is promoted to
be d-dimensional by prepending new axes. So a shape “(2,2)“ array
is promoted to “(1,2,2)“ for 3-D replication:: tile(x, reps=(2,2,3)) =
[[[1., 2., 1., 2., 1., 2.], [3., 4., 3., 4., 3., 4.], [1., 2., 1., 2., 1., 2.], [3.,
4., 3., 4., 3., 4.]], [[1., 2., 1., 2., 1., 2.], [3., 4., 3., 4., 3., 4.], [1., 2.,
1., 2., 1., 2.], [3., 4., 3., 4., 3., 4.]]]

Description

Defined in src/operator/tensor/matrix_op.cc:L796

Arguments

data NDArray-or-Symbol Input data array

reps Shape(tuple), required The number of times for repeating the tensor a. Each dim
size of reps must be a positive integer. If reps has length d, the result will have
dimension of max(d, a.ndim); If a.ndim < d, a is promoted to be d-dimensional
by prepending new axes. If a.ndim > d, reps is promoted to a.ndim by pre-
pending 1’s to it.

Value

out The result mx.ndarray

mx.nd.topk Returns the indices of the top *k* elements in an input array along the
given axis (by default). If ret_type is set to ’value’ returns the value
of top *k* elements (instead of indices). In case of ret_type = ’both’,
both value and index would be returned. The returned elements will
be sorted.

Description

Examples::

mx.nd.transpose 263

Arguments

data NDArray-or-Symbol The input array

axis int or None, optional, default=’-1’ Axis along which to choose the top k indices.
If not given, the flattened array is used. Default is -1.

k int, optional, default=’1’ Number of top elements to select, should be always
smaller than or equal to the element number in the given axis. A global sort is
performed if set k < 1.

ret.typ ’both’, ’indices’, ’mask’, ’value’,optional, default=’indices’ The return type.
"value" means to return the top k values, "indices" means to return the indices
of the top k values, "mask" means to return a mask array containing 0 and 1. 1
means the top k values. "both" means to return a list of both values and indices
of top k elements.

is.ascend boolean, optional, default=0 Whether to choose k largest or k smallest elements.
Top K largest elements will be chosen if set to false.

dtype ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’uint8’,optional, default=’float32’
DType of the output indices when ret_typ is "indices" or "both". An error will
be raised if the selected data type cannot precisely represent the indices.

Details

x = [[0.3, 0.2, 0.4], [0.1, 0.3, 0.2]]

// returns an index of the largest element on last axis topk(x) = [[2.], [1.]]

// returns the value of top-2 largest elements on last axis topk(x, ret_typ=’value’, k=2) = [[0.4, 0.3],
[0.3, 0.2]]

// returns the value of top-2 smallest elements on last axis topk(x, ret_typ=’value’, k=2, is_ascend=1)
= [[0.2 , 0.3], [0.1 , 0.2]]

// returns the value of top-2 largest elements on axis 0 topk(x, axis=0, ret_typ=’value’, k=2) = [[
0.3, 0.3, 0.4], [0.1, 0.2, 0.2]]

// flattens and then returns list of both values and indices topk(x, ret_typ=’both’, k=2) = [[[0.4, 0.3],
[0.3, 0.2]] , [[2., 0.], [1., 2.]]]

Defined in src/operator/tensor/ordering_op.cc:L68

Value

out The result mx.ndarray

mx.nd.transpose Permutes the dimensions of an array. Examples:: x = [[1, 2], [3, 4]]
transpose(x) = [[1., 3.], [2., 4.]] x = [[[1., 2.], [3., 4.]], [[5., 6.],
[7., 8.]]] transpose(x) = [[[1., 5.], [3., 7.]], [[2., 6.], [4., 8.]]]
transpose(x, axes=(1,0,2)) = [[[1., 2.], [5., 6.]], [[3., 4.], [7., 8.]]]

264 mx.nd.trunc

Description

Defined in src/operator/tensor/matrix_op.cc:L328

Arguments

data NDArray-or-Symbol Source input

axes Shape(tuple), optional, default=[] Target axis order. By default the axes will be
inverted.

Value

out The result mx.ndarray

mx.nd.trunc Return the element-wise truncated value of the input.

Description

The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. In short,
the fractional part of the signed number x is discarded.

Arguments

data NDArray-or-Symbol The input array.

Details

Example::

trunc([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-2., -1., 1., 1., 2.]

The storage type of “trunc“ output depends upon the input storage type:

- trunc(default) = default - trunc(row_sparse) = row_sparse - trunc(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L857

Value

out The result mx.ndarray

mx.nd.uniform 265

mx.nd.uniform Draw random samples from a uniform distribution.

Description

.. note:: The existing alias “uniform“ is deprecated.

Arguments

low float, optional, default=0 Lower bound of the distribution.

high float, optional, default=1 Upper bound of the distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

Details

Samples are uniformly distributed over the half-open interval *[low, high)* (includes *low*, but
excludes *high*).

Example::

uniform(low=0, high=1, shape=(2,2)) = [[0.60276335, 0.85794562], [0.54488319, 0.84725171]]

Defined in src/operator/random/sample_op.cc:L96

Value

out The result mx.ndarray

mx.nd.unravel.index Converts an array of flat indices into a batch of index arrays. The
operator follows numpy conventions so a single multi index is given
by a column of the output matrix. The leading dimension may be left
unspecified by using -1 as placeholder.

Description

Examples::

Arguments

data NDArray-or-Symbol Array of flat indices

shape Shape(tuple), optional, default=None Shape of the array into which the multi-
indices apply.

266 mx.nd.UpSampling

Details

A = [22,41,37] unravel_index(A, shape=(7,6)) = [[3,6,6], [4,5,1]] unravel_index(A, shape=(-1,6))
= [[3,6,6], [4,5,1]]

B = [[22,41,37],[10,11,15]] unravel_index(B, shape=(7,6)) = [[[3,6,6],[1,1,2]], [[4,5,1],[4,5,3]]] un-
ravel_index(B, shape=(-1,6)) = [[[3,6,6],[1,1,2]], [[4,5,1],[4,5,3]]]

Defined in src/operator/tensor/ravel.cc:L76

Value

out The result mx.ndarray

mx.nd.UpSampling Upsamples the given input data.

Description

Two algorithms (“sample_type“) are available for upsampling:

Arguments

data NDArray-or-Symbol[] Array of tensors to upsample. For bilinear upsampling,
there should be 2 inputs - 1 data and 1 weight.

scale int, required Up sampling scale

num.filter int, optional, default=’0’ Input filter. Only used by bilinear sample_type.Since
bilinear upsampling uses deconvolution, num_filters is set to the number of
channels.

sample.type ’bilinear’, ’nearest’, required upsampling method

multi.input.mode

’concat’, ’sum’,optional, default=’concat’ How to handle multiple input. concat
means concatenate upsampled images along the channel dimension. sum means
add all images together, only available for nearest neighbor upsampling.

num.args int, required Number of inputs to be upsampled. For nearest neighbor upsam-
pling, this can be 1-N; the size of output will be(scale*h_0,scale*w_0) and all
other inputs will be upsampled to thesame size. For bilinear upsampling this
must be 2; 1 input and 1 weight.

workspace long (non-negative), optional, default=512 Tmp workspace for deconvolution
(MB)

mx.nd.where 267

Details

- Nearest Neighbor - Bilinear

Nearest Neighbor Upsampling

Input data is expected to be NCHW.

Example::

x = [[[[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]]]]

UpSampling(x, scale=2, sample_type=’nearest’) = [[[[1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1.] [1. 1. 1.
1. 1. 1.] [1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1.]]]]

Bilinear Upsampling

Uses ‘deconvolution‘ algorithm under the hood. You need provide both input data and the kernel.

Input data is expected to be NCHW.

‘num_filter‘ is expected to be same as the number of channels.

Example::

x = [[[[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]]]]

w = [[[[1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.]]]]

UpSampling(x, w, scale=2, sample_type=’bilinear’, num_filter=1) = [[[[1. 2. 2. 2. 2. 1.] [2. 4. 4.
4. 4. 2.] [2. 4. 4. 4. 4. 2.] [2. 4. 4. 4. 4. 2.] [2. 4. 4. 4. 4. 2.] [1. 2. 2. 2. 2. 1.]]]]

Defined in src/operator/nn/upsampling.cc:L173

Value

out The result mx.ndarray

mx.nd.where Return the elements, either from x or y, depending on the condition.

Description

Given three ndarrays, condition, x, and y, return an ndarray with the elements from x or y, depending
on the elements from condition are true or false. x and y must have the same shape. If condition
has the same shape as x, each element in the output array is from x if the corresponding element in
the condition is true, and from y if false.

Arguments

condition NDArray-or-Symbol condition array

x NDArray-or-Symbol

y NDArray-or-Symbol

268 mx.nd.zeros

Details

If condition does not have the same shape as x, it must be a 1D array whose size is the same as x’s
first dimension size. Each row of the output array is from x’s row if the corresponding element from
condition is true, and from y’s row if false.

Note that all non-zero values are interpreted as “True“ in condition.

Examples::

x = [[1, 2], [3, 4]] y = [[5, 6], [7, 8]] cond = [[0, 1], [-1, 0]]

where(cond, x, y) = [[5, 2], [3, 8]]

csr_cond = cast_storage(cond, ’csr’)

where(csr_cond, x, y) = [[5, 2], [3, 8]]

Defined in src/operator/tensor/control_flow_op.cc:L57

Value

out The result mx.ndarray

mx.nd.zeros Generate an mx.nd.array object with zeros

Description

Generate an mx.nd.array object with zeros

Usage

mx.nd.zeros(shape, ctx = NULL)

Arguments

shape the dimension of the mx.nd.array

ctx optional The context device of the array. mx.ctx.default() will be used in default.

Examples

mat = mx.nd.zeros(10)
as.array(mat)
mat2 = mx.nd.zeros(c(5,5))
as.array(mat)
mat3 = mx.nd.zeroes(c(3,3,3))
as.array(mat3)

mx.nd.zeros.like 269

mx.nd.zeros.like Return an array of zeros with the same shape, type and storage type
as the input array.

Description

The storage type of “zeros_like“ output depends on the storage type of the input

Arguments

data NDArray-or-Symbol The input

Details

- zeros_like(row_sparse) = row_sparse - zeros_like(csr) = csr - zeros_like(default) = default

Examples::

x = [[1., 1., 1.], [1., 1., 1.]]

zeros_like(x) = [[0., 0., 0.], [0., 0., 0.]]

Value

out The result mx.ndarray

mx.opt.adadelta Create an AdaDelta optimizer with respective parameters.

Description

AdaDelta optimizer as described in Zeiler, M. D. (2012). *ADADELTA: An adaptive learning rate
method.* http://arxiv.org/abs/1212.5701

Usage

mx.opt.adadelta(
rho = 0.9,
epsilon = 1e-05,
wd = 0,
rescale.grad = 1,
clip_gradient = -1

)

270 mx.opt.adagrad

Arguments

rho float, default=0.90 Decay rate for both squared gradients and delta x.

epsilon float, default=1e-5 The constant as described in the thesis.

wd float, default=0.0 L2 regularization coefficient add to all the weights.

rescale.grad float, default=1 rescaling factor of gradient.

clip_gradient float, default=-1 (no clipping if < 0) clip gradient in range [-clip_gradient, clip_gradient].

mx.opt.adagrad Create an AdaGrad optimizer with respective parameters. AdaGrad
optimizer of Duchi et al., 2011,

Description

This code follows the version in http://arxiv.org/pdf/1212.5701v1.pdf Eq(5) by Matthew D. Zeiler,
2012. AdaGrad will help the network to converge faster in some cases.

Usage

mx.opt.adagrad(
learning.rate = 0.05,
epsilon = 1e-08,
wd = 0,
rescale.grad = 1,
clip_gradient = -1,
lr_scheduler = NULL

)

Arguments

learning.rate float, default=0.05 Step size.

epsilon float, default=1e-8

wd float, default=0.0 L2 regularization coefficient add to all the weights.

rescale.grad float, default=1.0 rescaling factor of gradient.

clip_gradient float, default=-1.0 (no clipping if < 0) clip gradient in range [-clip_gradient,
clip_gradient].

lr_scheduler function, optional The learning rate scheduler.

mx.opt.adam 271

mx.opt.adam Create an Adam optimizer with respective parameters. Adam opti-
mizer as described in [King2014].

Description

[King2014] Diederik Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization, http://arxiv.org/abs/1412.6980

Usage

mx.opt.adam(
learning.rate = 0.001,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-08,
wd = 0,
rescale.grad = 1,
clip_gradient = -1,
lr_scheduler = NULL

)

Arguments

learning.rate float, default=1e-3 The initial learning rate.

beta1 float, default=0.9 Exponential decay rate for the first moment estimates.

beta2 float, default=0.999 Exponential decay rate for the second moment estimates.

epsilon float, default=1e-8

wd float, default=0.0 L2 regularization coefficient add to all the weights.

rescale.grad float, default=1.0 rescaling factor of gradient.

clip_gradient float, optional, default=-1 (no clipping if < 0) clip gradient in range [-clip_gradient,
clip_gradient].

lr_scheduler function, optional The learning rate scheduler.

mx.opt.create Create an optimizer by name and parameters

Description

Create an optimizer by name and parameters

Usage

mx.opt.create(name, ...)

272 mx.opt.nag

Arguments

name The name of the optimizer

... Additional arguments

mx.opt.get.updater Get an updater closure that can take list of weight and gradient and
return updated list of weight.

Description

Get an updater closure that can take list of weight and gradient and return updated list of weight.

Usage

mx.opt.get.updater(optimizer, weights, ctx)

Arguments

optimizer The optimizer

weights The weights to be optimized

mx.opt.nag Create a Nesterov Accelerated SGD(NAG) optimizer.

Description

NAG optimizer is described in Aleksandar Botev. et al (2016). *NAG: A Nesterov accelerated
SGD.* https://arxiv.org/pdf/1607.01981.pdf

Usage

mx.opt.nag(
learning.rate = 0.01,
momentum = 0,
wd = 0,
rescale.grad = 1,
clip_gradient = -1,
lr_scheduler = NULL

)

mx.opt.rmsprop 273

Arguments

learning.rate float, default=0.01 The initial learning rate.

momentum float, default=0 The momentum value

wd float, default=0.0 L2 regularization coefficient added to all the weights.

rescale.grad float, default=1.0 rescaling factor of gradient.

clip_gradient float, optional, default=-1 (no clipping if < 0) clip gradient in range [-clip_gradient,
clip_gradient].

lr_scheduler function, optional The learning rate scheduler.

mx.opt.rmsprop Create an RMSProp optimizer with respective parameters. Refer-
ence: Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude[J]. COURSERA: Neu-
ral Networks for Machine Learning, 2012, 4(2). The code follows:
http://arxiv.org/pdf/1308.0850v5.pdf Eq(38) - Eq(45) by Alex Graves,
2013.

Description

Create an RMSProp optimizer with respective parameters. Reference: Tieleman T, Hinton G. Lec-
ture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[J]. COURSERA:
Neural Networks for Machine Learning, 2012, 4(2). The code follows: http://arxiv.org/pdf/1308.0850v5.pdf
Eq(38) - Eq(45) by Alex Graves, 2013.

Usage

mx.opt.rmsprop(
learning.rate = 0.002,
centered = TRUE,
rho = 0.95,
momentum = 0.9,
epsilon = 1e-04,
wd = 0,
rescale.grad = 1,
clip_gradient = -1,
lr_scheduler = NULL

)

Arguments

learning.rate float, default=0.002 The initial learning rate.

rho float, default=0.95 decay factor of moving average for gradient, gradient^2.

momentum float, default=0.9 "momentum" factor.

epsilon float, default=1e-4

274 mx.opt.sgd

wd float, default=0.0 L2 regularization coefficient add to all the weights.

rescale.grad float, default=1.0 rescaling factor of gradient.

clip_gradient float, optional, default=-1 (no clipping if < 0) clip gradient in range [-clip_gradient,
clip_gradient].

lr_scheduler function, optional The learning rate scheduler.

mx.opt.sgd Create an SGD optimizer with respective parameters. Perform SGD
with momentum update

Description

Create an SGD optimizer with respective parameters. Perform SGD with momentum update

Usage

mx.opt.sgd(
learning.rate = 0.01,
momentum = 0,
wd = 0,
rescale.grad = 1,
clip_gradient = -1,
lr_scheduler = NULL

)

Arguments

learning.rate float, default=0.01 The initial learning rate.

momentum float, default=0 The momentum value

wd float, default=0.0 L2 regularization coefficient add to all the weights.

rescale.grad float, default=1.0 rescaling factor of gradient.

clip_gradient float, optional, default=-1 (no clipping if < 0) clip gradient in range [-clip_gradient,
clip_gradient].

lr_scheduler function, optional The learning rate scheduler.

mx.profiler.config 275

mx.profiler.config Set up the configuration of profiler.

Description

Set up the configuration of profiler.

Usage

mx.profiler.config(params)

Arguments

flags list of key/value pair tuples. Indicates configuration parameters profile_symbolic
: boolean, whether to profile symbolic operators profile_imperative : boolean,
whether to profile imperative operators profile_memory : boolean, whether to
profile memory usage profile_api : boolean, whether to profile the C API file_name
: string, output file for profile data continuous_dump : boolean, whether to peri-
odically dump profiling data to file dump_period : float, seconds between profile
data dumps

mx.profiler.state Set up the profiler state to record operator.

Description

Set up the profiler state to record operator.

Usage

mx.profiler.state(state = MX.PROF.STATE$STOP)

Arguments

state Indicting whether to run the profiler, can be ’MX.PROF.STATE$RUN’ or ’MX.PROF.STATE$STOP’.
Default is ‘MX.PROF.STATE$STOP‘.

filename The name of output trace file. Default is ’profile.json’

276 mx.runif

mx.rnorm Generate nomal distribution with mean and sd.

Description

Generate nomal distribution with mean and sd.

Usage

mx.rnorm(shape, mean = 0, sd = 1, ctx = NULL)

Arguments

shape Dimension, The shape(dimension) of the result.

mean numeric, The mean of distribution.

sd numeric, The standard deviations.

ctx, optional The context device of the array. mx.ctx.default() will be used in default.

Examples

mx.set.seed(0)
as.array(mx.runif(2))
0.5488135 0.5928446
mx.set.seed(0)
as.array(mx.rnorm(2))
2.212206 1.163079

mx.runif Generate uniform distribution in [low, high) with specified shape.

Description

Generate uniform distribution in [low, high) with specified shape.

Usage

mx.runif(shape, min = 0, max = 1, ctx = NULL)

Arguments

shape Dimension, The shape(dimension) of the result.

min numeric, The lower bound of distribution.

max numeric, The upper bound of distribution.

ctx, optional The context device of the array. mx.ctx.default() will be used in default.

mx.serialize 277

Examples

mx.set.seed(0)
as.array(mx.runif(2))
0.5488135 0.5928446
mx.set.seed(0)
as.array(mx.rnorm(2))
2.212206 1.163079

mx.serialize Serialize MXNet model into RData-compatiable format.

Description

Serialize MXNet model into RData-compatiable format.

Usage

mx.serialize(model)

Arguments

model The mxnet model

mx.set.seed Set the seed used by mxnet device-specific random number generators.

Description

Set the seed used by mxnet device-specific random number generators.

Usage

mx.set.seed(seed)

Arguments

seed the seed value to the device random number generators.

Details

We have a specific reason why mx.set.seed is introduced, instead of simply use set.seed.

The reason that is that most of mxnet random number generator can run on different devices, such
as GPU. We need to use massively parallel PRNG on GPU to get fast random number generations.
It can also be quite costly to seed these PRNGs. So we introduced mx.set.seed for mxnet specific
device random numbers.

278 mx.symbol.abs

Examples

mx.set.seed(0)
as.array(mx.runif(2))
0.5488135 0.5928446
mx.set.seed(0)
as.array(mx.rnorm(2))
2.212206 1.163079

mx.simple.bind Simple bind the symbol to executor, with information from input
shapes.

Description

Simple bind the symbol to executor, with information from input shapes.

Usage

mx.simple.bind(symbol, ctx, grad.req = "null", fixed.param = NULL, ...)

mx.symbol.abs abs:Returns element-wise absolute value of the input.

Description

Example::

Usage

mx.symbol.abs(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

abs([-2, 0, 3]) = [2, 0, 3]

The storage type of “abs“ output depends upon the input storage type:

- abs(default) = default - abs(row_sparse) = row_sparse - abs(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L721

mx.symbol.Activation 279

Value

out The result mx.symbol

mx.symbol.Activation Activation:Applies an activation function element-wise to the input.

Description

The following activation functions are supported:

Usage

mx.symbol.Activation(...)

Arguments

data NDArray-or-Symbol The input array.

act.type ’relu’, ’sigmoid’, ’softrelu’, ’softsign’, ’tanh’, required Activation function to be
applied.

name string, optional Name of the resulting symbol.

Details

- ‘relu‘: Rectified Linear Unit, :math:‘y = max(x, 0)‘ - ‘sigmoid‘: :math:‘y = \frac11 + exp(-x)‘
- ‘tanh‘: Hyperbolic tangent, :math:‘y = \fracexp(x) - exp(-x)exp(x) + exp(-x)‘ - ‘softrelu‘: Soft
ReLU, or SoftPlus, :math:‘y = log(1 + exp(x))‘ - ‘softsign‘: :math:‘y = \fracx1 + abs(x)‘

Defined in src/operator/nn/activation.cc:L175

Value

out The result mx.symbol

mx.symbol.adam_update adam_update:Update function for Adam optimizer. Adam is seen as a
generalization of AdaGrad.

Description

Adam update consists of the following steps, where g represents gradient and m, v are 1st and 2nd
order moment estimates (mean and variance).

Usage

mx.symbol.adam_update(...)

280 mx.symbol.adam_update

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mean NDArray-or-Symbol Moving mean

var NDArray-or-Symbol Moving variance

lr float, required Learning rate

beta1 float, optional, default=0.899999976 The decay rate for the 1st moment esti-
mates.

beta2 float, optional, default=0.999000013 The decay rate for the 2nd moment esti-
mates.

epsilon float, optional, default=9.99999994e-09 A small constant for numerical stability.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse and all of w, m and v have the same stype

name string, optional Name of the resulting symbol.

Details

.. math::

g_t = \nabla J(W_t-1)\ m_t = \beta_1 m_t-1 + (1 - \beta_1) g_t\ v_t = \beta_2 v_t-1 + (1 - \beta_2)
g_t^2\ W_t = W_t-1 - \alpha \frac m_t \sqrt v_t + \epsilon

It updates the weights using::

m = beta1*m + (1-beta1)*grad v = beta2*v + (1-beta2)*(grad**2) w += - learning_rate * m / (sqrt(v)
+ epsilon)

However, if grad’s storage type is “row_sparse“, “lazy_update“ is True and the storage type of
weight is the same as those of m and v, only the row slices whose indices appear in grad.indices are
updated (for w, m and v)::

for row in grad.indices: m[row] = beta1*m[row] + (1-beta1)*grad[row] v[row] = beta2*v[row] +
(1-beta2)*(grad[row]**2) w[row] += - learning_rate * m[row] / (sqrt(v[row]) + epsilon)

Defined in src/operator/optimizer_op.cc:L679

Value

out The result mx.symbol

mx.symbol.add_n 281

mx.symbol.add_n add_n:Adds all input arguments element-wise.

Description

.. math:: add_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n

Usage

mx.symbol.add_n(...)

Arguments

args NDArray-or-Symbol[] Positional input arguments
name string, optional Name of the resulting symbol.

Details

“add_n“ is potentially more efficient than calling “add“ by ‘n‘ times.

The storage type of “add_n“ output depends on storage types of inputs

- add_n(row_sparse, row_sparse, ..) = row_sparse - add_n(default, csr, default) = default - add_n(any
input combinations longer than 4 (>4) with at least one default type) = default - otherwise, “add_n“
falls all inputs back to default storage and generates default storage

Defined in src/operator/tensor/elemwise_sum.cc:L155

Value

out The result mx.symbol

mx.symbol.all_finite all_finite:Check if all the float numbers in the array are finite (used for
AMP)

Description

Defined in src/operator/contrib/all_finite.cc:L101

Usage

mx.symbol.all_finite(...)

Arguments

data NDArray Array
init.output boolean, optional, default=1 Initialize output to 1.
name string, optional Name of the resulting symbol.

282 mx.symbol.amp_multicast

Value

out The result mx.symbol

mx.symbol.amp_cast amp_cast:Cast function between low precision float/FP32 used by
AMP.

Description

It casts only between low precision float/FP32 and does not do anything for other types.

Usage

mx.symbol.amp_cast(...)

Arguments

data NDArray-or-Symbol The input.

dtype ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’, required
Output data type.

name string, optional Name of the resulting symbol.

Details

Defined in src/operator/tensor/amp_cast.cc:L121

Value

out The result mx.symbol

mx.symbol.amp_multicast

amp_multicast:Cast function used by AMP, that casts its inputs to the
common widest type.

Description

It casts only between low precision float/FP32 and does not do anything for other types.

Usage

mx.symbol.amp_multicast(...)

mx.symbol.arccos 283

Arguments

data NDArray-or-Symbol[] Weights

num.outputs int, required Number of input/output pairs to be casted to the widest type.

cast.narrow boolean, optional, default=0 Whether to cast to the narrowest type

name string, optional Name of the resulting symbol.

Details

Defined in src/operator/tensor/amp_cast.cc:L165

Value

out The result mx.symbol

mx.symbol.arccos arccos:Returns element-wise inverse cosine of the input array.

Description

The input should be in range ‘[-1, 1]‘. The output is in the closed interval :math:‘[0, \pi]‘

Usage

mx.symbol.arccos(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

.. math:: arccos([-1, -.707, 0, .707, 1]) = [\pi, 3\pi/4, \pi/2, \pi/4, 0]

The storage type of “arccos“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L233

Value

out The result mx.symbol

284 mx.symbol.arcsin

mx.symbol.arccosh arccosh:Returns the element-wise inverse hyperbolic cosine of the in-
put array, \ computed element-wise.

Description

The storage type of “arccosh“ output is always dense

Usage

mx.symbol.arccosh(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L535

Value

out The result mx.symbol

mx.symbol.arcsin arcsin:Returns element-wise inverse sine of the input array.

Description

The input should be in the range ‘[-1, 1]‘. The output is in the closed interval of [:math:‘-\pi/2‘,
:math:‘\pi/2‘].

Usage

mx.symbol.arcsin(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

mx.symbol.arcsinh 285

Details

.. math:: arcsin([-1, -.707, 0, .707, 1]) = [-\pi/2, -\pi/4, 0, \pi/4, \pi/2]

The storage type of “arcsin“ output depends upon the input storage type:

- arcsin(default) = default - arcsin(row_sparse) = row_sparse - arcsin(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L187

Value

out The result mx.symbol

mx.symbol.arcsinh arcsinh:Returns the element-wise inverse hyperbolic sine of the input
array, \ computed element-wise.

Description

The storage type of “arcsinh“ output depends upon the input storage type:

Usage

mx.symbol.arcsinh(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

- arcsinh(default) = default - arcsinh(row_sparse) = row_sparse - arcsinh(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L494

Value

out The result mx.symbol

286 mx.symbol.arctanh

mx.symbol.arctan arctan:Returns element-wise inverse tangent of the input array.

Description

The output is in the closed interval :math:‘[-\pi/2, \pi/2]‘

Usage

mx.symbol.arctan(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

.. math:: arctan([-1, 0, 1]) = [-\pi/4, 0, \pi/4]

The storage type of “arctan“ output depends upon the input storage type:

- arctan(default) = default - arctan(row_sparse) = row_sparse - arctan(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L282

Value

out The result mx.symbol

mx.symbol.arctanh arctanh:Returns the element-wise inverse hyperbolic tangent of the in-
put array, \ computed element-wise.

Description

The storage type of “arctanh“ output depends upon the input storage type:

Usage

mx.symbol.arctanh(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

mx.symbol.argmax 287

Details

- arctanh(default) = default - arctanh(row_sparse) = row_sparse - arctanh(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L579

Value

out The result mx.symbol

mx.symbol.argmax argmax:Returns indices of the maximum values along an axis.

Description

In the case of multiple occurrences of maximum values, the indices corresponding to the first oc-
currence are returned.

Usage

mx.symbol.argmax(...)

Arguments

data NDArray-or-Symbol The input

axis int or None, optional, default=’None’ The axis along which to perform the re-
duction. Negative values means indexing from right to left. “Requires axis to be
set as int, because global reduction is not supported yet.“

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axis is left in the
result as dimension with size one.

name string, optional Name of the resulting symbol.

Details

Examples::

x = [[0., 1., 2.], [3., 4., 5.]]

// argmax along axis 0 argmax(x, axis=0) = [1., 1., 1.]

// argmax along axis 1 argmax(x, axis=1) = [2., 2.]

// argmax along axis 1 keeping same dims as an input array argmax(x, axis=1, keepdims=True) = [[
2.], [2.]]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L52

Value

out The result mx.symbol

288 mx.symbol.argmin

mx.symbol.argmax_channel

argmax_channel:Returns argmax indices of each channel from the in-
put array.

Description

The result will be an NDArray of shape (num_channel,).

Usage

mx.symbol.argmax_channel(...)

Arguments

data NDArray-or-Symbol The input array

name string, optional Name of the resulting symbol.

Details

In case of multiple occurrences of the maximum values, the indices corresponding to the first oc-
currence are returned.

Examples::

x = [[0., 1., 2.], [3., 4., 5.]]

argmax_channel(x) = [2., 2.]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L97

Value

out The result mx.symbol

mx.symbol.argmin argmin:Returns indices of the minimum values along an axis.

Description

In the case of multiple occurrences of minimum values, the indices corresponding to the first occur-
rence are returned.

Usage

mx.symbol.argmin(...)

mx.symbol.argsort 289

Arguments

data NDArray-or-Symbol The input

axis int or None, optional, default=’None’ The axis along which to perform the re-
duction. Negative values means indexing from right to left. “Requires axis to be
set as int, because global reduction is not supported yet.“

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axis is left in the
result as dimension with size one.

name string, optional Name of the resulting symbol.

Details

Examples::

x = [[0., 1., 2.], [3., 4., 5.]]

// argmin along axis 0 argmin(x, axis=0) = [0., 0., 0.]

// argmin along axis 1 argmin(x, axis=1) = [0., 0.]

// argmin along axis 1 keeping same dims as an input array argmin(x, axis=1, keepdims=True) = [[
0.], [0.]]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L77

Value

out The result mx.symbol

mx.symbol.argsort argsort:Returns the indices that would sort an input array along the
given axis.

Description

This function performs sorting along the given axis and returns an array of indices having same
shape as an input array that index data in sorted order.

Usage

mx.symbol.argsort(...)

Arguments

data NDArray-or-Symbol The input array

axis int or None, optional, default=’-1’ Axis along which to sort the input tensor. If
not given, the flattened array is used. Default is -1.

is.ascend boolean, optional, default=1 Whether to sort in ascending or descending order.

290 mx.symbol.BatchNorm

dtype ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’uint8’,optional, default=’float32’
DType of the output indices. It is only valid when ret_typ is "indices" or "both".
An error will be raised if the selected data type cannot precisely represent the
indices.

name string, optional Name of the resulting symbol.

Details

Examples::

x = [[0.3, 0.2, 0.4], [0.1, 0.3, 0.2]]

// sort along axis -1 argsort(x) = [[1., 0., 2.], [0., 2., 1.]]

// sort along axis 0 argsort(x, axis=0) = [[1., 0., 1.] [0., 1., 0.]]

// flatten and then sort argsort(x, axis=None) = [3., 1., 5., 0., 4., 2.]

Defined in src/operator/tensor/ordering_op.cc:L185

Value

out The result mx.symbol

mx.symbol.BatchNorm BatchNorm:Batch normalization.

Description

Normalizes a data batch by mean and variance, and applies a scale “gamma“ as well as offset “beta“.

Usage

mx.symbol.BatchNorm(...)

Arguments

data NDArray-or-Symbol Input data to batch normalization

gamma NDArray-or-Symbol gamma array

beta NDArray-or-Symbol beta array

moving.mean NDArray-or-Symbol running mean of input

moving.var NDArray-or-Symbol running variance of input

eps double, optional, default=0.0010000000474974513 Epsilon to prevent div 0.
Must be no less than CUDNN_BN_MIN_EPSILON defined in cudnn.h when
using cudnn (usually 1e-5)

momentum float, optional, default=0.899999976 Momentum for moving average

fix.gamma boolean, optional, default=1 Fix gamma while training

mx.symbol.BatchNorm 291

use.global.stats

boolean, optional, default=0 Whether use global moving statistics instead of
local batch-norm. This will force change batch-norm into a scale shift operator.

output.mean.var

boolean, optional, default=0 Output the mean and inverse std

axis int, optional, default=’1’ Specify which shape axis the channel is specified

cudnn.off boolean, optional, default=0 Do not select CUDNN operator, if available
min.calib.range

float or None, optional, default=None The minimum scalar value in the form of
float32 obtained through calibration. If present, it will be used to by quantized
batch norm op to calculate primitive scale.Note: this calib_range is to calib bn
output.

max.calib.range

float or None, optional, default=None The maximum scalar value in the form of
float32 obtained through calibration. If present, it will be used to by quantized
batch norm op to calculate primitive scale.Note: this calib_range is to calib bn
output.

name string, optional Name of the resulting symbol.

Details

Assume the input has more than one dimension and we normalize along axis 1. We first compute
the mean and variance along this axis:

.. math::

data_mean[i] = mean(data[:,i,:,...]) \ data_var[i] = var(data[:,i,:,...])

Then compute the normalized output, which has the same shape as input, as following:

.. math::

out[:,i,:,...] = \fracdata[:,i,:,...] - data_mean[i]\sqrtdata_var[i]+\epsilon * gamma[i] + beta[i]

Both *mean* and *var* returns a scalar by treating the input as a vector.

Assume the input has size *k* on axis 1, then both “gamma“ and “beta“ have shape *(k,)*. If
“output_mean_var“ is set to be true, then outputs both “data_mean“ and the inverse of “data_var“,
which are needed for the backward pass. Note that gradient of these two outputs are blocked.

Besides the inputs and the outputs, this operator accepts two auxiliary states, “moving_mean“ and
“moving_var“, which are *k*-length vectors. They are global statistics for the whole dataset, which
are updated by::

moving_mean = moving_mean * momentum + data_mean * (1 - momentum) moving_var = mov-
ing_var * momentum + data_var * (1 - momentum)

If “use_global_stats“ is set to be true, then “moving_mean“ and “moving_var“ are used instead of
“data_mean“ and “data_var“ to compute the output. It is often used during inference.

The parameter “axis“ specifies which axis of the input shape denotes the ’channel’ (separately
normalized groups). The default is 1. Specifying -1 sets the channel axis to be the last item in the
input shape.

Both “gamma“ and “beta“ are learnable parameters. But if “fix_gamma“ is true, then set “gamma“
to 1 and its gradient to 0.

292 mx.symbol.batch_dot

.. Note:: When “fix_gamma“ is set to True, no sparse support is provided. If “fix_gamma is“ set to
False, the sparse tensors will fallback.

Defined in src/operator/nn/batch_norm.cc:L602

Value

out The result mx.symbol

mx.symbol.batch_dot batch_dot:Batchwise dot product.

Description

“batch_dot“ is used to compute dot product of “x“ and “y“ when “x“ and “y“ are data in batch,
namely N-D (N >= 3) arrays in shape of ‘(B0, ..., B_i, :, :)‘.

Usage

mx.symbol.batch_dot(...)

Arguments

lhs NDArray-or-Symbol The first input

rhs NDArray-or-Symbol The second input

transpose.a boolean, optional, default=0 If true then transpose the first input before dot.

transpose.b boolean, optional, default=0 If true then transpose the second input before dot.

forward.stype None, ’csr’, ’default’, ’row_sparse’,optional, default=’None’ The desired stor-
age type of the forward output given by user, if thecombination of input storage
types and this hint does not matchany implemented ones, the dot operator will
perform fallback operationand still produce an output of the desired storage type.

name string, optional Name of the resulting symbol.

Details

For example, given “x“ with shape ‘(B_0, ..., B_i, N, M)‘ and “y“ with shape ‘(B_0, ..., B_i, M,
K)‘, the result array will have shape ‘(B_0, ..., B_i, N, K)‘, which is computed by::

batch_dot(x,y)[b_0, ..., b_i, :, :] = dot(x[b_0, ..., b_i, :, :], y[b_0, ..., b_i, :, :])

Defined in src/operator/tensor/dot.cc:L127

Value

out The result mx.symbol

mx.symbol.batch_take 293

mx.symbol.batch_take batch_take:Takes elements from a data batch.

Description

.. note:: ‘batch_take‘ is deprecated. Use ‘pick‘ instead.

Usage

mx.symbol.batch_take(...)

Arguments

a NDArray-or-Symbol The input array

indices NDArray-or-Symbol The index array

name string, optional Name of the resulting symbol.

Details

Given an input array of shape “(d0, d1)“ and indices of shape “(i0,)“, the result will be an output
array of shape “(i0,)“ with::

output[i] = input[i, indices[i]]

Examples::

x = [[1., 2.], [3., 4.], [5., 6.]]

// takes elements with specified indices batch_take(x, [0,1,0]) = [1. 4. 5.]

Defined in src/operator/tensor/indexing_op.cc:L750

Value

out The result mx.symbol

mx.symbol.BilinearSampler

BilinearSampler:Applies bilinear sampling to input feature map.

Description

Bilinear Sampling is the key of [NIPS2015] \"Spatial Transformer Networks\". The usage of the
operator is very similar to remap function in OpenCV, except that the operator has the backward
pass.

Usage

mx.symbol.BilinearSampler(...)

294 mx.symbol.BilinearSampler

Arguments

data NDArray-or-Symbol Input data to the BilinearsamplerOp.

grid NDArray-or-Symbol Input grid to the BilinearsamplerOp.grid has two channels:
x_src, y_src

cudnn.off boolean or None, optional, default=None whether to turn cudnn off

name string, optional Name of the resulting symbol.

Details

Given :math:‘data‘ and :math:‘grid‘, then the output is computed by

.. math:: x_src = grid[batch, 0, y_dst, x_dst] \ y_src = grid[batch, 1, y_dst, x_dst] \ output[batch,
channel, y_dst, x_dst] = G(data[batch, channel, y_src, x_src)

:math:‘x_dst‘, :math:‘y_dst‘ enumerate all spatial locations in :math:‘output‘, and :math:‘G()‘ de-
notes the bilinear interpolation kernel. The out-boundary points will be padded with zeros.The
shape of the output will be (data.shape[0], data.shape[1], grid.shape[2], grid.shape[3]).

The operator assumes that :math:‘data‘ has ’NCHW’ layout and :math:‘grid‘ has been normalized
to [-1, 1].

BilinearSampler often cooperates with GridGenerator which generates sampling grids for Bilin-
earSampler. GridGenerator supports two kinds of transformation: “affine“ and “warp“. If users
want to design a CustomOp to manipulate :math:‘grid‘, please firstly refer to the code of GridGen-
erator.

Example 1::

Zoom out data two times data = array([[[[1, 4, 3, 6], [1, 8, 8, 9], [0, 4, 1, 5], [1, 0, 1, 3]]]])

affine_matrix = array([[2, 0, 0], [0, 2, 0]])

affine_matrix = reshape(affine_matrix, shape=(1, 6))

grid = GridGenerator(data=affine_matrix, transform_type=’affine’, target_shape=(4, 4))

out = BilinearSampler(data, grid)

out [[[[0, 0, 0, 0], [0, 3.5, 6.5, 0], [0, 1.25, 2.5, 0], [0, 0, 0, 0]]]

Example 2::

shift data horizontally by -1 pixel

data = array([[[[1, 4, 3, 6], [1, 8, 8, 9], [0, 4, 1, 5], [1, 0, 1, 3]]]])

warp_maxtrix = array([[[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]], [[0, 0, 0, 0], [0, 0, 0, 0], [0,
0, 0, 0], [0, 0, 0, 0]]]])

grid = GridGenerator(data=warp_matrix, transform_type=’warp’) out = BilinearSampler(data, grid)

out [[[[4, 3, 6, 0], [8, 8, 9, 0], [4, 1, 5, 0], [0, 1, 3, 0]]]

Defined in src/operator/bilinear_sampler.cc:L256

Value

out The result mx.symbol

mx.symbol.BlockGrad 295

mx.symbol.BlockGrad BlockGrad:Stops gradient computation.

Description

Stops the accumulated gradient of the inputs from flowing through this operator in the backward
direction. In other words, this operator prevents the contribution of its inputs to be taken into
account for computing gradients.

Usage

mx.symbol.BlockGrad(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

v1 = [1, 2] v2 = [0, 1] a = Variable(’a’) b = Variable(’b’) b_stop_grad = stop_gradient(3 * b) loss =
MakeLoss(b_stop_grad + a)

executor = loss.simple_bind(ctx=cpu(), a=(1,2), b=(1,2)) executor.forward(is_train=True, a=v1, b=v2)
executor.outputs [1. 5.]

executor.backward() executor.grad_arrays [0. 0.] [1. 1.]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L326

Value

out The result mx.symbol

mx.symbol.broadcast_add

broadcast_add:Returns element-wise sum of the input arrays with
broadcasting.

Description

‘broadcast_plus‘ is an alias to the function ‘broadcast_add‘.

Usage

mx.symbol.broadcast_add(...)

296 mx.symbol.broadcast_axes

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_add(x, y) = [[1., 1., 1.], [2., 2., 2.]]

broadcast_plus(x, y) = [[1., 1., 1.], [2., 2., 2.]]

Supported sparse operations:

broadcast_add(csr, dense(1D)) = dense broadcast_add(dense(1D), csr) = dense

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L58

Value

out The result mx.symbol

mx.symbol.broadcast_axes

broadcast_axes:Broadcasts the input array over particular axes.

Description

Broadcasting is allowed on axes with size 1, such as from ‘(2,1,3,1)‘ to ‘(2,8,3,9)‘. Elements will
be duplicated on the broadcasted axes.

Usage

mx.symbol.broadcast_axes(...)

Arguments

data NDArray-or-Symbol The input

axis Shape(tuple), optional, default=[] The axes to perform the broadcasting.

size Shape(tuple), optional, default=[] Target sizes of the broadcasting axes.

name string, optional Name of the resulting symbol.

mx.symbol.broadcast_axis 297

Details

‘broadcast_axes‘ is an alias to the function ‘broadcast_axis‘.
Example::
// given x of shape (1,2,1) x = [[[1.], [2.]]]
// broadcast x on on axis 2 broadcast_axis(x, axis=2, size=3) = [[[1., 1., 1.], [2., 2., 2.]]] // broadcast
x on on axes 0 and 2 broadcast_axis(x, axis=(0,2), size=(2,3)) = [[[1., 1., 1.], [2., 2., 2.]], [[1., 1.,
1.], [2., 2., 2.]]]
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L93

Value

out The result mx.symbol

mx.symbol.broadcast_axis

broadcast_axis:Broadcasts the input array over particular axes.

Description

Broadcasting is allowed on axes with size 1, such as from ‘(2,1,3,1)‘ to ‘(2,8,3,9)‘. Elements will
be duplicated on the broadcasted axes.

Usage

mx.symbol.broadcast_axis(...)

Arguments

data NDArray-or-Symbol The input
axis Shape(tuple), optional, default=[] The axes to perform the broadcasting.
size Shape(tuple), optional, default=[] Target sizes of the broadcasting axes.
name string, optional Name of the resulting symbol.

Details

‘broadcast_axes‘ is an alias to the function ‘broadcast_axis‘.
Example::
// given x of shape (1,2,1) x = [[[1.], [2.]]]
// broadcast x on on axis 2 broadcast_axis(x, axis=2, size=3) = [[[1., 1., 1.], [2., 2., 2.]]] // broadcast
x on on axes 0 and 2 broadcast_axis(x, axis=(0,2), size=(2,3)) = [[[1., 1., 1.], [2., 2., 2.]], [[1., 1.,
1.], [2., 2., 2.]]]
Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L93

Value

out The result mx.symbol

298 mx.symbol.broadcast_equal

mx.symbol.broadcast_div

broadcast_div:Returns element-wise division of the input arrays with
broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_div(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

x = [[6., 6., 6.], [6., 6., 6.]]

y = [[2.], [3.]]

broadcast_div(x, y) = [[3., 3., 3.], [2., 2., 2.]]

Supported sparse operations:

broadcast_div(csr, dense(1D)) = csr

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L187

Value

out The result mx.symbol

mx.symbol.broadcast_equal

broadcast_equal:Returns the result of element-wise **equal to**
(==) comparison operation with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_equal(...)

mx.symbol.broadcast_greater 299

Arguments

lhs NDArray-or-Symbol First input to the function
rhs NDArray-or-Symbol Second input to the function
name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_equal(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L46

Value

out The result mx.symbol

mx.symbol.broadcast_greater

broadcast_greater:Returns the result of element-wise **greater
than** (>) comparison operation with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_greater(...)

Arguments

lhs NDArray-or-Symbol First input to the function
rhs NDArray-or-Symbol Second input to the function
name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_greater(x, y) = [[1., 1., 1.], [0., 0., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L82

Value

out The result mx.symbol

300 mx.symbol.broadcast_hypot

mx.symbol.broadcast_greater_equal

broadcast_greater_equal:Returns the result of element-wise **greater
than or equal to** (>=) comparison operation with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_greater_equal(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_greater_equal(x, y) = [[1., 1., 1.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L100

Value

out The result mx.symbol

mx.symbol.broadcast_hypot

broadcast_hypot: Returns the hypotenuse of a right angled triangle,
given its "legs" with broadcasting.

Description

It is equivalent to doing :math:‘sqrt(x_1^2 + x_2^2)‘.

Usage

mx.symbol.broadcast_hypot(...)

mx.symbol.broadcast_lesser 301

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

Example::

x = [[3., 3., 3.]]

y = [[4.], [4.]]

broadcast_hypot(x, y) = [[5., 5., 5.], [5., 5., 5.]]

z = [[0.], [4.]]

broadcast_hypot(x, z) = [[3., 3., 3.], [5., 5., 5.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L158

Value

out The result mx.symbol

mx.symbol.broadcast_lesser

broadcast_lesser:Returns the result of element-wise **lesser than**
(<) comparison operation with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_lesser(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_lesser(x, y) = [[0., 0., 0.], [0., 0., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L118

302 mx.symbol.broadcast_lesser_equal

Value

out The result mx.symbol

mx.symbol.broadcast_lesser_equal

broadcast_lesser_equal:Returns the result of element-wise **lesser
than or equal to** (<=) comparison operation with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_lesser_equal(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_lesser_equal(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L136

Value

out The result mx.symbol

mx.symbol.broadcast_like 303

mx.symbol.broadcast_like

broadcast_like:Broadcasts lhs to have the same shape as rhs.

Description

Broadcasting is a mechanism that allows NDArrays to perform arithmetic operations with arrays
of different shapes efficiently without creating multiple copies of arrays. Also see, ‘Broadcasting
<https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>‘_ for more explanation.

Usage

mx.symbol.broadcast_like(...)

Arguments

lhs NDArray-or-Symbol First input.

rhs NDArray-or-Symbol Second input.

lhs.axes Shape or None, optional, default=None Axes to perform broadcast on in the first
input array

rhs.axes Shape or None, optional, default=None Axes to copy from the second input
array

name string, optional Name of the resulting symbol.

Details

Broadcasting is allowed on axes with size 1, such as from ‘(2,1,3,1)‘ to ‘(2,8,3,9)‘. Elements will
be duplicated on the broadcasted axes.

For example::

broadcast_like([[1,2,3]], [[5,6,7],[7,8,9]]) = [[1., 2., 3.], [1., 2., 3.]])

broadcast_like([9], [1,2,3,4,5], lhs_axes=(0,), rhs_axes=(-1,)) = [9,9,9,9,9]

Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L180

Value

out The result mx.symbol

304 mx.symbol.broadcast_logical_or

mx.symbol.broadcast_logical_and

broadcast_logical_and:Returns the result of element-wise **logical
and** with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_logical_and(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_logical_and(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L154

Value

out The result mx.symbol

mx.symbol.broadcast_logical_or

broadcast_logical_or:Returns the result of element-wise **logical
or** with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_logical_or(...)

mx.symbol.broadcast_logical_xor 305

Arguments

lhs NDArray-or-Symbol First input to the function
rhs NDArray-or-Symbol Second input to the function
name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 0.], [1., 1., 0.]]

y = [[1.], [0.]]

broadcast_logical_or(x, y) = [[1., 1., 1.], [1., 1., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L172

Value

out The result mx.symbol

mx.symbol.broadcast_logical_xor

broadcast_logical_xor:Returns the result of element-wise **logical
xor** with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_logical_xor(...)

Arguments

lhs NDArray-or-Symbol First input to the function
rhs NDArray-or-Symbol Second input to the function
name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 0.], [1., 1., 0.]]

y = [[1.], [0.]]

broadcast_logical_xor(x, y) = [[0., 0., 1.], [1., 1., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L190

Value

out The result mx.symbol

306 mx.symbol.broadcast_minimum

mx.symbol.broadcast_maximum

broadcast_maximum:Returns element-wise maximum of the input ar-
rays with broadcasting.

Description

This function compares two input arrays and returns a new array having the element-wise maxima.

Usage

mx.symbol.broadcast_maximum(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_maximum(x, y) = [[1., 1., 1.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L81

Value

out The result mx.symbol

mx.symbol.broadcast_minimum

broadcast_minimum:Returns element-wise minimum of the input ar-
rays with broadcasting.

Description

This function compares two input arrays and returns a new array having the element-wise minima.

Usage

mx.symbol.broadcast_minimum(...)

mx.symbol.broadcast_minus 307

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_maximum(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L117

Value

out The result mx.symbol

mx.symbol.broadcast_minus

broadcast_minus:Returns element-wise difference of the input arrays
with broadcasting.

Description

‘broadcast_minus‘ is an alias to the function ‘broadcast_sub‘.

Usage

mx.symbol.broadcast_minus(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_sub(x, y) = [[1., 1., 1.], [0., 0., 0.]]

broadcast_minus(x, y) = [[1., 1., 1.], [0., 0., 0.]]

308 mx.symbol.broadcast_mod

Supported sparse operations:

broadcast_sub/minus(csr, dense(1D)) = dense broadcast_sub/minus(dense(1D), csr) = dense

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L106

Value

out The result mx.symbol

mx.symbol.broadcast_mod

broadcast_mod:Returns element-wise modulo of the input arrays with
broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_mod(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

x = [[8., 8., 8.], [8., 8., 8.]]

y = [[2.], [3.]]

broadcast_mod(x, y) = [[0., 0., 0.], [2., 2., 2.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L222

Value

out The result mx.symbol

mx.symbol.broadcast_mul 309

mx.symbol.broadcast_mul

broadcast_mul:Returns element-wise product of the input arrays with
broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_mul(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_mul(x, y) = [[0., 0., 0.], [1., 1., 1.]]

Supported sparse operations:

broadcast_mul(csr, dense(1D)) = csr

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L146

Value

out The result mx.symbol

mx.symbol.broadcast_not_equal

broadcast_not_equal:Returns the result of element-wise **not equal
to** (!=) comparison operation with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_not_equal(...)

310 mx.symbol.broadcast_plus

Arguments

lhs NDArray-or-Symbol First input to the function
rhs NDArray-or-Symbol Second input to the function
name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_not_equal(x, y) = [[1., 1., 1.], [0., 0., 0.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_logic.cc:L64

Value

out The result mx.symbol

mx.symbol.broadcast_plus

broadcast_plus:Returns element-wise sum of the input arrays with
broadcasting.

Description

‘broadcast_plus‘ is an alias to the function ‘broadcast_add‘.

Usage

mx.symbol.broadcast_plus(...)

Arguments

lhs NDArray-or-Symbol First input to the function
rhs NDArray-or-Symbol Second input to the function
name string, optional Name of the resulting symbol.

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_add(x, y) = [[1., 1., 1.], [2., 2., 2.]]

broadcast_plus(x, y) = [[1., 1., 1.], [2., 2., 2.]]

Supported sparse operations:

broadcast_add(csr, dense(1D)) = dense broadcast_add(dense(1D), csr) = dense

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L58

mx.symbol.broadcast_power 311

Value

out The result mx.symbol

mx.symbol.broadcast_power

broadcast_power:Returns result of first array elements raised to pow-
ers from second array, element-wise with broadcasting.

Description

Example::

Usage

mx.symbol.broadcast_power(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_power(x, y) = [[2., 2., 2.], [4., 4., 4.]]

Defined in src/operator/tensor/elemwise_binary_broadcast_op_extended.cc:L45

Value

out The result mx.symbol

312 mx.symbol.broadcast_sub

mx.symbol.broadcast_sub

broadcast_sub:Returns element-wise difference of the input arrays
with broadcasting.

Description

‘broadcast_minus‘ is an alias to the function ‘broadcast_sub‘.

Usage

mx.symbol.broadcast_sub(...)

Arguments

lhs NDArray-or-Symbol First input to the function

rhs NDArray-or-Symbol Second input to the function

name string, optional Name of the resulting symbol.

Details

Example::

x = [[1., 1., 1.], [1., 1., 1.]]

y = [[0.], [1.]]

broadcast_sub(x, y) = [[1., 1., 1.], [0., 0., 0.]]

broadcast_minus(x, y) = [[1., 1., 1.], [0., 0., 0.]]

Supported sparse operations:

broadcast_sub/minus(csr, dense(1D)) = dense broadcast_sub/minus(dense(1D), csr) = dense

Defined in src/operator/tensor/elemwise_binary_broadcast_op_basic.cc:L106

Value

out The result mx.symbol

mx.symbol.broadcast_to 313

mx.symbol.broadcast_to

broadcast_to:Broadcasts the input array to a new shape.

Description

Broadcasting is a mechanism that allows NDArrays to perform arithmetic operations with arrays
of different shapes efficiently without creating multiple copies of arrays. Also see, ‘Broadcasting
<https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>‘_ for more explanation.

Usage

mx.symbol.broadcast_to(...)

Arguments

data NDArray-or-Symbol The input

shape Shape(tuple), optional, default=[] The shape of the desired array. We can set the
dim to zero if it’s same as the original. E.g ‘A = broadcast_to(B, shape=(10, 0,
0))‘ has the same meaning as ‘A = broadcast_axis(B, axis=0, size=10)‘.

name string, optional Name of the resulting symbol.

Details

Broadcasting is allowed on axes with size 1, such as from ‘(2,1,3,1)‘ to ‘(2,8,3,9)‘. Elements will
be duplicated on the broadcasted axes.

For example::

broadcast_to([[1,2,3]], shape=(2,3)) = [[1., 2., 3.], [1., 2., 3.]])

The dimension which you do not want to change can also be kept as ‘0‘ which means copy the
original value. So with ‘shape=(2,0)‘, we will obtain the same result as in the above example.

Defined in src/operator/tensor/broadcast_reduce_op_value.cc:L117

Value

out The result mx.symbol

314 mx.symbol.cast

mx.symbol.Cast Cast:Casts all elements of the input to a new type.

Description

.. note:: “Cast“ is deprecated. Use “cast“ instead.

Usage

mx.symbol.Cast(...)

Arguments

data NDArray-or-Symbol The input.
dtype ’bfloat16’, ’bool’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,

required Output data type.
name string, optional Name of the resulting symbol.

Details

Example::

cast([0.9, 1.3], dtype=’int32’) = [0, 1] cast([1e20, 11.1], dtype=’float16’) = [inf, 11.09375] cast([300,
11.1, 10.9, -1, -3], dtype=’uint8’) = [44, 11, 10, 255, 253]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L665

Value

out The result mx.symbol

mx.symbol.cast cast:Casts all elements of the input to a new type.

Description

.. note:: “Cast“ is deprecated. Use “cast“ instead.

Usage

mx.symbol.cast(...)

Arguments

data NDArray-or-Symbol The input.
dtype ’bfloat16’, ’bool’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,

required Output data type.
name string, optional Name of the resulting symbol.

mx.symbol.cast_storage 315

Details

Example::

cast([0.9, 1.3], dtype=’int32’) = [0, 1] cast([1e20, 11.1], dtype=’float16’) = [inf, 11.09375] cast([300,
11.1, 10.9, -1, -3], dtype=’uint8’) = [44, 11, 10, 255, 253]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L665

Value

out The result mx.symbol

mx.symbol.cast_storage

cast_storage:Casts tensor storage type to the new type.

Description

When an NDArray with default storage type is cast to csr or row_sparse storage, the result is com-
pact, which means:

Usage

mx.symbol.cast_storage(...)

Arguments

data NDArray-or-Symbol The input.

stype ’csr’, ’default’, ’row_sparse’, required Output storage type.

name string, optional Name of the resulting symbol.

Details

- for csr, zero values will not be retained - for row_sparse, row slices of all zeros will not be retained

The storage type of “cast_storage“ output depends on stype parameter:

- cast_storage(csr, ’default’) = default - cast_storage(row_sparse, ’default’) = default - cast_storage(default,
’csr’) = csr - cast_storage(default, ’row_sparse’) = row_sparse - cast_storage(csr, ’csr’) = csr -
cast_storage(row_sparse, ’row_sparse’) = row_sparse

Example::

dense = [[0., 1., 0.], [2., 0., 3.], [0., 0., 0.], [0., 0., 0.]]

cast to row_sparse storage type rsp = cast_storage(dense, ’row_sparse’) rsp.indices = [0, 1]
rsp.values = [[0., 1., 0.], [2., 0., 3.]]

cast to csr storage type csr = cast_storage(dense, ’csr’) csr.indices = [1, 0, 2] csr.values = [1., 2.,
3.] csr.indptr = [0, 1, 3, 3, 3]

Defined in src/operator/tensor/cast_storage.cc:L71

316 mx.symbol.ceil

Value

out The result mx.symbol

mx.symbol.cbrt cbrt:Returns element-wise cube-root value of the input.

Description

.. math:: cbrt(x) = \sqrt[3]x

Usage

mx.symbol.cbrt(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

cbrt([1, 8, -125]) = [1, 2, -5]

The storage type of “cbrt“ output depends upon the input storage type:

- cbrt(default) = default - cbrt(row_sparse) = row_sparse - cbrt(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L270

Value

out The result mx.symbol

mx.symbol.ceil ceil:Returns element-wise ceiling of the input.

Description

The ceil of the scalar x is the smallest integer i, such that i >= x.

Usage

mx.symbol.ceil(...)

mx.symbol.choose_element_0index 317

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

ceil([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-2., -1., 2., 2., 3.]

The storage type of “ceil“ output depends upon the input storage type:

- ceil(default) = default - ceil(row_sparse) = row_sparse - ceil(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L818

Value

out The result mx.symbol

mx.symbol.choose_element_0index

choose_element_0index:Picks elements from an input array according
to the input indices along the given axis.

Description

Given an input array of shape “(d0, d1)“ and indices of shape “(i0,)“, the result will be an output
array of shape “(i0,)“ with::

Usage

mx.symbol.choose_element_0index(...)

Arguments

data NDArray-or-Symbol The input array

index NDArray-or-Symbol The index array

axis int or None, optional, default=’-1’ int or None. The axis to picking the elements.
Negative values means indexing from right to left. If is ‘None‘, the elements in
the index w.r.t the flattened input will be picked.

keepdims boolean, optional, default=0 If true, the axis where we pick the elements is left
in the result as dimension with size one.

mode ’clip’, ’wrap’,optional, default=’clip’ Specify how out-of-bound indices behave.
Default is "clip". "clip" means clip to the range. So, if all indices mentioned are
too large, they are replaced by the index that addresses the last element along an
axis. "wrap" means to wrap around.

name string, optional Name of the resulting symbol.

318 mx.symbol.clip

Details

output[i] = input[i, indices[i]]

By default, if any index mentioned is too large, it is replaced by the index that addresses the last
element along an axis (the ‘clip‘ mode).

This function supports n-dimensional input and (n-1)-dimensional indices arrays.

Examples::

x = [[1., 2.], [3., 4.], [5., 6.]]

// picks elements with specified indices along axis 0 pick(x, y=[0,1], 0) = [1., 4.]

// picks elements with specified indices along axis 1 pick(x, y=[0,1,0], 1) = [1., 4., 5.]

// picks elements with specified indices along axis 1 using ’wrap’ mode // to place indicies that
would normally be out of bounds pick(x, y=[2,-1,-2], 1, mode=’wrap’) = [1., 4., 5.]

y = [[1.], [0.], [2.]]

// picks elements with specified indices along axis 1 and dims are maintained pick(x, y, 1, keep-
dims=True) = [[2.], [3.], [6.]]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L151

Value

out The result mx.symbol

mx.symbol.clip clip:Clips (limits) the values in an array. Given an interval, values
outside the interval are clipped to the interval edges. Clipping “x“
between ‘a_min‘ and ‘a_max‘ would be:: .. math:: clip(x, a_min,
a_max) = \max(\min(x, a_max), a_min)) Example:: x = [0, 1, 2, 3,
4, 5, 6, 7, 8, 9] clip(x,1,8) = [1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]
The storage type of “clip“ output depends on storage types of inputs
and the a_min, a_max \ parameter values: - clip(default) = default -
clip(row_sparse, a_min <= 0, a_max >= 0) = row_sparse - clip(csr,
a_min <= 0, a_max >= 0) = csr - clip(row_sparse, a_min < 0, a_max
< 0) = default - clip(row_sparse, a_min > 0, a_max > 0) = default -
clip(csr, a_min < 0, a_max < 0) = csr - clip(csr, a_min > 0, a_max >
0) = csr

Description

Defined in src/operator/tensor/matrix_op.cc:L677

Usage

mx.symbol.clip(...)

mx.symbol.col2im 319

Arguments

data NDArray-or-Symbol Input array.

a.min float, required Minimum value

a.max float, required Maximum value

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.col2im col2im:Combining the output column matrix of im2col back to image
array.

Description

Like :class:‘~mxnet.ndarray.im2col‘, this operator is also used in the vanilla convolution implemen-
tation. Despite the name, col2im is not the reverse operation of im2col. Since there may be overlaps
between neighbouring sliding blocks, the column elements cannot be directly put back into image.
Instead, they are accumulated (i.e., summed) in the input image just like the gradient computation,
so col2im is the gradient of im2col and vice versa.

Usage

mx.symbol.col2im(...)

Arguments

data NDArray-or-Symbol Input array to combine sliding blocks.

output.size Shape(tuple), required The spatial dimension of image array: (w,), (h, w) or (d,
h, w).

kernel Shape(tuple), required Sliding kernel size: (w,), (h, w) or (d, h, w).

stride Shape(tuple), optional, default=[] The stride between adjacent sliding blocks in
spatial dimension: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

dilate Shape(tuple), optional, default=[] The spacing between adjacent kernel points:
(w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

pad Shape(tuple), optional, default=[] The zero-value padding size on both sides of
spatial dimension: (w,), (h, w) or (d, h, w). Defaults to no padding.

name string, optional Name of the resulting symbol.

320 mx.symbol.Concat

Details

Using the notation in im2col, given an input column array of shape :math:‘(N, C \times \prod(\textkernel),
W)‘, this operator accumulates the column elements into output array of shape :math:‘(N, C, \textout-
put_size[0], \textoutput_size[1], . . .)‘. Only 1-D, 2-D and 3-D of spatial dimension is supported in
this operator.

Defined in src/operator/nn/im2col.cc:L182

Value

out The result mx.symbol

mx.symbol.Concat Perform an feature concat on channel dim (dim 1) over all the inputs.

Description

Perform an feature concat on channel dim (dim 1) over all the inputs.

Usage

mx.symbol.Concat(data, num.args, dim = NULL, name = NULL)

Arguments

data list, required List of tensors to concatenate

num.args int, required Number of inputs to be concated.

dim int, optional, default=’1’ the dimension to be concated.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.concat 321

mx.symbol.concat Perform an feature concat on channel dim (dim 1) over all the inputs.

Description

Perform an feature concat on channel dim (dim 1) over all the inputs.

Usage

mx.symbol.concat(data, num.args, dim = NULL, name = NULL)

Arguments

data list, required List of tensors to concatenate

num.args int, required Number of inputs to be concated.

dim int, optional, default=’1’ the dimension to be concated.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.Convolution Convolution:Compute *N*-D convolution on *(N+2)*-D input.

Description

In the 2-D convolution, given input data with shape *(batch_size, channel, height, width)*, the
output is computed by

Usage

mx.symbol.Convolution(...)

Arguments

data NDArray-or-Symbol Input data to the ConvolutionOp.

weight NDArray-or-Symbol Weight matrix.

bias NDArray-or-Symbol Bias parameter.

kernel Shape(tuple), required Convolution kernel size: (w,), (h, w) or (d, h, w)

stride Shape(tuple), optional, default=[] Convolution stride: (w,), (h, w) or (d, h, w).
Defaults to 1 for each dimension.

dilate Shape(tuple), optional, default=[] Convolution dilate: (w,), (h, w) or (d, h, w).
Defaults to 1 for each dimension.

322 mx.symbol.Convolution

pad Shape(tuple), optional, default=[] Zero pad for convolution: (w,), (h, w) or (d,
h, w). Defaults to no padding.

num.filter int (non-negative), required Convolution filter(channel) number

num.group int (non-negative), optional, default=1 Number of group partitions.

workspace long (non-negative), optional, default=1024 Maximum temporary workspace al-
lowed (MB) in convolution.This parameter has two usages. When CUDNN is
not used, it determines the effective batch size of the convolution kernel. When
CUDNN is used, it controls the maximum temporary storage used for tuning the
best CUDNN kernel when ‘limited_workspace‘ strategy is used.

no.bias boolean, optional, default=0 Whether to disable bias parameter.

cudnn.tune None, ’fastest’, ’limited_workspace’, ’off’,optional, default=’None’ Whether to
pick convolution algo by running performance test.

cudnn.off boolean, optional, default=0 Turn off cudnn for this layer.

layout None, ’NCDHW’, ’NCHW’, ’NCW’, ’NDHWC’, ’NHWC’,optional, default=’None’
Set layout for input, output and weight. Empty for default layout: NCW for 1d,
NCHW for 2d and NCDHW for 3d.NHWC and NDHWC are only supported on
GPU.

name string, optional Name of the resulting symbol.

Details

.. math::

out[n,i,:,:] = bias[i] + \sum_j=0^channel data[n,j,:,:] \star weight[i,j,:,:]

where :math:‘\star‘ is the 2-D cross-correlation operator.

For general 2-D convolution, the shapes are

- **data**: *(batch_size, channel, height, width)* - **weight**: *(num_filter, channel, kernel[0],
kernel[1])* - **bias**: *(num_filter,)* - **out**: *(batch_size, num_filter, out_height, out_width)*.

Define::

f(x,k,p,s,d) = floor((x+2*p-d*(k-1)-1)/s)+1

then we have::

out_height=f(height, kernel[0], pad[0], stride[0], dilate[0]) out_width=f(width, kernel[1], pad[1],
stride[1], dilate[1])

If “no_bias“ is set to be true, then the “bias“ term is ignored.

The default data “layout“ is *NCHW*, namely *(batch_size, channel, height, width)*. We can
choose other layouts such as *NWC*.

If “num_group“ is larger than 1, denoted by *g*, then split the input “data“ evenly into *g* parts
along the channel axis, and also evenly split “weight“ along the first dimension. Next compute the
convolution on the *i*-th part of the data with the *i*-th weight part. The output is obtained by
concatenating all the *g* results.

1-D convolution does not have *height* dimension but only *width* in space.

- **data**: *(batch_size, channel, width)* - **weight**: *(num_filter, channel, kernel[0])* -
bias: *(num_filter,)* - **out**: *(batch_size, num_filter, out_width)*.

mx.symbol.Convolution_v1 323

3-D convolution adds an additional *depth* dimension besides *height* and *width*. The shapes
are

- **data**: *(batch_size, channel, depth, height, width)* - **weight**: *(num_filter, channel,
kernel[0], kernel[1], kernel[2])* - **bias**: *(num_filter,)* - **out**: *(batch_size, num_filter,
out_depth, out_height, out_width)*.

Both “weight“ and “bias“ are learnable parameters.

There are other options to tune the performance.

- **cudnn_tune**: enable this option leads to higher startup time but may give faster speed. Options
are

- **off**: no tuning - **limited_workspace**:run test and pick the fastest algorithm that doesn’t
exceed workspace limit. - **fastest**: pick the fastest algorithm and ignore workspace limit. -
None (default): the behavior is determined by environment variable “MXNET_CUDNN_AUTOTUNE_DEFAULT“.
0 for off, 1 for limited workspace (default), 2 for fastest.

- **workspace**: A large number leads to more (GPU) memory usage but may improve the per-
formance.

Defined in src/operator/nn/convolution.cc:L476

Value

out The result mx.symbol

mx.symbol.Convolution_v1

Convolution_v1:This operator is DEPRECATED. Apply convolution
to input then add a bias.

Description

Convolution_v1:This operator is DEPRECATED. Apply convolution to input then add a bias.

Usage

mx.symbol.Convolution_v1(...)

Arguments

data NDArray-or-Symbol Input data to the ConvolutionV1Op.

weight NDArray-or-Symbol Weight matrix.

bias NDArray-or-Symbol Bias parameter.

kernel Shape(tuple), required convolution kernel size: (h, w) or (d, h, w)

stride Shape(tuple), optional, default=[] convolution stride: (h, w) or (d, h, w)

dilate Shape(tuple), optional, default=[] convolution dilate: (h, w) or (d, h, w)

pad Shape(tuple), optional, default=[] pad for convolution: (h, w) or (d, h, w)

324 mx.symbol.Correlation

num.filter int (non-negative), required convolution filter(channel) number

num.group int (non-negative), optional, default=1 Number of group partitions. Equivalent
to slicing input into num_group partitions, apply convolution on each, then con-
catenate the results

workspace long (non-negative), optional, default=1024 Maximum temporary workspace al-
lowed for convolution (MB).This parameter determines the effective batch size
of the convolution kernel, which may be smaller than the given batch size. Also,
the workspace will be automatically enlarged to make sure that we can run the
kernel with batch_size=1

no.bias boolean, optional, default=0 Whether to disable bias parameter.

cudnn.tune None, ’fastest’, ’limited_workspace’, ’off’,optional, default=’None’ Whether to
pick convolution algo by running performance test. Leads to higher startup time
but may give faster speed. Options are: ’off’: no tuning ’limited_workspace’:
run test and pick the fastest algorithm that doesn’t exceed workspace limit.
’fastest’: pick the fastest algorithm and ignore workspace limit. If set to None
(default), behavior is determined by environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT:
0 for off, 1 for limited workspace (default), 2 for fastest.

cudnn.off boolean, optional, default=0 Turn off cudnn for this layer.

layout None, ’NCDHW’, ’NCHW’, ’NDHWC’, ’NHWC’,optional, default=’None’ Set
layout for input, output and weight. Empty for default layout: NCHW for 2d
and NCDHW for 3d.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.Correlation Correlation:Applies correlation to inputs.

Description

The correlation layer performs multiplicative patch comparisons between two feature maps.

Usage

mx.symbol.Correlation(...)

Arguments

data1 NDArray-or-Symbol Input data1 to the correlation.

data2 NDArray-or-Symbol Input data2 to the correlation.

kernel.size int (non-negative), optional, default=1 kernel size for Correlation must be an
odd number

mx.symbol.Correlation 325

max.displacement

int (non-negative), optional, default=1 Max displacement of Correlation

stride1 int (non-negative), optional, default=1 stride1 quantize data1 globally

stride2 int (non-negative), optional, default=1 stride2 quantize data2 within the neigh-
borhood centered around data1

pad.size int (non-negative), optional, default=0 pad for Correlation

is.multiply boolean, optional, default=1 operation type is either multiplication or subduction

name string, optional Name of the resulting symbol.

Details

Given two multi-channel feature maps :math:‘f_1, f_2‘, with :math:‘w‘, :math:‘h‘, and :math:‘c‘
being their width, height, and number of channels, the correlation layer lets the network compare
each patch from :math:‘f_1‘ with each patch from :math:‘f_2‘.

For now we consider only a single comparison of two patches. The ’correlation’ of two patches
centered at :math:‘x_1‘ in the first map and :math:‘x_2‘ in the second map is then defined as:

.. math::

c(x_1, x_2) = \sum_o \in [-k,k] \times [-k,k] <f_1(x_1 + o), f_2(x_2 + o)>

for a square patch of size :math:‘K:=2k+1‘.

Note that the equation above is identical to one step of a convolution in neural networks, but instead
of convolving data with a filter, it convolves data with other data. For this reason, it has no training
weights.

Computing :math:‘c(x_1, x_2)‘ involves :math:‘c * K^2‘ multiplications. Comparing all patch
combinations involves :math:‘w^2*h^2‘ such computations.

Given a maximum displacement :math:‘d‘, for each location :math:‘x_1‘ it computes correlations
:math:‘c(x_1, x_2)‘ only in a neighborhood of size :math:‘D:=2d+1‘, by limiting the range of
:math:‘x_2‘. We use strides :math:‘s_1, s_2‘, to quantize :math:‘x_1‘ globally and to quantize
:math:‘x_2‘ within the neighborhood centered around :math:‘x_1‘.

The final output is defined by the following expression:

.. math:: out[n, q, i, j] = c(x_i, j, x_q)

where :math:‘i‘ and :math:‘j‘ enumerate spatial locations in :math:‘f_1‘, and :math:‘q‘ denotes the
:math:‘q^th‘ neighborhood of :math:‘x_i,j‘.

Defined in src/operator/correlation.cc:L198

Value

out The result mx.symbol

326 mx.symbol.cosh

mx.symbol.cos cos:Computes the element-wise cosine of the input array.

Description

The input should be in radians (:math:‘2\pi‘ rad equals 360 degrees).

Usage

mx.symbol.cos(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

.. math:: cos([0, \pi/4, \pi/2]) = [1, 0.707, 0]

The storage type of “cos“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L90

Value

out The result mx.symbol

mx.symbol.cosh cosh:Returns the hyperbolic cosine of the input array, computed
element-wise.

Description

.. math:: cosh(x) = 0.5\times(exp(x) + exp(-x))

Usage

mx.symbol.cosh(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

mx.symbol.Crop 327

Details

The storage type of “cosh“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L409

Value

out The result mx.symbol

mx.symbol.Crop Crop:

Description

.. note:: ‘Crop‘ is deprecated. Use ‘slice‘ instead.

Usage

mx.symbol.Crop(...)

Arguments

data Symbol or Symbol[] Tensor or List of Tensors, the second input will be used as
crop_like shape reference

num.args int, required Number of inputs for crop, if equals one, then we will use the
h_wfor crop height and width, else if equals two, then we will use the heightand
width of the second input symbol, we name crop_like here

offset Shape(tuple), optional, default=[0,0] crop offset coordinate: (y, x)

h.w Shape(tuple), optional, default=[0,0] crop height and width: (h, w)

center.crop boolean, optional, default=0 If set to true, then it will use be the center_crop,or
it will crop using the shape of crop_like

name string, optional Name of the resulting symbol.

Details

Crop the 2nd and 3rd dim of input data, with the corresponding size of h_w or with width and height
of the second input symbol, i.e., with one input, we need h_w to specify the crop height and width,
otherwise the second input symbol’s size will be used

Defined in src/operator/crop.cc:L50

Value

out The result mx.symbol

328 mx.symbol.crop

mx.symbol.crop crop:Slices a region of the array. .. note:: “crop“ is deprecated.
Use “slice“ instead. This function returns a sliced array between
the indices given by ‘begin‘ and ‘end‘ with the corresponding ‘step‘.
For an input array of “shape=(d_0, d_1, ..., d_n-1)“, slice operation
with “begin=(b_0, b_1...b_m-1)“, “end=(e_0, e_1, ..., e_m-1)“, and
“step=(s_0, s_1, ..., s_m-1)“, where m <= n, results in an array with
the shape “(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-
1)“. The resulting array’s *k*-th dimension contains elements from
the *k*-th dimension of the input array starting from index “b_k“ (in-
clusive) with step “s_k“ until reaching “e_k“ (exclusive). If the *k*-th
elements are ‘None‘ in the sequence of ‘begin‘, ‘end‘, and ‘step‘, the
following rule will be used to set default values. If ‘s_k‘ is ‘None‘, set
‘s_k=1‘. If ‘s_k > 0‘, set ‘b_k=0‘, ‘e_k=d_k‘; else, set ‘b_k=d_k-1‘,
‘e_k=-1‘. The storage type of “slice“ output depends on storage types
of inputs - slice(csr) = csr - otherwise, “slice“ generates output with
default storage .. note:: When input data storage type is csr, it only
supports step=(), or step=(None,), or step=(1,) to generate a csr out-
put. For other step parameter values, it falls back to slicing a dense
tensor. Example:: x = [[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11.,
12.]] slice(x, begin=(0,1), end=(2,4)) = [[2., 3., 4.], [6., 7., 8.]]
slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.],
[5., 7.], [1., 3.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L482

Usage

mx.symbol.crop(...)

Arguments

data NDArray-or-Symbol Source input
begin Shape(tuple), required starting indices for the slice operation, supports negative

indices.
end Shape(tuple), required ending indices for the slice operation, supports negative

indices.
step Shape(tuple), optional, default=[] step for the slice operation, supports negative

values.
name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.CTCLoss 329

mx.symbol.CTCLoss CTCLoss:Connectionist Temporal Classification Loss.

Description

.. note:: The existing alias “contrib_CTCLoss“ is deprecated.

Usage

mx.symbol.CTCLoss(...)

Arguments

data NDArray-or-Symbol Input ndarray

label NDArray-or-Symbol Ground-truth labels for the loss.

data.lengths NDArray-or-Symbol Lengths of data for each of the samples. Only required
when use_data_lengths is true.

label.lengths NDArray-or-Symbol Lengths of labels for each of the samples. Only required
when use_label_lengths is true.

use.data.lengths

boolean, optional, default=0 Whether the data lenghts are decided by ‘data_lengths‘.
If false, the lengths are equal to the max sequence length.

use.label.lengths

boolean, optional, default=0 Whether the label lenghts are decided by ‘label_lengths‘,
or derived from ‘padding_mask‘. If false, the lengths are derived from the first
occurrence of the value of ‘padding_mask‘. The value of ‘padding_mask‘ is “0“
when first CTC label is reserved for blank, and “-1“ when last label is reserved
for blank. See ‘blank_label‘.

blank.label ’first’, ’last’,optional, default=’first’ Set the label that is reserved for blank la-
bel.If "first", 0-th label is reserved, and label values for tokens in the vocabulary
are between “1“ and “alphabet_size-1“, and the padding mask is “-1“. If "last",
last label value “alphabet_size-1“ is reserved for blank label instead, and label
values for tokens in the vocabulary are between “0“ and “alphabet_size-2“, and
the padding mask is “0“.

name string, optional Name of the resulting symbol.

Details

The shapes of the inputs and outputs:

- **data**: ‘(sequence_length, batch_size, alphabet_size)‘ - **label**: ‘(batch_size, label_sequence_length)‘
- **out**: ‘(batch_size)‘

The ‘data‘ tensor consists of sequences of activation vectors (without applying softmax), with i-
th channel in the last dimension corresponding to i-th label for i between 0 and alphabet_size-1
(i.e always 0-indexed). Alphabet size should include one additional value reserved for blank label.

330 mx.symbol.ctc_loss

When ‘blank_label‘ is “"first"“, the “0“-th channel is be reserved for activation of blank label, or
otherwise if it is "last", “(alphabet_size-1)“-th channel should be reserved for blank label.

“label“ is an index matrix of integers. When ‘blank_label‘ is “"first"“, the value 0 is then reserved
for blank label, and should not be passed in this matrix. Otherwise, when ‘blank_label‘ is “"last"“,
the value ‘(alphabet_size-1)‘ is reserved for blank label.

If a sequence of labels is shorter than *label_sequence_length*, use the special padding value at the
end of the sequence to conform it to the correct length. The padding value is ‘0‘ when ‘blank_label‘
is “"first"“, and ‘-1‘ otherwise.

For example, suppose the vocabulary is ‘[a, b, c]‘, and in one batch we have three sequences ’ba’,
’cbb’, and ’abac’. When ‘blank_label‘ is “"first"“, we can index the labels as ‘’a’: 1, ’b’: 2, ’c’: 3‘,
and we reserve the 0-th channel for blank label in data tensor. The resulting ‘label‘ tensor should
be padded to be::

[[2, 1, 0, 0], [3, 2, 2, 0], [1, 2, 1, 3]]

When ‘blank_label‘ is “"last"“, we can index the labels as ‘’a’: 0, ’b’: 1, ’c’: 2‘, and we reserve the
channel index 3 for blank label in data tensor. The resulting ‘label‘ tensor should be padded to be::

[[1, 0, -1, -1], [2, 1, 1, -1], [0, 1, 0, 2]]

“out“ is a list of CTC loss values, one per example in the batch.

See *Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recur-
rent Neural Networks*, A. Graves *et al*. for more information on the definition and the algorithm.

Defined in src/operator/nn/ctc_loss.cc:L100

Value

out The result mx.symbol

mx.symbol.ctc_loss ctc_loss:Connectionist Temporal Classification Loss.

Description

.. note:: The existing alias “contrib_CTCLoss“ is deprecated.

Usage

mx.symbol.ctc_loss(...)

Arguments

data NDArray-or-Symbol Input ndarray

label NDArray-or-Symbol Ground-truth labels for the loss.

data.lengths NDArray-or-Symbol Lengths of data for each of the samples. Only required
when use_data_lengths is true.

label.lengths NDArray-or-Symbol Lengths of labels for each of the samples. Only required
when use_label_lengths is true.

mx.symbol.ctc_loss 331

use.data.lengths

boolean, optional, default=0 Whether the data lenghts are decided by ‘data_lengths‘.
If false, the lengths are equal to the max sequence length.

use.label.lengths

boolean, optional, default=0 Whether the label lenghts are decided by ‘label_lengths‘,
or derived from ‘padding_mask‘. If false, the lengths are derived from the first
occurrence of the value of ‘padding_mask‘. The value of ‘padding_mask‘ is “0“
when first CTC label is reserved for blank, and “-1“ when last label is reserved
for blank. See ‘blank_label‘.

blank.label ’first’, ’last’,optional, default=’first’ Set the label that is reserved for blank la-
bel.If "first", 0-th label is reserved, and label values for tokens in the vocabulary
are between “1“ and “alphabet_size-1“, and the padding mask is “-1“. If "last",
last label value “alphabet_size-1“ is reserved for blank label instead, and label
values for tokens in the vocabulary are between “0“ and “alphabet_size-2“, and
the padding mask is “0“.

name string, optional Name of the resulting symbol.

Details

The shapes of the inputs and outputs:

- **data**: ‘(sequence_length, batch_size, alphabet_size)‘ - **label**: ‘(batch_size, label_sequence_length)‘
- **out**: ‘(batch_size)‘

The ‘data‘ tensor consists of sequences of activation vectors (without applying softmax), with i-
th channel in the last dimension corresponding to i-th label for i between 0 and alphabet_size-1
(i.e always 0-indexed). Alphabet size should include one additional value reserved for blank label.
When ‘blank_label‘ is “"first"“, the “0“-th channel is be reserved for activation of blank label, or
otherwise if it is "last", “(alphabet_size-1)“-th channel should be reserved for blank label.

“label“ is an index matrix of integers. When ‘blank_label‘ is “"first"“, the value 0 is then reserved
for blank label, and should not be passed in this matrix. Otherwise, when ‘blank_label‘ is “"last"“,
the value ‘(alphabet_size-1)‘ is reserved for blank label.

If a sequence of labels is shorter than *label_sequence_length*, use the special padding value at the
end of the sequence to conform it to the correct length. The padding value is ‘0‘ when ‘blank_label‘
is “"first"“, and ‘-1‘ otherwise.

For example, suppose the vocabulary is ‘[a, b, c]‘, and in one batch we have three sequences ’ba’,
’cbb’, and ’abac’. When ‘blank_label‘ is “"first"“, we can index the labels as ‘’a’: 1, ’b’: 2, ’c’: 3‘,
and we reserve the 0-th channel for blank label in data tensor. The resulting ‘label‘ tensor should
be padded to be::

[[2, 1, 0, 0], [3, 2, 2, 0], [1, 2, 1, 3]]

When ‘blank_label‘ is “"last"“, we can index the labels as ‘’a’: 0, ’b’: 1, ’c’: 2‘, and we reserve the
channel index 3 for blank label in data tensor. The resulting ‘label‘ tensor should be padded to be::

[[1, 0, -1, -1], [2, 1, 1, -1], [0, 1, 0, 2]]

“out“ is a list of CTC loss values, one per example in the batch.

See *Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recur-
rent Neural Networks*, A. Graves *et al*. for more information on the definition and the algorithm.

Defined in src/operator/nn/ctc_loss.cc:L100

332 mx.symbol.Custom

Value

out The result mx.symbol

mx.symbol.cumsum cumsum:Return the cumulative sum of the elements along a given axis.

Description

Defined in src/operator/numpy/np_cumsum.cc:L70

Usage

mx.symbol.cumsum(...)

Arguments

a NDArray-or-Symbol Input ndarray

axis int or None, optional, default=’None’ Axis along which the cumulative sum is
computed. The default (None) is to compute the cumsum over the flattened
array.

dtype None, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’,optional, default=’None’
Type of the returned array and of the accumulator in which the elements are
summed. If dtype is not specified, it defaults to the dtype of a, unless a has an
integer dtype with a precision less than that of the default platform integer. In
that case, the default platform integer is used.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.Custom Custom:Apply a custom operator implemented in a frontend language
(like Python).

Description

Custom operators should override required methods like ‘forward‘ and ‘backward‘. The custom op-
erator must be registered before it can be used. Please check the tutorial here: https://mxnet.incubator.apache.org/api/faq/new_op

Usage

mx.symbol.Custom(...)

mx.symbol.Deconvolution 333

Arguments

data NDArray-or-Symbol[] Input data for the custom operator.

op.type string Name of the custom operator. This is the name that is passed to ‘mx.operator.register‘
to register the operator.

name string, optional Name of the resulting symbol.

Details

Defined in src/operator/custom/custom.cc:L547

Value

out The result mx.symbol

mx.symbol.Deconvolution

Deconvolution:Computes 1D or 2D transposed convolution (aka frac-
tionally strided convolution) of the input tensor. This operation can be
seen as the gradient of Convolution operation with respect to its input.
Convolution usually reduces the size of the input. Transposed convolu-
tion works the other way, going from a smaller input to a larger output
while preserving the connectivity pattern.

Description

Deconvolution:Computes 1D or 2D transposed convolution (aka fractionally strided convolution)
of the input tensor. This operation can be seen as the gradient of Convolution operation with respect
to its input. Convolution usually reduces the size of the input. Transposed convolution works the
other way, going from a smaller input to a larger output while preserving the connectivity pattern.

Usage

mx.symbol.Deconvolution(...)

Arguments

data NDArray-or-Symbol Input tensor to the deconvolution operation.

weight NDArray-or-Symbol Weights representing the kernel.

bias NDArray-or-Symbol Bias added to the result after the deconvolution operation.

kernel Shape(tuple), required Deconvolution kernel size: (w,), (h, w) or (d, h, w). This
is same as the kernel size used for the corresponding convolution

stride Shape(tuple), optional, default=[] The stride used for the corresponding convo-
lution: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

dilate Shape(tuple), optional, default=[] Dilation factor for each dimension of the in-
put: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

334 mx.symbol.degrees

pad Shape(tuple), optional, default=[] The amount of implicit zero padding added
during convolution for each dimension of the input: (w,), (h, w) or (d, h, w).
“(kernel-1)/2“ is usually a good choice. If ‘target_shape‘ is set, ‘pad‘ will be
ignored and a padding that will generate the target shape will be used. Defaults
to no padding.

adj Shape(tuple), optional, default=[] Adjustment for output shape: (w,), (h, w) or
(d, h, w). If ‘target_shape‘ is set, ‘adj‘ will be ignored and computed accord-
ingly.

target.shape Shape(tuple), optional, default=[] Shape of the output tensor: (w,), (h, w) or (d,
h, w).

num.filter int (non-negative), required Number of output filters.

num.group int (non-negative), optional, default=1 Number of groups partition.

workspace long (non-negative), optional, default=512 Maximum temporary workspace al-
lowed (MB) in deconvolution.This parameter has two usages. When CUDNN
is not used, it determines the effective batch size of the deconvolution kernel.
When CUDNN is used, it controls the maximum temporary storage used for
tuning the best CUDNN kernel when ‘limited_workspace‘ strategy is used.

no.bias boolean, optional, default=1 Whether to disable bias parameter.

cudnn.tune None, ’fastest’, ’limited_workspace’, ’off’,optional, default=’None’ Whether to
pick convolution algorithm by running performance test.

cudnn.off boolean, optional, default=0 Turn off cudnn for this layer.

layout None, ’NCDHW’, ’NCHW’, ’NCW’, ’NDHWC’, ’NHWC’,optional, default=’None’
Set layout for input, output and weight. Empty for default layout, NCW for 1d,
NCHW for 2d and NCDHW for 3d.NHWC and NDHWC are only supported on
GPU.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.degrees degrees:Converts each element of the input array from radians to de-
grees.

Description

.. math:: degrees([0, \pi/2, \pi, 3\pi/2, 2\pi]) = [0, 90, 180, 270, 360]

Usage

mx.symbol.degrees(...)

mx.symbol.depth_to_space 335

Arguments

data NDArray-or-Symbol The input array.
name string, optional Name of the resulting symbol.

Details

The storage type of “degrees“ output depends upon the input storage type:

- degrees(default) = default - degrees(row_sparse) = row_sparse - degrees(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L332

Value

out The result mx.symbol

mx.symbol.depth_to_space

depth_to_space:Rearranges(permutes) data from depth into blocks
of spatial data. Similar to ONNX DepthToSpace operator:
https://github.com/onnx/onnx/blob/master/docs/Operators.md#DepthToSpace.
The output is a new tensor where the values from depth dimension are
moved in spatial blocks to height and width dimension. The reverse of
this operation is “space_to_depth“. .. math:: \begingather* x \prime
= reshape(x, [N, block_size, block_size, C / (block_size ^ 2), H *
block_size, W * block_size]) \ x \prime \prime = transpose(x \prime,
[0, 3, 4, 1, 5, 2]) \ y = reshape(x \prime \prime, [N, C / (block_size ^
2), H * block_size, W * block_size]) \endgather* where :math:‘x‘ is
an input tensor with default layout as :math:‘[N, C, H, W]‘: [batch,
channels, height, width] and :math:‘y‘ is the output tensor of layout
:math:‘[N, C / (block_size ^ 2), H * block_size, W * block_size]‘
Example:: x = [[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13,
14], [15, 16, 17]], [[18, 19, 20], [21, 22, 23]]]] depth_to_space(x, 2)
= [[[[0, 6, 1, 7, 2, 8], [12, 18, 13, 19, 14, 20], [3, 9, 4, 10, 5, 11], [15,
21, 16, 22, 17, 23]]]]

Description

Defined in src/operator/tensor/matrix_op.cc:L972

Usage

mx.symbol.depth_to_space(...)

Arguments

data NDArray-or-Symbol Input ndarray
block.size int, required Blocks of [block_size. block_size] are moved
name string, optional Name of the resulting symbol.

336 mx.symbol.diag

Value

out The result mx.symbol

mx.symbol.diag diag:Extracts a diagonal or constructs a diagonal array.

Description

“diag“’s behavior depends on the input array dimensions:

Usage

mx.symbol.diag(...)

Arguments

data NDArray-or-Symbol Input ndarray

k int, optional, default=’0’ Diagonal in question. The default is 0. Use k>0 for
diagonals above the main diagonal, and k<0 for diagonals below the main diag-
onal. If input has shape (S0 S1) k must be between -S0 and S1

axis1 int, optional, default=’0’ The first axis of the sub-arrays of interest. Ignored
when the input is a 1-D array.

axis2 int, optional, default=’1’ The second axis of the sub-arrays of interest. Ignored
when the input is a 1-D array.

name string, optional Name of the resulting symbol.

Details

- 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero. - N-D
arrays: extracts the diagonals of the sub-arrays with axes specified by “axis1“ and “axis2“. The
output shape would be decided by removing the axes numbered “axis1“ and “axis2“ from the input
shape and appending to the result a new axis with the size of the diagonals in question.

For example, when the input shape is ‘(2, 3, 4, 5)‘, “axis1“ and “axis2“ are 0 and 2 respectively and
“k“ is 0, the resulting shape would be ‘(3, 5, 2)‘.

Examples::

x = [[1, 2, 3], [4, 5, 6]]

diag(x) = [1, 5]

diag(x, k=1) = [2, 6]

diag(x, k=-1) = [4]

x = [1, 2, 3]

diag(x) = [[1, 0, 0], [0, 2, 0], [0, 0, 3]]

diag(x, k=1) = [[0, 1, 0], [0, 0, 2], [0, 0, 0]]

mx.symbol.digamma 337

diag(x, k=-1) = [[0, 0, 0], [1, 0, 0], [0, 2, 0]]

x = [[[1, 2], [3, 4]],

[[5, 6], [7, 8]]]

diag(x) = [[1, 7], [2, 8]]

diag(x, k=1) = [[3], [4]]

diag(x, axis1=-2, axis2=-1) = [[1, 4], [5, 8]]

Defined in src/operator/tensor/diag_op.cc:L87

Value

out The result mx.symbol

mx.symbol.digamma digamma:Returns element-wise log derivative of the gamma function
\ of the input.

Description

The storage type of “digamma“ output is always dense

Usage

mx.symbol.digamma(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

338 mx.symbol.dot

mx.symbol.dot dot:Dot product of two arrays.

Description

“dot“’s behavior depends on the input array dimensions:

Usage

mx.symbol.dot(...)

Arguments

lhs NDArray-or-Symbol The first input

rhs NDArray-or-Symbol The second input

transpose.a boolean, optional, default=0 If true then transpose the first input before dot.

transpose.b boolean, optional, default=0 If true then transpose the second input before dot.

forward.stype None, ’csr’, ’default’, ’row_sparse’,optional, default=’None’ The desired stor-
age type of the forward output given by user, if thecombination of input storage
types and this hint does not matchany implemented ones, the dot operator will
perform fallback operationand still produce an output of the desired storage type.

name string, optional Name of the resulting symbol.

Details

- 1-D arrays: inner product of vectors - 2-D arrays: matrix multiplication - N-D arrays: a sum
product over the last axis of the first input and the first axis of the second input

For example, given 3-D “x“ with shape ‘(n,m,k)‘ and “y“ with shape ‘(k,r,s)‘, the result array will
have shape ‘(n,m,r,s)‘. It is computed by::

dot(x,y)[i,j,a,b] = sum(x[i,j,:]*y[:,a,b])

Example::

x = reshape([0,1,2,3,4,5,6,7], shape=(2,2,2)) y = reshape([7,6,5,4,3,2,1,0], shape=(2,2,2)) dot(x,y)[0,0,1,1]
= 0 sum(x[0,0,:]*y[:,1,1]) = 0

The storage type of “dot“ output depends on storage types of inputs, transpose option and for-
ward_stype option for output storage type. Implemented sparse operations include:

- dot(default, default, transpose_a=True/False, transpose_b=True/False) = default - dot(csr, default,
transpose_a=True) = default - dot(csr, default, transpose_a=True) = row_sparse - dot(csr, default)
= default - dot(csr, row_sparse) = default - dot(default, csr) = csr (CPU only) - dot(default, csr,
forward_stype=’default’) = default - dot(default, csr, transpose_b=True, forward_stype=’default’)
= default

If the combination of input storage types and forward_stype does not match any of the above pat-
terns, “dot“ will fallback and generate output with default storage.

.. Note::

mx.symbol.Dropout 339

If the storage type of the lhs is "csr", the storage type of gradient w.r.t rhs will be "row_sparse". Only
a subset of optimizers support sparse gradients, including SGD, AdaGrad and Adam. Note that by
default lazy updates is turned on, which may perform differently from standard updates. For more
details, please check the Optimization API at: https://mxnet.incubator.apache.org/api/python/optimization/optimization.html

Defined in src/operator/tensor/dot.cc:L77

Value

out The result mx.symbol

mx.symbol.Dropout Dropout:Applies dropout operation to input array.

Description

- During training, each element of the input is set to zero with probability p. The whole array is
rescaled by :math:‘1/(1-p)‘ to keep the expected sum of the input unchanged.

Usage

mx.symbol.Dropout(...)

Arguments

data NDArray-or-Symbol Input array to which dropout will be applied.
p float, optional, default=0.5 Fraction of the input that gets dropped out during

training time.
mode ’always’, ’training’,optional, default=’training’ Whether to only turn on dropout

during training or to also turn on for inference.
axes Shape(tuple), optional, default=[] Axes for variational dropout kernel.
cudnn.off boolean or None, optional, default=0 Whether to turn off cudnn in dropout op-

erator. This option is ignored if axes is specified.
name string, optional Name of the resulting symbol.

Details

- During testing, this operator does not change the input if mode is ’training’. If mode is ’always’,
the same computaion as during training will be applied.

Example::

random.seed(998) input_array = array([[3., 0.5, -0.5, 2., 7.], [2., -0.4, 7., 3., 0.2]]) a = sym-
bol.Variable(’a’) dropout = symbol.Dropout(a, p = 0.2) executor = dropout.simple_bind(a = in-
put_array.shape)

If training executor.forward(is_train = True, a = input_array) executor.outputs [[3.75 0.625 -0.
2.5 8.75] [2.5 -0.5 8.75 3.75 0.]]

If testing executor.forward(is_train = False, a = input_array) executor.outputs [[3. 0.5 -0.5 2. 7.
] [2. -0.4 7. 3. 0.2]]

Defined in src/operator/nn/dropout.cc:L96

340 mx.symbol.ElementWiseSum

Value

out The result mx.symbol

mx.symbol.ElementWiseSum

ElementWiseSum:Adds all input arguments element-wise.

Description

.. math:: add_n(a_1, a_2, ..., a_n) = a_1 + a_2 + ... + a_n

Usage

mx.symbol.ElementWiseSum(...)

Arguments

args NDArray-or-Symbol[] Positional input arguments

name string, optional Name of the resulting symbol.

Details

“add_n“ is potentially more efficient than calling “add“ by ‘n‘ times.

The storage type of “add_n“ output depends on storage types of inputs

- add_n(row_sparse, row_sparse, ..) = row_sparse - add_n(default, csr, default) = default - add_n(any
input combinations longer than 4 (>4) with at least one default type) = default - otherwise, “add_n“
falls all inputs back to default storage and generates default storage

Defined in src/operator/tensor/elemwise_sum.cc:L155

Value

out The result mx.symbol

mx.symbol.elemwise_add 341

mx.symbol.elemwise_add

elemwise_add:Adds arguments element-wise.

Description

The storage type of “elemwise_add“ output depends on storage types of inputs

Usage

mx.symbol.elemwise_add(...)

Arguments

lhs NDArray-or-Symbol first input

rhs NDArray-or-Symbol second input

name string, optional Name of the resulting symbol.

Details

- elemwise_add(row_sparse, row_sparse) = row_sparse - elemwise_add(csr, csr) = csr - elem-
wise_add(default, csr) = default - elemwise_add(csr, default) = default - elemwise_add(default,
rsp) = default - elemwise_add(rsp, default) = default - otherwise, “elemwise_add“ generates output
with default storage

Value

out The result mx.symbol

mx.symbol.elemwise_div

elemwise_div:Divides arguments element-wise.

Description

The storage type of “elemwise_div“ output is always dense

Usage

mx.symbol.elemwise_div(...)

Arguments

lhs NDArray-or-Symbol first input

rhs NDArray-or-Symbol second input

name string, optional Name of the resulting symbol.

342 mx.symbol.elemwise_sub

Value

out The result mx.symbol

mx.symbol.elemwise_mul

elemwise_mul:Multiplies arguments element-wise.

Description

The storage type of “elemwise_mul“ output depends on storage types of inputs

Usage

mx.symbol.elemwise_mul(...)

Arguments

lhs NDArray-or-Symbol first input

rhs NDArray-or-Symbol second input

name string, optional Name of the resulting symbol.

Details

- elemwise_mul(default, default) = default - elemwise_mul(row_sparse, row_sparse) = row_sparse -
elemwise_mul(default, row_sparse) = row_sparse - elemwise_mul(row_sparse, default) = row_sparse
- elemwise_mul(csr, csr) = csr - otherwise, “elemwise_mul“ generates output with default storage

Value

out The result mx.symbol

mx.symbol.elemwise_sub

elemwise_sub:Subtracts arguments element-wise.

Description

The storage type of “elemwise_sub“ output depends on storage types of inputs

Usage

mx.symbol.elemwise_sub(...)

mx.symbol.Embedding 343

Arguments

lhs NDArray-or-Symbol first input

rhs NDArray-or-Symbol second input

name string, optional Name of the resulting symbol.

Details

- elemwise_sub(row_sparse, row_sparse) = row_sparse - elemwise_sub(csr, csr) = csr - elem-
wise_sub(default, csr) = default - elemwise_sub(csr, default) = default - elemwise_sub(default, rsp)
= default - elemwise_sub(rsp, default) = default - otherwise, “elemwise_sub“ generates output with
default storage

Value

out The result mx.symbol

mx.symbol.Embedding Embedding:Maps integer indices to vector representations (embed-
dings).

Description

This operator maps words to real-valued vectors in a high-dimensional space, called word embed-
dings. These embeddings can capture semantic and syntactic properties of the words. For example,
it has been noted that in the learned embedding spaces, similar words tend to be close to each other
and dissimilar words far apart.

Usage

mx.symbol.Embedding(...)

Arguments

data NDArray-or-Symbol The input array to the embedding operator.

weight NDArray-or-Symbol The embedding weight matrix.

input.dim int, required Vocabulary size of the input indices.

output.dim int, required Dimension of the embedding vectors.

dtype ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’float32’ Data type of weight.

sparse.grad boolean, optional, default=0 Compute row sparse gradient in the backward cal-
culation. If set to True, the grad’s storage type is row_sparse.

name string, optional Name of the resulting symbol.

344 mx.symbol.erf

Details

For an input array of shape (d1, ..., dK), the shape of an output array is (d1, ..., dK, output_dim).
All the input values should be integers in the range [0, input_dim).

If the input_dim is ip0 and output_dim is op0, then shape of the embedding weight matrix must be
(ip0, op0).

When "sparse_grad" is False, if any index mentioned is too large, it is replaced by the index that
addresses the last vector in an embedding matrix. When "sparse_grad" is True, an error will be
raised if invalid indices are found.

Examples::

input_dim = 4 output_dim = 5

// Each row in weight matrix y represents a word. So, y = (w0,w1,w2,w3) y = [[0., 1., 2., 3., 4.], [
5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.]]

// Input array x represents n-grams(2-gram). So, x = [(w1,w3), (w0,w2)] x = [[1., 3.], [0., 2.]]

// Mapped input x to its vector representation y. Embedding(x, y, 4, 5) = [[[5., 6., 7., 8., 9.], [15.,
16., 17., 18., 19.]],

[[0., 1., 2., 3., 4.], [10., 11., 12., 13., 14.]]]

The storage type of weight can be either row_sparse or default.

.. Note::

If "sparse_grad" is set to True, the storage type of gradient w.r.t weights will be "row_sparse". Only
a subset of optimizers support sparse gradients, including SGD, AdaGrad and Adam. Note that by
default lazy updates is turned on, which may perform differently from standard updates. For more
details, please check the Optimization API at: https://mxnet.incubator.apache.org/api/python/optimization/optimization.html

Defined in src/operator/tensor/indexing_op.cc:L602

Value

out The result mx.symbol

mx.symbol.erf erf:Returns element-wise gauss error function of the input.

Description

Example::

Usage

mx.symbol.erf(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

mx.symbol.erfinv 345

Details

erf([0, -1., 10.]) = [0., -0.8427, 1.]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L887

Value

out The result mx.symbol

mx.symbol.erfinv erfinv:Returns element-wise inverse gauss error function of the input.

Description

Example::

Usage

mx.symbol.erfinv(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

erfinv([0, 0.5., -1.]) = [0., 0.4769, -inf]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L909

Value

out The result mx.symbol

346 mx.symbol.expand_dims

mx.symbol.exp exp:Returns element-wise exponential value of the input.

Description

.. math:: exp(x) = e^x \approx 2.718^x

Usage

mx.symbol.exp(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

exp([0, 1, 2]) = [1., 2.71828175, 7.38905621]

The storage type of “exp“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L64

Value

out The result mx.symbol

mx.symbol.expand_dims expand_dims:Inserts a new axis of size 1 into the array shape For
example, given “x“ with shape “(2,3,4)“, then “expand_dims(x,
axis=1)“ will return a new array with shape “(2,1,3,4)“.

Description

Defined in src/operator/tensor/matrix_op.cc:L395

Usage

mx.symbol.expand_dims(...)

mx.symbol.expm1 347

Arguments

data NDArray-or-Symbol Source input

axis int, required Position where new axis is to be inserted. Suppose that the in-
put ‘NDArray‘’s dimension is ‘ndim‘, the range of the inserted axis is ‘[-ndim,
ndim]‘

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.expm1 expm1:Returns “exp(x) - 1“ computed element-wise on the input.

Description

This function provides greater precision than “exp(x) - 1“ for small values of “x“.

Usage

mx.symbol.expm1(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “expm1“ output depends upon the input storage type:

- expm1(default) = default - expm1(row_sparse) = row_sparse - expm1(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L244

Value

out The result mx.symbol

348 mx.symbol.fix

mx.symbol.fill_element_0index

fill_element_0index:Fill one element of each line(row for python, col-
umn for R/Julia) in lhs according to index indicated by rhs and values
indicated by mhs. This function assume rhs uses 0-based index.

Description

fill_element_0index:Fill one element of each line(row for python, column for R/Julia) in lhs accord-
ing to index indicated by rhs and values indicated by mhs. This function assume rhs uses 0-based
index.

Usage

mx.symbol.fill_element_0index(...)

Arguments

lhs NDArray Left operand to the function.

mhs NDArray Middle operand to the function.

rhs NDArray Right operand to the function.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.fix fix:Returns element-wise rounded value to the nearest \ integer to-
wards zero of the input.

Description

Example::

Usage

mx.symbol.fix(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

mx.symbol.Flatten 349

Details

fix([-2.1, -1.9, 1.9, 2.1]) = [-2., -1., 1., 2.]

The storage type of “fix“ output depends upon the input storage type:

- fix(default) = default - fix(row_sparse) = row_sparse - fix(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L875

Value

out The result mx.symbol

mx.symbol.Flatten Flatten:Flattens the input array into a 2-D array by collapsing the
higher dimensions. .. note:: ‘Flatten‘ is deprecated. Use ‘flat-
ten‘ instead. For an input array with shape “(d1, d2, ..., dk)“,
‘flatten‘ operation reshapes the input array into an output array
of shape “(d1, d2*...*dk)“. Note that the behavior of this func-
tion is different from numpy.ndarray.flatten, which behaves similar
to mxnet.ndarray.reshape((-1,)). Example:: x = [[[1,2,3], [4,5,6],
[7,8,9]], [[1,2,3], [4,5,6], [7,8,9]]], flatten(x) = [[1., 2., 3., 4., 5.,
6., 7., 8., 9.], [1., 2., 3., 4., 5., 6., 7., 8., 9.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L250

Usage

mx.symbol.Flatten(...)

Arguments

data NDArray-or-Symbol Input array.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

350 mx.symbol.flip

mx.symbol.flatten flatten:Flattens the input array into a 2-D array by collapsing the
higher dimensions. .. note:: ‘Flatten‘ is deprecated. Use ‘flat-
ten‘ instead. For an input array with shape “(d1, d2, ..., dk)“,
‘flatten‘ operation reshapes the input array into an output array
of shape “(d1, d2*...*dk)“. Note that the behavior of this func-
tion is different from numpy.ndarray.flatten, which behaves similar
to mxnet.ndarray.reshape((-1,)). Example:: x = [[[1,2,3], [4,5,6],
[7,8,9]], [[1,2,3], [4,5,6], [7,8,9]]], flatten(x) = [[1., 2., 3., 4., 5.,
6., 7., 8., 9.], [1., 2., 3., 4., 5., 6., 7., 8., 9.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L250

Usage

mx.symbol.flatten(...)

Arguments

data NDArray-or-Symbol Input array.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.flip flip:Reverses the order of elements along given axis while preserving
array shape. Note: reverse and flip are equivalent. We use reverse in
the following examples. Examples:: x = [[0., 1., 2., 3., 4.], [5., 6.,
7., 8., 9.]] reverse(x, axis=0) = [[5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.]]
reverse(x, axis=1) = [[4., 3., 2., 1., 0.], [9., 8., 7., 6., 5.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L832

Usage

mx.symbol.flip(...)

mx.symbol.floor 351

Arguments

data NDArray-or-Symbol Input data array

axis Shape(tuple), required The axis which to reverse elements.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.floor floor:Returns element-wise floor of the input.

Description

The floor of the scalar x is the largest integer i, such that i <= x.

Usage

mx.symbol.floor(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

floor([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-3., -2., 1., 1., 2.]

The storage type of “floor“ output depends upon the input storage type:

- floor(default) = default - floor(row_sparse) = row_sparse - floor(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L837

Value

out The result mx.symbol

352 mx.symbol.ftml_update

mx.symbol.ftml_update ftml_update:The FTML optimizer described in *FTML - Fol-
low the Moving Leader in Deep Learning*, available at
http://proceedings.mlr.press/v70/zheng17a/zheng17a.pdf.

Description

.. math::

Usage

mx.symbol.ftml_update(...)

Arguments

weight NDArray-or-Symbol Weight
grad NDArray-or-Symbol Gradient
d NDArray-or-Symbol Internal state “d_t“
v NDArray-or-Symbol Internal state “v_t“
z NDArray-or-Symbol Internal state “z_t“
lr float, required Learning rate.
beta1 float, optional, default=0.600000024 Generally close to 0.5.
beta2 float, optional, default=0.999000013 Generally close to 1.
epsilon double, optional, default=9.9999999392252903e-09 Epsilon to prevent div 0.
t int, required Number of update.
wd float, optional, default=0 Weight decay augments the objective function with a

regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.grad float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

name string, optional Name of the resulting symbol.

Details

g_t = \nabla J(W_t-1)\ v_t = \beta_2 v_t-1 + (1 - \beta_2) g_t^2\ d_t = \frac 1 - \beta_1^t \eta_t (\sqrt
\frac v_t 1 - \beta_2^t + \epsilon) \sigma_t = d_t - \beta_1 d_t-1 z_t = \beta_1 z_ t-1 + (1 - \beta_1^t)
g_t - \sigma_t W_t-1 W_t = - \frac z_t d_t

Defined in src/operator/optimizer_op.cc:L631

Value

out The result mx.symbol

mx.symbol.ftrl_update 353

mx.symbol.ftrl_update ftrl_update:Update function for Ftrl optimizer. Referenced from
Ad Click Prediction: a View from the Trenches, available at
http://dl.acm.org/citation.cfm?id=2488200.

Description

It updates the weights using::

Usage

mx.symbol.ftrl_update(...)

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

z NDArray-or-Symbol z

n NDArray-or-Symbol Square of grad

lr float, required Learning rate

lamda1 float, optional, default=0.00999999978 The L1 regularization coefficient.

beta float, optional, default=1 Per-Coordinate Learning Rate beta.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

name string, optional Name of the resulting symbol.

Details

rescaled_grad = clip(grad * rescale_grad, clip_gradient) z += rescaled_grad - (sqrt(n + rescaled_grad**2)
- sqrt(n)) * weight / learning_rate n += rescaled_grad**2 w = (sign(z) * lamda1 - z) / ((beta + sqrt(n))
/ learning_rate + wd) * (abs(z) > lamda1)

If w, z and n are all of “row_sparse“ storage type, only the row slices whose indices appear in
grad.indices are updated (for w, z and n)::

for row in grad.indices: rescaled_grad[row] = clip(grad[row] * rescale_grad, clip_gradient) z[row]
+= rescaled_grad[row] - (sqrt(n[row] + rescaled_grad[row]**2) - sqrt(n[row])) * weight[row] /
learning_rate n[row] += rescaled_grad[row]**2 w[row] = (sign(z[row]) * lamda1 - z[row]) / ((beta
+ sqrt(n[row])) / learning_rate + wd) * (abs(z[row]) > lamda1)

Defined in src/operator/optimizer_op.cc:L867

354 mx.symbol.FullyConnected

Value

out The result mx.symbol

mx.symbol.FullyConnected

FullyConnected:Applies a linear transformation: :math:‘Y = XW^T +
b‘.

Description

If “flatten“ is set to be true, then the shapes are:

Usage

mx.symbol.FullyConnected(...)

Arguments

data NDArray-or-Symbol Input data.
weight NDArray-or-Symbol Weight matrix.
bias NDArray-or-Symbol Bias parameter.
num.hidden int, required Number of hidden nodes of the output.
no.bias boolean, optional, default=0 Whether to disable bias parameter.
flatten boolean, optional, default=1 Whether to collapse all but the first axis of the input

data tensor.
name string, optional Name of the resulting symbol.

Details

- **data**: ‘(batch_size, x1, x2, ..., xn)‘ - **weight**: ‘(num_hidden, x1 * x2 * ... * xn)‘ -
bias: ‘(num_hidden,)‘ - **out**: ‘(batch_size, num_hidden)‘

If “flatten“ is set to be false, then the shapes are:

- **data**: ‘(x1, x2, ..., xn, input_dim)‘ - **weight**: ‘(num_hidden, input_dim)‘ - **bias**:
‘(num_hidden,)‘ - **out**: ‘(x1, x2, ..., xn, num_hidden)‘

The learnable parameters include both “weight“ and “bias“.

If “no_bias“ is set to be true, then the “bias“ term is ignored.

.. Note::

The sparse support for FullyConnected is limited to forward evaluation with ‘row_sparse‘ weight
and bias, where the length of ‘weight.indices‘ and ‘bias.indices‘ must be equal to ‘num_hidden‘.
This could be useful for model inference with ‘row_sparse‘ weights trained with importance sam-
pling or noise contrastive estimation.

To compute linear transformation with ’csr’ sparse data, sparse.dot is recommended instead of
sparse.FullyConnected.

Defined in src/operator/nn/fully_connected.cc:L287

mx.symbol.gamma 355

Value

out The result mx.symbol

mx.symbol.gamma gamma:Returns the gamma function (extension of the factorial func-
tion \ to the reals), computed element-wise on the input array.

Description

The storage type of “gamma“ output is always dense

Usage

mx.symbol.gamma(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.gammaln gammaln:Returns element-wise log of the absolute value of the gamma
function \ of the input.

Description

The storage type of “gammaln“ output is always dense

Usage

mx.symbol.gammaln(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

356 mx.symbol.GridGenerator

mx.symbol.gather_nd gather_nd:Gather elements or slices from ‘data‘ and store to a tensor
whose shape is defined by ‘indices‘.

Description

Given ‘data‘ with shape ‘(X_0, X_1, ..., X_N-1)‘ and indices with shape ‘(M, Y_0, ..., Y_K-1)‘, the
output will have shape ‘(Y_0, ..., Y_K-1, X_M, ..., X_N-1)‘, where ‘M <= N‘. If ‘M == N‘, output
shape will simply be ‘(Y_0, ..., Y_K-1)‘.

Usage

mx.symbol.gather_nd(...)

Arguments

data NDArray-or-Symbol data

indices NDArray-or-Symbol indices

name string, optional Name of the resulting symbol.

Details

The elements in output is defined as follows::

output[y_0, ..., y_K-1, x_M, ..., x_N-1] = data[indices[0, y_0, ..., y_K-1], ..., indices[M-1, y_0, ...,
y_K-1], x_M, ..., x_N-1]

Examples::

data = [[0, 1], [2, 3]] indices = [[1, 1, 0], [0, 1, 0]] gather_nd(data, indices) = [2, 3, 0]

data = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] indices = [[0, 1], [1, 0]] gather_nd(data, indices) = [[3, 4], [5,
6]]

Value

out The result mx.symbol

mx.symbol.GridGenerator

GridGenerator:Generates 2D sampling grid for bilinear sampling.

Description

GridGenerator:Generates 2D sampling grid for bilinear sampling.

mx.symbol.Group 357

Usage

mx.symbol.GridGenerator(...)

Arguments

data NDArray-or-Symbol Input data to the function.

transform.type ’affine’, ’warp’, required The type of transformation. For ‘affine‘, input data
should be an affine matrix of size (batch, 6). For ‘warp‘, input data should be an
optical flow of size (batch, 2, h, w).

target.shape Shape(tuple), optional, default=[0,0] Specifies the output shape (H, W). This is
required if transformation type is ‘affine‘. If transformation type is ‘warp‘, this
parameter is ignored.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.Group Create a symbol that groups symbols together.

Description

Create a symbol that groups symbols together.

Usage

mx.symbol.Group(...)

Arguments

kwarg Variable length of symbols or list of symbol.

Value

The result symbol

358 mx.symbol.GroupNorm

mx.symbol.GroupNorm GroupNorm:Group normalization.

Description

The input channels are separated into “num_groups“ groups, each containing “num_channels /
num_groups“ channels. The mean and standard-deviation are calculated separately over the each
group.

Usage

mx.symbol.GroupNorm(...)

Arguments

data NDArray-or-Symbol Input data

gamma NDArray-or-Symbol gamma array

beta NDArray-or-Symbol beta array

num.groups int, optional, default=’1’ Total number of groups.

eps float, optional, default=9.99999975e-06 An ‘epsilon‘ parameter to prevent divi-
sion by 0.

output.mean.var

boolean, optional, default=0 Output the mean and std calculated along the given
axis.

name string, optional Name of the resulting symbol.

Details

.. math::

data = data.reshape((N, num_groups, C // num_groups, ...)) out = \fracdata - mean(data, axis)\sqrtvar(data,
axis) + \epsilon * gamma + beta

Both “gamma“ and “beta“ are learnable parameters.

Defined in src/operator/nn/group_norm.cc:L77

Value

out The result mx.symbol

mx.symbol.hard_sigmoid 359

mx.symbol.hard_sigmoid

hard_sigmoid:Computes hard sigmoid of x element-wise.

Description

.. math:: y = max(0, min(1, alpha * x + beta))

Usage

mx.symbol.hard_sigmoid(...)

Arguments

data NDArray-or-Symbol The input array.
alpha float, optional, default=0.200000003 Slope of hard sigmoid
beta float, optional, default=0.5 Bias of hard sigmoid.
name string, optional Name of the resulting symbol.

Details

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L161

Value

out The result mx.symbol

mx.symbol.identity identity:Returns a copy of the input.

Description

From:src/operator/tensor/elemwise_unary_op_basic.cc:244

Usage

mx.symbol.identity(...)

Arguments

data NDArray-or-Symbol The input array.
name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

360 mx.symbol.im2col

mx.symbol.IdentityAttachKLSparseReg

IdentityAttachKLSparseReg:Apply a sparse regularization to the out-
put a sigmoid activation function.

Description

IdentityAttachKLSparseReg:Apply a sparse regularization to the output a sigmoid activation func-
tion.

Usage

mx.symbol.IdentityAttachKLSparseReg(...)

Arguments

data NDArray-or-Symbol Input data.
sparseness.target

float, optional, default=0.100000001 The sparseness target

penalty float, optional, default=0.00100000005 The tradeoff parameter for the sparse-
ness penalty

momentum float, optional, default=0.899999976 The momentum for running average

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.im2col im2col:Extract sliding blocks from input array.

Description

This operator is used in vanilla convolution implementation to transform the sliding blocks on im-
age to column matrix, then the convolution operation can be computed by matrix multiplication
between column and convolution weight. Due to the close relation between im2col and convolu-
tion, the concept of **kernel**, **stride**, **dilate** and **pad** in this operator are inherited
from convolution operation.

Usage

mx.symbol.im2col(...)

mx.symbol.infer.shape 361

Arguments

data NDArray-or-Symbol Input array to extract sliding blocks.

kernel Shape(tuple), required Sliding kernel size: (w,), (h, w) or (d, h, w).

stride Shape(tuple), optional, default=[] The stride between adjacent sliding blocks in
spatial dimension: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

dilate Shape(tuple), optional, default=[] The spacing between adjacent kernel points:
(w,), (h, w) or (d, h, w). Defaults to 1 for each dimension.

pad Shape(tuple), optional, default=[] The zero-value padding size on both sides of
spatial dimension: (w,), (h, w) or (d, h, w). Defaults to no padding.

name string, optional Name of the resulting symbol.

Details

Given the input data of shape :math:‘(N, C, *)‘, where :math:‘N‘ is the batch size, :math:‘C‘ is the
channel size, and :math:‘*‘ is the arbitrary spatial dimension, the output column array is always
with shape :math:‘(N, C \times \prod(\textkernel), W)‘, where :math:‘C \times \prod(\textkernel)‘
is the block size, and :math:‘W‘ is the block number which is the spatial size of the convolution
output with same input parameters. Only 1-D, 2-D and 3-D of spatial dimension is supported in this
operator.

Defined in src/operator/nn/im2col.cc:L100

Value

out The result mx.symbol

mx.symbol.infer.shape Inference the shape of arguments, outputs, and auxiliary states.

Description

Inference the shape of arguments, outputs, and auxiliary states.

Usage

mx.symbol.infer.shape(symbol, ...)

Arguments

symbol The mx.symbol object

362 mx.symbol.InstanceNorm

mx.symbol.InstanceNorm

InstanceNorm:Applies instance normalization to the n-dimensional in-
put array.

Description

This operator takes an n-dimensional input array where (n>2) and normalizes the input using the
following formula:

Usage

mx.symbol.InstanceNorm(...)

Arguments

data NDArray-or-Symbol An n-dimensional input array (n > 2) of the form [batch,
channel, spatial_dim1, spatial_dim2, ...].

gamma NDArray-or-Symbol A vector of length ’channel’, which multiplies the normal-
ized input.

beta NDArray-or-Symbol A vector of length ’channel’, which is added to the product
of the normalized input and the weight.

eps float, optional, default=0.00100000005 An ‘epsilon‘ parameter to prevent divi-
sion by 0.

name string, optional Name of the resulting symbol.

Details

.. math::

out = \fracx - mean[data] \sqrtVar[data] + \epsilon * gamma + beta

This layer is similar to batch normalization layer (‘BatchNorm‘) with two differences: first, the nor-
malization is carried out per example (instance), not over a batch. Second, the same normalization
is applied both at test and train time. This operation is also known as ‘contrast normalization‘.

If the input data is of shape [batch, channel, spacial_dim1, spacial_dim2, ...], ‘gamma‘ and ‘beta‘
parameters must be vectors of shape [channel].

This implementation is based on this paper [1]_

.. [1] Instance Normalization: The Missing Ingredient for Fast Stylization, D. Ulyanov, A. Vedaldi,
V. Lempitsky, 2016 (arXiv:1607.08022v2).

Examples::

// Input of shape (2,1,2) x = [[[1.1, 2.2]], [[3.3, 4.4]]]

// gamma parameter of length 1 gamma = [1.5]

// beta parameter of length 1 beta = [0.5]

mx.symbol.khatri_rao 363

// Instance normalization is calculated with the above formula InstanceNorm(x,gamma,beta) = [[[-
0.997527 , 1.99752665]], [[-0.99752653, 1.99752724]]]

Defined in src/operator/instance_norm.cc:L95

Value

out The result mx.symbol

mx.symbol.khatri_rao khatri_rao:Computes the Khatri-Rao product of the input matrices.

Description

Given a collection of :math:‘n‘ input matrices,

Usage

mx.symbol.khatri_rao(...)

Arguments

args NDArray-or-Symbol[] Positional input matrices

name string, optional Name of the resulting symbol.

Details

.. math:: A_1 \in \mathbbR^M_1 \times M, . . . , A_n \in \mathbbR^M_n \times N,

the (column-wise) Khatri-Rao product is defined as the matrix,

.. math:: X = A_1 \otimes \cdots \otimes A_n \in \mathbbR^(M_1 \cdots M_n) \times N,

where the :math:‘k‘ th column is equal to the column-wise outer product :math:‘A_1_k \otimes
\cdots \otimes A_n_k‘ where :math:‘A_i_k‘ is the kth column of the ith matrix.

Example::

»> A = mx.nd.array([[1, -1], »> [2, -3]]) »> B = mx.nd.array([[1, 4], »> [2, 5], »> [3, 6]]) »> C =
mx.nd.khatri_rao(A, B) »> print(C.asnumpy()) [[1. -4.] [2. -5.] [3. -6.] [2. -12.] [4. -15.] [6.
-18.]]

Defined in src/operator/contrib/krprod.cc:L108

Value

out The result mx.symbol

364 mx.symbol.L2Normalization

mx.symbol.L2Normalization

L2Normalization:Normalize the input array using the L2 norm.

Description

For 1-D NDArray, it computes::

Usage

mx.symbol.L2Normalization(...)

Arguments

data NDArray-or-Symbol Input array to normalize.

eps float, optional, default=1.00000001e-10 A small constant for numerical stability.

mode ’channel’, ’instance’, ’spatial’,optional, default=’instance’ Specify the dimen-
sion along which to compute L2 norm.

name string, optional Name of the resulting symbol.

Details

out = data / sqrt(sum(data ** 2) + eps)

For N-D NDArray, if the input array has shape (N, N, ..., N),

with “mode“ = “instance“, it normalizes each instance in the multidimensional array by its L2
norm.::

for i in 0...N out[i,:,:,...,:] = data[i,:,:,...,:] / sqrt(sum(data[i,:,:,...,:] ** 2) + eps)

with “mode“ = “channel“, it normalizes each channel in the array by its L2 norm.::

for i in 0...N out[:,i,:,...,:] = data[:,i,:,...,:] / sqrt(sum(data[:,i,:,...,:] ** 2) + eps)

with “mode“ = “spatial“, it normalizes the cross channel norm for each position in the array by its
L2 norm.::

for dim in 2...N for i in 0...N out[.....,i,...] = take(out, indices=i, axis=dim) / sqrt(sum(take(out,
indices=i, axis=dim) ** 2) + eps) -dim-

Example::

x = [[[1,2], [3,4]], [[2,2], [5,6]]]

L2Normalization(x, mode=’instance’) =[[[0.18257418 0.36514837] [0.54772252 0.73029673]] [[
0.24077171 0.24077171] [0.60192931 0.72231513]]]

L2Normalization(x, mode=’channel’) =[[[0.31622776 0.44721359] [0.94868326 0.89442718]] [[
0.37139067 0.31622776] [0.92847669 0.94868326]]]

L2Normalization(x, mode=’spatial’) =[[[0.44721359 0.89442718] [0.60000002 0.80000001]] [[
0.70710677 0.70710677] [0.6401844 0.76822126]]]

Defined in src/operator/l2_normalization.cc:L196

mx.symbol.lamb_update_phase1 365

Value

out The result mx.symbol

mx.symbol.lamb_update_phase1

lamb_update_phase1:Phase I of lamb update it performs the following
operations and returns g:.

Description

Link to paper: https://arxiv.org/pdf/1904.00962.pdf

Usage

mx.symbol.lamb_update_phase1(...)

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mean NDArray-or-Symbol Moving mean

var NDArray-or-Symbol Moving variance

beta1 float, optional, default=0.899999976 The decay rate for the 1st moment esti-
mates.

beta2 float, optional, default=0.999000013 The decay rate for the 2nd moment esti-
mates.

epsilon float, optional, default=9.99999997e-07 A small constant for numerical stability.

t int, required Index update count.

bias.correction

boolean, optional, default=1 Whether to use bias correction.

wd float, required Weight decay augments the objective function with a regulariza-
tion term that penalizes large weights. The penalty scales with the square of the
magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

name string, optional Name of the resulting symbol.

366 mx.symbol.lamb_update_phase2

Details

.. math:: \begingather* grad = grad * rescale_grad if (grad < -clip_gradient) then grad = -clip_gradient
if (grad > clip_gradient) then grad = clip_gradient

mean = beta1 * mean + (1 - beta1) * grad; variance = beta2 * variance + (1. - beta2) * grad ^ 2;

if (bias_correction) then mean_hat = mean / (1. - beta1^t); var_hat = var / (1 - beta2^t); g = mean_hat
/ (var_hat^(1/2) + epsilon) + wd * weight; else g = mean / (var_data^(1/2) + epsilon) + wd * weight;
\endgather*

Defined in src/operator/optimizer_op.cc:L944

Value

out The result mx.symbol

mx.symbol.lamb_update_phase2

lamb_update_phase2:Phase II of lamb update it performs the follow-
ing operations and updates grad.

Description

Link to paper: https://arxiv.org/pdf/1904.00962.pdf

Usage

mx.symbol.lamb_update_phase2(...)

Arguments

weight NDArray-or-Symbol Weight
g NDArray-or-Symbol Output of lamb_update_phase 1
r1 NDArray-or-Symbol r1
r2 NDArray-or-Symbol r2
lr float, required Learning rate
lower.bound float, optional, default=-1 Lower limit of norm of weight. If lower_bound <= 0,

Lower limit is not set
upper.bound float, optional, default=-1 Upper limit of norm of weight. If upper_bound <= 0,

Upper limit is not set
name string, optional Name of the resulting symbol.

Details

.. math:: \begingather* if (lower_bound >= 0) then r1 = max(r1, lower_bound) if (upper_bound >=
0) then r1 = max(r1, upper_bound)

if (r1 == 0 or r2 == 0) then lr = lr else lr = lr * (r1/r2) weight = weight - lr * g \endgather*

Defined in src/operator/optimizer_op.cc:L983

mx.symbol.LayerNorm 367

Value

out The result mx.symbol

mx.symbol.LayerNorm LayerNorm:Layer normalization.

Description

Normalizes the channels of the input tensor by mean and variance, and applies a scale “gamma“ as
well as offset “beta“.

Usage

mx.symbol.LayerNorm(...)

Arguments

data NDArray-or-Symbol Input data to layer normalization

gamma NDArray-or-Symbol gamma array

beta NDArray-or-Symbol beta array

axis int, optional, default=’-1’ The axis to perform layer normalization. Usually, this
should be be axis of the channel dimension. Negative values means indexing
from right to left.

eps float, optional, default=9.99999975e-06 An ‘epsilon‘ parameter to prevent divi-
sion by 0.

output.mean.var

boolean, optional, default=0 Output the mean and std calculated along the given
axis.

name string, optional Name of the resulting symbol.

Details

Assume the input has more than one dimension and we normalize along axis 1. We first compute
the mean and variance along this axis and then compute the normalized output, which has the same
shape as input, as following:

.. math::

out = \fracdata - mean(data, axis)\sqrtvar(data, axis) + \epsilon * gamma + beta

Both “gamma“ and “beta“ are learnable parameters.

Unlike BatchNorm and InstanceNorm, the *mean* and *var* are computed along the channel di-
mension.

Assume the input has size *k* on axis 1, then both “gamma“ and “beta“ have shape *(k,)*. If
“output_mean_var“ is set to be true, then outputs both “data_mean“ and “data_std“. Note that no
gradient will be passed through these two outputs.

368 mx.symbol.LeakyReLU

The parameter “axis“ specifies which axis of the input shape denotes the ’channel’ (separately
normalized groups). The default is -1, which sets the channel axis to be the last item in the input
shape.

Defined in src/operator/nn/layer_norm.cc:L159

Value

out The result mx.symbol

mx.symbol.LeakyReLU LeakyReLU:Applies Leaky rectified linear unit activation element-
wise to the input.

Description

Leaky ReLUs attempt to fix the "dying ReLU" problem by allowing a small ‘slope‘ when the input
is negative and has a slope of one when input is positive.

Usage

mx.symbol.LeakyReLU(...)

Arguments

data NDArray-or-Symbol Input data to activation function.

gamma NDArray-or-Symbol Input data to activation function.

act.type ’elu’, ’gelu’, ’leaky’, ’prelu’, ’rrelu’, ’selu’,optional, default=’leaky’ Activation
function to be applied.

slope float, optional, default=0.25 Init slope for the activation. (For leaky and elu only)

lower.bound float, optional, default=0.125 Lower bound of random slope. (For rrelu only)

upper.bound float, optional, default=0.333999991 Upper bound of random slope. (For rrelu
only)

name string, optional Name of the resulting symbol.

Details

The following modified ReLU Activation functions are supported:

- *elu*: Exponential Linear Unit. ‘y = x > 0 ? x : slope * (exp(x)-1)‘ - *gelu*: Gaussian Error Lin-
ear Unit. ‘y = 0.5 * x * (1 + erf(x / sqrt(2)))‘ - *selu*: Scaled Exponential Linear Unit. ‘y = lambda
* (x > 0 ? x : alpha * (exp(x) - 1))‘ where *lambda = 1.0507009873554804934193349852946*
and *alpha = 1.6732632423543772848170429916717*. - *leaky*: Leaky ReLU. ‘y = x > 0
? x : slope * x‘ - *prelu*: Parametric ReLU. This is same as *leaky* except that ‘slope‘ is
learnt during training. - *rrelu*: Randomized ReLU. same as *leaky* but the ‘slope‘ is uni-
formly and randomly chosen from *[lower_bound, upper_bound)* for training, while fixed to be
(lower_bound+upper_bound)/2 for inference.

Defined in src/operator/leaky_relu.cc:L162

mx.symbol.linalg_det 369

Value

out The result mx.symbol

mx.symbol.linalg_det linalg_det:Compute the determinant of a matrix. Input is a tensor *A*
of dimension *n >= 2*.

Description

If *n=2*, *A* is a square matrix. We compute:

Usage

mx.symbol.linalg_det(...)

Arguments

A NDArray-or-Symbol Tensor of square matrix

name string, optional Name of the resulting symbol.

Details

out = *det(A)*

If *n>2*, *det* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only. .. note:: There is no gradient
backwarded when A is non-invertible (which is equivalent to det(A) = 0) because zero is rarely hit
upon in float point computation and the Jacobi’s formula on determinant gradient is not computa-
tionally efficient when A is non-invertible.

Examples::

Single matrix determinant A = [[1., 4.], [2., 3.]] det(A) = [-5.]

Batch matrix determinant A = [[[1., 4.], [2., 3.]], [[2., 3.], [1., 4.]]] det(A) = [-5., 5.]

Defined in src/operator/tensor/la_op.cc:L975

Value

out The result mx.symbol

370 mx.symbol.linalg_extractdiag

mx.symbol.linalg_extractdiag

linalg_extractdiag:Extracts the diagonal entries of a square matrix.
Input is a tensor *A* of dimension *n >= 2*.

Description

If *n=2*, then *A* represents a single square matrix which diagonal elements get extracted as a
1-dimensional tensor.

Usage

mx.symbol.linalg_extractdiag(...)

Arguments

A NDArray-or-Symbol Tensor of square matrices

offset int, optional, default=’0’ Offset of the diagonal versus the main diagonal. 0
corresponds to the main diagonal, a negative/positive value to diagonals be-
low/above the main diagonal.

name string, optional Name of the resulting symbol.

Details

If *n>2*, then *A* represents a batch of square matrices on the trailing two dimensions. The
extracted diagonals are returned as an *n-1*-dimensional tensor.

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix diagonal extraction A = [[1.0, 2.0], [3.0, 4.0]]

extractdiag(A) = [1.0, 4.0]

extractdiag(A, 1) = [2.0]

Batch matrix diagonal extraction A = [[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]

extractdiag(A) = [[1.0, 4.0], [5.0, 8.0]]

Defined in src/operator/tensor/la_op.cc:L495

Value

out The result mx.symbol

mx.symbol.linalg_extracttrian 371

mx.symbol.linalg_extracttrian

linalg_extracttrian:Extracts a triangular sub-matrix from a square
matrix. Input is a tensor *A* of dimension *n >= 2*.

Description

If *n=2*, then *A* represents a single square matrix from which a triangular sub-matrix is extracted
as a 1-dimensional tensor.

Usage

mx.symbol.linalg_extracttrian(...)

Arguments

A NDArray-or-Symbol Tensor of square matrices
offset int, optional, default=’0’ Offset of the diagonal versus the main diagonal. 0

corresponds to the main diagonal, a negative/positive value to diagonals be-
low/above the main diagonal.

lower boolean, optional, default=1 Refer to the lower triangular matrix if lower=true,
refer to the upper otherwise. Only relevant when offset=0

name string, optional Name of the resulting symbol.

Details

If *n>2*, then *A* represents a batch of square matrices on the trailing two dimensions. The
extracted triangular sub-matrices are returned as an *n-1*-dimensional tensor.

The *offset* and *lower* parameters determine the triangle to be extracted:

- When *offset = 0* either the lower or upper triangle with respect to the main diagonal is extracted
depending on the value of parameter *lower*. - When *offset = k > 0* the upper triangle with
respect to the k-th diagonal above the main diagonal is extracted. - When *offset = k < 0* the lower
triangle with respect to the k-th diagonal below the main diagonal is extracted.

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single triagonal extraction A = [[1.0, 2.0], [3.0, 4.0]]

extracttrian(A) = [1.0, 3.0, 4.0] extracttrian(A, lower=False) = [1.0, 2.0, 4.0] extracttrian(A, 1) =
[2.0] extracttrian(A, -1) = [3.0]

Batch triagonal extraction A = [[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]

extracttrian(A) = [[1.0, 3.0, 4.0], [5.0, 7.0, 8.0]]

Defined in src/operator/tensor/la_op.cc:L605

Value

out The result mx.symbol

372 mx.symbol.linalg_gelqf

mx.symbol.linalg_gelqf

linalg_gelqf:LQ factorization for general matrix. Input is a tensor *A*
of dimension *n >= 2*.

Description

If *n=2*, we compute the LQ factorization (LAPACK *gelqf*, followed by *orglq*). *A* must
have shape *(x, y)* with *x <= y*, and must have full rank *=x*. The LQ factorization consists of
L with shape *(x, x)* and *Q* with shape *(x, y)*, so that:

Usage

mx.symbol.linalg_gelqf(...)

Arguments

A NDArray-or-Symbol Tensor of input matrices to be factorized

name string, optional Name of the resulting symbol.

Details

A = *L* * *Q*

Here, *L* is lower triangular (upper triangle equal to zero) with nonzero diagonal, and *Q* is
row-orthonormal, meaning that

Q * *Q*\ :sup:‘T‘

is equal to the identity matrix of shape *(x, x)*.

If *n>2*, *gelqf* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single LQ factorization A = [[1., 2., 3.], [4., 5., 6.]] Q, L = gelqf(A) Q = [[-0.26726124, -
0.53452248, -0.80178373], [0.87287156, 0.21821789, -0.43643578]] L = [[-3.74165739, 0.], [-
8.55235974, 1.96396101]]

Batch LQ factorization A = [[[1., 2., 3.], [4., 5., 6.]], [[7., 8., 9.], [10., 11., 12.]]] Q, L = gelqf(A)
Q = [[[-0.26726124, -0.53452248, -0.80178373], [0.87287156, 0.21821789, -0.43643578]], [[-
0.50257071, -0.57436653, -0.64616234], [0.7620735, 0.05862104, -0.64483142]]] L = [[[-3.74165739,
0.], [-8.55235974, 1.96396101]], [[-13.92838828, 0.], [-19.09768702, 0.52758934]]]

Defined in src/operator/tensor/la_op.cc:L798

Value

out The result mx.symbol

mx.symbol.linalg_gemm 373

mx.symbol.linalg_gemm linalg_gemm:Performs general matrix multiplication and accumula-
tion. Input are tensors *A*, *B*, *C*, each of dimension *n >= 2*
and having the same shape on the leading *n-2* dimensions.

Description

If *n=2*, the BLAS3 function *gemm* is performed:

Usage

mx.symbol.linalg_gemm(...)

Arguments

A NDArray-or-Symbol Tensor of input matrices

B NDArray-or-Symbol Tensor of input matrices

C NDArray-or-Symbol Tensor of input matrices

transpose.a boolean, optional, default=0 Multiply with transposed of first input (A).

transpose.b boolean, optional, default=0 Multiply with transposed of second input (B).

alpha double, optional, default=1 Scalar factor multiplied with A*B.

beta double, optional, default=1 Scalar factor multiplied with C.

axis int, optional, default=’-2’ Axis corresponding to the matrix rows.

name string, optional Name of the resulting symbol.

Details

out = *alpha* * *op*\ (*A*) * *op*\ (*B*) + *beta* * *C*

Here, *alpha* and *beta* are scalar parameters, and *op()* is either the identity or matrix transpo-
sition (depending on *transpose_a*, *transpose_b*).

If *n>2*, *gemm* is performed separately for a batch of matrices. The column indices of the
matrices are given by the last dimensions of the tensors, the row indices by the axis specified with
the *axis* parameter. By default, the trailing two dimensions will be used for matrix encoding.

For a non-default axis parameter, the operation performed is equivalent to a series of swapaxes/gemm/swapaxes
calls. For example let *A*, *B*, *C* be 5 dimensional tensors. Then gemm(*A*, *B*, *C*,
axis=1) is equivalent to the following without the overhead of the additional swapaxis operations::

A1 = swapaxes(A, dim1=1, dim2=3) B1 = swapaxes(B, dim1=1, dim2=3) C = swapaxes(C, dim1=1,
dim2=3) C = gemm(A1, B1, C) C = swapaxis(C, dim1=1, dim2=3)

When the input data is of type float32 and the environment variables MXNET_CUDA_ALLOW_TENSOR_CORE
and MXNET_CUDA_TENSOR_OP_MATH_ALLOW_CONVERSION are set to 1, this operator
will try to use pseudo-float16 precision (float32 math with float16 I/O) precision in order to use
Tensor Cores on suitable NVIDIA GPUs. This can sometimes give significant speedups.

.. note:: The operator supports float32 and float64 data types only.

374 mx.symbol.linalg_gemm2

Examples::

Single matrix multiply-add A = [[1.0, 1.0], [1.0, 1.0]] B = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]] C =
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]] gemm(A, B, C, transpose_b=True, alpha=2.0, beta=10.0) = [[14.0,
14.0, 14.0], [14.0, 14.0, 14.0]]

Batch matrix multiply-add A = [[[1.0, 1.0]], [[0.1, 0.1]]] B = [[[1.0, 1.0]], [[0.1, 0.1]]] C = [[[10.0]],
[[0.01]]] gemm(A, B, C, transpose_b=True, alpha=2.0 , beta=10.0) = [[[104.0]], [[0.14]]]

Defined in src/operator/tensor/la_op.cc:L89

Value

out The result mx.symbol

mx.symbol.linalg_gemm2

linalg_gemm2:Performs general matrix multiplication. Input are ten-
sors *A*, *B*, each of dimension *n >= 2* and having the same shape
on the leading *n-2* dimensions.

Description

If *n=2*, the BLAS3 function *gemm* is performed:

Usage

mx.symbol.linalg_gemm2(...)

Arguments

A NDArray-or-Symbol Tensor of input matrices

B NDArray-or-Symbol Tensor of input matrices

transpose.a boolean, optional, default=0 Multiply with transposed of first input (A).

transpose.b boolean, optional, default=0 Multiply with transposed of second input (B).

alpha double, optional, default=1 Scalar factor multiplied with A*B.

axis int, optional, default=’-2’ Axis corresponding to the matrix row indices.

name string, optional Name of the resulting symbol.

Details

out = *alpha* * *op*\ (*A*) * *op*\ (*B*)

Here *alpha* is a scalar parameter and *op()* is either the identity or the matrix transposition
(depending on *transpose_a*, *transpose_b*).

If *n>2*, *gemm* is performed separately for a batch of matrices. The column indices of the
matrices are given by the last dimensions of the tensors, the row indices by the axis specified with
the *axis* parameter. By default, the trailing two dimensions will be used for matrix encoding.

mx.symbol.linalg_inverse 375

For a non-default axis parameter, the operation performed is equivalent to a series of swapaxes/gemm/swapaxes
calls. For example let *A*, *B* be 5 dimensional tensors. Then gemm(*A*, *B*, axis=1) is equiv-
alent to the following without the overhead of the additional swapaxis operations::

A1 = swapaxes(A, dim1=1, dim2=3) B1 = swapaxes(B, dim1=1, dim2=3) C = gemm2(A1, B1) C
= swapaxis(C, dim1=1, dim2=3)

When the input data is of type float32 and the environment variables MXNET_CUDA_ALLOW_TENSOR_CORE
and MXNET_CUDA_TENSOR_OP_MATH_ALLOW_CONVERSION are set to 1, this operator
will try to use pseudo-float16 precision (float32 math with float16 I/O) precision in order to use
Tensor Cores on suitable NVIDIA GPUs. This can sometimes give significant speedups.

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix multiply A = [[1.0, 1.0], [1.0, 1.0]] B = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]] gemm2(A,
B, transpose_b=True, alpha=2.0) = [[4.0, 4.0, 4.0], [4.0, 4.0, 4.0]]

Batch matrix multiply A = [[[1.0, 1.0]], [[0.1, 0.1]]] B = [[[1.0, 1.0]], [[0.1, 0.1]]] gemm2(A, B,
transpose_b=True, alpha=2.0) = [[[4.0]], [[0.04]]]

Defined in src/operator/tensor/la_op.cc:L163

Value

out The result mx.symbol

mx.symbol.linalg_inverse

linalg_inverse:Compute the inverse of a matrix. Input is a tensor *A*
of dimension *n >= 2*.

Description

If *n=2*, *A* is a square matrix. We compute:

Usage

mx.symbol.linalg_inverse(...)

Arguments

A NDArray-or-Symbol Tensor of square matrix

name string, optional Name of the resulting symbol.

376 mx.symbol.linalg_makediag

Details

out = *A*\ :sup:‘-1‘

If *n>2*, *inverse* is performed separately on the trailing two dimensions for all inputs (batch
mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix inverse A = [[1., 4.], [2., 3.]] inverse(A) = [[-0.6, 0.8], [0.4, -0.2]]

Batch matrix inverse A = [[[1., 4.], [2., 3.]], [[1., 3.], [2., 4.]]] inverse(A) = [[[-0.6, 0.8], [0.4, -0.2]],
[[-2., 1.5], [1., -0.5]]]

Defined in src/operator/tensor/la_op.cc:L920

Value

out The result mx.symbol

mx.symbol.linalg_makediag

linalg_makediag:Constructs a square matrix with the input as diago-
nal. Input is a tensor *A* of dimension *n >= 1*.

Description

If *n=1*, then *A* represents the diagonal entries of a single square matrix. This matrix will be
returned as a 2-dimensional tensor. If *n>1*, then *A* represents a batch of diagonals of square
matrices. The batch of diagonal matrices will be returned as an *n+1*-dimensional tensor.

Usage

mx.symbol.linalg_makediag(...)

Arguments

A NDArray-or-Symbol Tensor of diagonal entries

offset int, optional, default=’0’ Offset of the diagonal versus the main diagonal. 0
corresponds to the main diagonal, a negative/positive value to diagonals be-
low/above the main diagonal.

name string, optional Name of the resulting symbol.

mx.symbol.linalg_maketrian 377

Details

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single diagonal matrix construction A = [1.0, 2.0]

makediag(A) = [[1.0, 0.0], [0.0, 2.0]]

makediag(A, 1) = [[0.0, 1.0, 0.0], [0.0, 0.0, 2.0], [0.0, 0.0, 0.0]]

Batch diagonal matrix construction A = [[1.0, 2.0], [3.0, 4.0]]

makediag(A) = [[[1.0, 0.0], [0.0, 2.0]], [[3.0, 0.0], [0.0, 4.0]]]

Defined in src/operator/tensor/la_op.cc:L547

Value

out The result mx.symbol

mx.symbol.linalg_maketrian

linalg_maketrian:Constructs a square matrix with the input represent-
ing a specific triangular sub-matrix. This is basically the inverse of
linalg.extracttrian. Input is a tensor *A* of dimension *n >= 1*.

Description

If *n=1*, then *A* represents the entries of a triangular matrix which is lower triangular if *off-
set<0* or *offset=0*, *lower=true*. The resulting matrix is derived by first constructing the square
matrix with the entries outside the triangle set to zero and then adding *offset*-times an additional
diagonal with zero entries to the square matrix.

Usage

mx.symbol.linalg_maketrian(...)

Arguments

A NDArray-or-Symbol Tensor of triangular matrices stored as vectors

offset int, optional, default=’0’ Offset of the diagonal versus the main diagonal. 0
corresponds to the main diagonal, a negative/positive value to diagonals be-
low/above the main diagonal.

lower boolean, optional, default=1 Refer to the lower triangular matrix if lower=true,
refer to the upper otherwise. Only relevant when offset=0

name string, optional Name of the resulting symbol.

378 mx.symbol.linalg_potrf

Details

If *n>1*, then *A* represents a batch of triangular sub-matrices. The batch of corresponding square
matrices is returned as an *n+1*-dimensional tensor.

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix construction A = [1.0, 2.0, 3.0]

maketrian(A) = [[1.0, 0.0], [2.0, 3.0]]

maketrian(A, lower=false) = [[1.0, 2.0], [0.0, 3.0]]

maketrian(A, offset=1) = [[0.0, 1.0, 2.0], [0.0, 0.0, 3.0], [0.0, 0.0, 0.0]] maketrian(A, offset=-1) =
[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]]

Batch matrix construction A = [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]

maketrian(A) = [[[1.0, 0.0], [2.0, 3.0]], [[4.0, 0.0], [5.0, 6.0]]]

maketrian(A, offset=1) = [[[0.0, 1.0, 2.0], [0.0, 0.0, 3.0], [0.0, 0.0, 0.0]], [[0.0, 4.0, 5.0], [0.0, 0.0,
6.0], [0.0, 0.0, 0.0]]]

Defined in src/operator/tensor/la_op.cc:L673

Value

out The result mx.symbol

mx.symbol.linalg_potrf

linalg_potrf:Performs Cholesky factorization of a symmetric positive-
definite matrix. Input is a tensor *A* of dimension *n >= 2*.

Description

If *n=2*, the Cholesky factor *B* of the symmetric, positive definite matrix *A* is computed. *B*
is triangular (entries of upper or lower triangle are all zero), has positive diagonal entries, and:

Usage

mx.symbol.linalg_potrf(...)

Arguments

A NDArray-or-Symbol Tensor of input matrices to be decomposed

name string, optional Name of the resulting symbol.

mx.symbol.linalg_potri 379

Details

A = *B* * *B*\ :sup:‘T‘ if *lower* = *true* *A* = *B*\ :sup:‘T‘ * *B* if *lower* = *false*

If *n>2*, *potrf* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix factorization A = [[4.0, 1.0], [1.0, 4.25]] potrf(A) = [[2.0, 0], [0.5, 2.0]]

Batch matrix factorization A = [[[4.0, 1.0], [1.0, 4.25]], [[16.0, 4.0], [4.0, 17.0]]] potrf(A) = [[[2.0,
0], [0.5, 2.0]], [[4.0, 0], [1.0, 4.0]]]

Defined in src/operator/tensor/la_op.cc:L214

Value

out The result mx.symbol

mx.symbol.linalg_potri

linalg_potri:Performs matrix inversion from a Cholesky factorization.
Input is a tensor *A* of dimension *n >= 2*.

Description

If *n=2*, *A* is a triangular matrix (entries of upper or lower triangle are all zero) with positive
diagonal. We compute:

Usage

mx.symbol.linalg_potri(...)

Arguments

A NDArray-or-Symbol Tensor of lower triangular matrices

name string, optional Name of the resulting symbol.

Details

out = *A*\ :sup:‘-T‘ * *A*\ :sup:‘-1‘ if *lower* = *true* *out* = *A*\ :sup:‘-1‘ * *A*\ :sup:‘-
T‘ if *lower* = *false*

In other words, if *A* is the Cholesky factor of a symmetric positive definite matrix *B* (obtained
by *potrf*), then

out = *B*\ :sup:‘-1‘

If *n>2*, *potri* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

380 mx.symbol.linalg_slogdet

.. note:: Use this operator only if you are certain you need the inverse of *B*, and cannot use the
Cholesky factor *A* (*potrf*), together with backsubstitution (*trsm*). The latter is numerically
much safer, and also cheaper.

Examples::

Single matrix inverse A = [[2.0, 0], [0.5, 2.0]] potri(A) = [[0.26563, -0.0625], [-0.0625, 0.25]]

Batch matrix inverse A = [[[2.0, 0], [0.5, 2.0]], [[4.0, 0], [1.0, 4.0]]] potri(A) = [[[0.26563, -0.0625],
[-0.0625, 0.25]], [[0.06641, -0.01562], [-0.01562, 0,0625]]]

Defined in src/operator/tensor/la_op.cc:L275

Value

out The result mx.symbol

mx.symbol.linalg_slogdet

linalg_slogdet:Compute the sign and log of the determinant of a ma-
trix. Input is a tensor *A* of dimension *n >= 2*.

Description

If *n=2*, *A* is a square matrix. We compute:

Usage

mx.symbol.linalg_slogdet(...)

Arguments

A NDArray-or-Symbol Tensor of square matrix

name string, optional Name of the resulting symbol.

Details

sign = *sign(det(A))* *logabsdet* = *log(abs(det(A)))*

If *n>2*, *slogdet* is performed separately on the trailing two dimensions for all inputs (batch
mode).

.. note:: The operator supports float32 and float64 data types only. .. note:: The gradient is not
properly defined on sign, so the gradient of it is not backwarded. .. note:: No gradient is backwarded
when A is non-invertible. Please see the docs of operator det for detail.

Examples::

Single matrix signed log determinant A = [[2., 3.], [1., 4.]] sign, logabsdet = slogdet(A) sign = [1.]
logabsdet = [1.609438]

Batch matrix signed log determinant A = [[[2., 3.], [1., 4.]], [[1., 2.], [2., 4.]], [[1., 2.], [4., 3.]]] sign,
logabsdet = slogdet(A) sign = [1., 0., -1.] logabsdet = [1.609438, -inf, 1.609438]

Defined in src/operator/tensor/la_op.cc:L1034

mx.symbol.linalg_sumlogdiag 381

Value

out The result mx.symbol

mx.symbol.linalg_sumlogdiag

linalg_sumlogdiag:Computes the sum of the logarithms of the diago-
nal elements of a square matrix. Input is a tensor *A* of dimension *n
>= 2*.

Description

If *n=2*, *A* must be square with positive diagonal entries. We sum the natural logarithms of the
diagonal elements, the result has shape (1,).

Usage

mx.symbol.linalg_sumlogdiag(...)

Arguments

A NDArray-or-Symbol Tensor of square matrices

name string, optional Name of the resulting symbol.

Details

If *n>2*, *sumlogdiag* is performed separately on the trailing two dimensions for all inputs (batch
mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix reduction A = [[1.0, 1.0], [1.0, 7.0]] sumlogdiag(A) = [1.9459]

Batch matrix reduction A = [[[1.0, 1.0], [1.0, 7.0]], [[3.0, 0], [0, 17.0]]] sumlogdiag(A) = [1.9459,
3.9318]

Defined in src/operator/tensor/la_op.cc:L445

Value

out The result mx.symbol

382 mx.symbol.linalg_syrk

mx.symbol.linalg_syrk linalg_syrk:Multiplication of matrix with its transpose. Input is a ten-
sor *A* of dimension *n >= 2*.

Description

If *n=2*, the operator performs the BLAS3 function *syrk*:

Usage

mx.symbol.linalg_syrk(...)

Arguments

A NDArray-or-Symbol Tensor of input matrices

transpose boolean, optional, default=0 Use transpose of input matrix.

alpha double, optional, default=1 Scalar factor to be applied to the result.

name string, optional Name of the resulting symbol.

Details

out = *alpha* * *A* * *A*\ :sup:‘T‘

if *transpose=False*, or

out = *alpha* * *A*\ :sup:‘T‘ \ * *A*

if *transpose=True*.

If *n>2*, *syrk* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix multiply A = [[1., 2., 3.], [4., 5., 6.]] syrk(A, alpha=1., transpose=False) = [[14., 32.],
[32., 77.]] syrk(A, alpha=1., transpose=True) = [[17., 22., 27.], [22., 29., 36.], [27., 36., 45.]]

Batch matrix multiply A = [[[1., 1.]], [[0.1, 0.1]]] syrk(A, alpha=2., transpose=False) = [[[4.]],
[[0.04]]]

Defined in src/operator/tensor/la_op.cc:L730

Value

out The result mx.symbol

mx.symbol.linalg_trmm 383

mx.symbol.linalg_trmm linalg_trmm:Performs multiplication with a lower triangular matrix.
Input are tensors *A*, *B*, each of dimension *n >= 2* and having
the same shape on the leading *n-2* dimensions.

Description

If *n=2*, *A* must be triangular. The operator performs the BLAS3 function *trmm*:

Usage

mx.symbol.linalg_trmm(...)

Arguments

A NDArray-or-Symbol Tensor of lower triangular matrices

B NDArray-or-Symbol Tensor of matrices

transpose boolean, optional, default=0 Use transposed of the triangular matrix

rightside boolean, optional, default=0 Multiply triangular matrix from the right to non-
triangular one.

lower boolean, optional, default=1 True if the triangular matrix is lower triangular,
false if it is upper triangular.

alpha double, optional, default=1 Scalar factor to be applied to the result.

name string, optional Name of the resulting symbol.

Details

out = *alpha* * *op*\ (*A*) * *B*

if *rightside=False*, or

out = *alpha* * *B* * *op*\ (*A*)

if *rightside=True*. Here, *alpha* is a scalar parameter, and *op()* is either the identity or the
matrix transposition (depending on *transpose*).

If *n>2*, *trmm* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single triangular matrix multiply A = [[1.0, 0], [1.0, 1.0]] B = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
trmm(A, B, alpha=2.0) = [[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]]

Batch triangular matrix multiply A = [[[1.0, 0], [1.0, 1.0]], [[1.0, 0], [1.0, 1.0]]] B = [[[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0]], [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]] trmm(A, B, alpha=2.0) = [[[2.0, 2.0, 2.0], [4.0, 4.0,
4.0]], [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]]

Defined in src/operator/tensor/la_op.cc:L333

384 mx.symbol.linalg_trsm

Value

out The result mx.symbol

mx.symbol.linalg_trsm linalg_trsm:Solves matrix equation involving a lower triangular ma-
trix. Input are tensors *A*, *B*, each of dimension *n >= 2* and
having the same shape on the leading *n-2* dimensions.

Description

If *n=2*, *A* must be triangular. The operator performs the BLAS3 function *trsm*, solving for
out in:

Usage

mx.symbol.linalg_trsm(...)

Arguments

A NDArray-or-Symbol Tensor of lower triangular matrices
B NDArray-or-Symbol Tensor of matrices
transpose boolean, optional, default=0 Use transposed of the triangular matrix
rightside boolean, optional, default=0 Multiply triangular matrix from the right to non-

triangular one.
lower boolean, optional, default=1 True if the triangular matrix is lower triangular,

false if it is upper triangular.
alpha double, optional, default=1 Scalar factor to be applied to the result.
name string, optional Name of the resulting symbol.

Details

op\ (*A*) * *out* = *alpha* * *B*

if *rightside=False*, or

out * *op*\ (*A*) = *alpha* * *B*

if *rightside=True*. Here, *alpha* is a scalar parameter, and *op()* is either the identity or the
matrix transposition (depending on *transpose*).

If *n>2*, *trsm* is performed separately on the trailing two dimensions for all inputs (batch mode).

.. note:: The operator supports float32 and float64 data types only.

Examples::

Single matrix solve A = [[1.0, 0], [1.0, 1.0]] B = [[2.0, 2.0, 2.0], [4.0, 4.0, 4.0]] trsm(A, B, al-
pha=0.5) = [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]

Batch matrix solve A = [[[1.0, 0], [1.0, 1.0]], [[1.0, 0], [1.0, 1.0]]] B = [[[2.0, 2.0, 2.0], [4.0, 4.0,
4.0]], [[4.0, 4.0, 4.0], [8.0, 8.0, 8.0]]] trsm(A, B, alpha=0.5) = [[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], [[2.0,
2.0, 2.0], [2.0, 2.0, 2.0]]]

Defined in src/operator/tensor/la_op.cc:L396

mx.symbol.load 385

Value

out The result mx.symbol

mx.symbol.load Load an mx.symbol object

Description

Load an mx.symbol object

Usage

mx.symbol.load(file.name)

Arguments

filename the filename (including the path)

Examples

data = mx.symbol.Variable('data')
mx.symbol.save(data, 'temp.symbol')
data2 = mx.symbol.load('temp.symbol')

mx.symbol.load.json Load an mx.symbol object from a json string

Description

Load an mx.symbol object from a json string

Arguments

str the json str represent a mx.symbol

386 mx.symbol.log10

mx.symbol.log log:Returns element-wise Natural logarithmic value of the input.

Description

The natural logarithm is logarithm in base *e*, so that “log(exp(x)) = x“

Usage

mx.symbol.log(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “log“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L77

Value

out The result mx.symbol

mx.symbol.log10 log10:Returns element-wise Base-10 logarithmic value of the input.

Description

“10**log10(x) = x“

Usage

mx.symbol.log10(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “log10“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L94

mx.symbol.log1p 387

Value

out The result mx.symbol

mx.symbol.log1p log1p:Returns element-wise “log(1 + x)“ value of the input.

Description

This function is more accurate than “log(1 + x)“ for small “x“ so that :math:‘1+x\approx 1‘

Usage

mx.symbol.log1p(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “log1p“ output depends upon the input storage type:

- log1p(default) = default - log1p(row_sparse) = row_sparse - log1p(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L199

Value

out The result mx.symbol

mx.symbol.log2 log2:Returns element-wise Base-2 logarithmic value of the input.

Description

“2**log2(x) = x“

Usage

mx.symbol.log2(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

388 mx.symbol.log_softmax

Details

The storage type of “log2“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_logexp.cc:L106

Value

out The result mx.symbol

mx.symbol.logical_not logical_not:Returns the result of logical NOT (!) function

Description

Example: logical_not([-2., 0., 1.]) = [0., 1., 0.]

Usage

mx.symbol.logical_not(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.log_softmax log_softmax:Computes the log softmax of the input. This is equivalent
to computing softmax followed by log.

Description

Examples::

Usage

mx.symbol.log_softmax(...)

mx.symbol.LRN 389

Arguments

data NDArray-or-Symbol The input array.

axis int, optional, default=’-1’ The axis along which to compute softmax.

temperature double or None, optional, default=None Temperature parameter in softmax

dtype None, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to the same as input’s dtype if not
defined (dtype=None).

use.length boolean or None, optional, default=0 Whether to use the length input as a mask
over the data input.

name string, optional Name of the resulting symbol.

Details

»> x = mx.nd.array([1, 2, .1]) »> mx.nd.log_softmax(x).asnumpy() array([-1.41702998, -0.41702995,
-2.31702995], dtype=float32)

»> x = mx.nd.array([[1, 2, .1],[.1, 2, 1]]) »> mx.nd.log_softmax(x, axis=0).asnumpy() array([[-
0.34115392, -0.69314718, -1.24115396], [-1.24115396, -0.69314718, -0.34115392]], dtype=float32)

Value

out The result mx.symbol

mx.symbol.LRN LRN:Applies local response normalization to the input.

Description

The local response normalization layer performs "lateral inhibition" by normalizing over local input
regions.

Usage

mx.symbol.LRN(...)

Arguments

data NDArray-or-Symbol Input data to LRN

alpha float, optional, default=9.99999975e-05 The variance scaling parameter :math:‘\alpha‘
in the LRN expression.

beta float, optional, default=0.75 The power parameter :math:‘\beta‘ in the LRN ex-
pression.

knorm float, optional, default=2 The parameter :math:‘k‘ in the LRN expression.

nsize int (non-negative), required normalization window width in elements.

name string, optional Name of the resulting symbol.

390 mx.symbol.MakeLoss

Details

If :math:‘a_x,y^i‘ is the activity of a neuron computed by applying kernel :math:‘i‘ at position
:math:‘(x, y)‘ and then applying the ReLU nonlinearity, the response-normalized activity :math:‘b_x,y^i‘
is given by the expression:

.. math:: b_x,y^i = \fraca_x,y^i\Bigg(k + \frac\alphan \sum_j=max(0, i-\fracn2)^min(N-1, i+\fracn2)
(a_x,y^j)^2\Bigg)^\beta

where the sum runs over :math:‘n‘ "adjacent" kernel maps at the same spatial position, and :math:‘N‘
is the total number of kernels in the layer.

Defined in src/operator/nn/lrn.cc:L158

Value

out The result mx.symbol

mx.symbol.MakeLoss MakeLoss:Make your own loss function in network construction.

Description

This operator accepts a customized loss function symbol as a terminal loss and the symbol should
be an operator with no backward dependency. The output of this function is the gradient of loss
with respect to the input data.

Usage

mx.symbol.MakeLoss(...)

Arguments

data NDArray-or-Symbol Input array.

grad.scale float, optional, default=1 Gradient scale as a supplement to unary and binary
operators

valid.thresh float, optional, default=0 clip each element in the array to 0 when it is less than
“valid_thresh“. This is used when “normalization“ is set to “’valid’“.

normalization ’batch’, ’null’, ’valid’,optional, default=’null’ If this is set to null, the output
gradient will not be normalized. If this is set to batch, the output gradient will
be divided by the batch size. If this is set to valid, the output gradient will be
divided by the number of valid input elements.

name string, optional Name of the resulting symbol.

mx.symbol.make_loss 391

Details

For example, if you are a making a cross entropy loss function. Assume “out“ is the predicted
output and “label“ is the true label, then the cross entropy can be defined as::

cross_entropy = label * log(out) + (1 - label) * log(1 - out) loss = MakeLoss(cross_entropy)

We will need to use “MakeLoss“ when we are creating our own loss function or we want to combine
multiple loss functions. Also we may want to stop some variables’ gradients from backpropagation.
See more detail in “BlockGrad“ or “stop_gradient“.

In addition, we can give a scale to the loss by setting “grad_scale“, so that the gradient of the loss
will be rescaled in the backpropagation.

.. note:: This operator should be used as a Symbol instead of NDArray.

Defined in src/operator/make_loss.cc:L71

Value

out The result mx.symbol

mx.symbol.make_loss make_loss:Make your own loss function in network construction.

Description

This operator accepts a customized loss function symbol as a terminal loss and the symbol should
be an operator with no backward dependency. The output of this function is the gradient of loss
with respect to the input data.

Usage

mx.symbol.make_loss(...)

Arguments

data NDArray-or-Symbol The input array.
name string, optional Name of the resulting symbol.

Details

For example, if you are a making a cross entropy loss function. Assume “out“ is the predicted
output and “label“ is the true label, then the cross entropy can be defined as::

cross_entropy = label * log(out) + (1 - label) * log(1 - out) loss = make_loss(cross_entropy)

We will need to use “make_loss“ when we are creating our own loss function or we want to combine
multiple loss functions. Also we may want to stop some variables’ gradients from backpropagation.
See more detail in “BlockGrad“ or “stop_gradient“.

The storage type of “make_loss“ output depends upon the input storage type:

- make_loss(default) = default - make_loss(row_sparse) = row_sparse

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L359

392 mx.symbol.max

Value

out The result mx.symbol

mx.symbol.max max:Computes the max of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L32

Usage

mx.symbol.max(...)

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.

The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.

If ‘axis‘ is int, a reduction is performed on a particular axis.

If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.

If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.

Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.max_axis 393

mx.symbol.max_axis max_axis:Computes the max of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L32

Usage

mx.symbol.max_axis(...)

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.mean mean:Computes the mean of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L84

Usage

mx.symbol.mean(...)

394 mx.symbol.moments

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.moments moments: Calculate the mean and variance of ‘data‘.

Description

The mean and variance are calculated by aggregating the contents of data across axes. If x is 1-D
and axes = [0] this is just the mean and variance of a vector.

Usage

mx.symbol.moments(...)

Arguments

data NDArray-or-Symbol Input ndarray

axes Shape or None, optional, default=None Array of ints. Axes along which to
compute mean and variance.

keepdims boolean, optional, default=0 produce moments with the same dimensionality as
the input.

name string, optional Name of the resulting symbol.

mx.symbol.mp_lamb_update_phase1 395

Details

Example:

x = [[1, 2, 3], [4, 5, 6]] mean, var = moments(data=x, axes=[0]) mean = [2.5, 3.5, 4.5] var =
[2.25, 2.25, 2.25] mean, var = moments(data=x, axes=[1]) mean = [2.0, 5.0] var = [0.66666667,
0.66666667] mean, var = moments(data=x, axis=[0, 1]) mean = [3.5] var = [2.9166667]

Defined in src/operator/nn/moments.cc:L54

Value

out The result mx.symbol

mx.symbol.mp_lamb_update_phase1

mp_lamb_update_phase1:Mixed Precision version of Phase I of lamb
update it performs the following operations and returns g:.

Description

Link to paper: https://arxiv.org/pdf/1904.00962.pdf

Usage

mx.symbol.mp_lamb_update_phase1(...)

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mean NDArray-or-Symbol Moving mean

var NDArray-or-Symbol Moving variance

weight32 NDArray-or-Symbol Weight32

beta1 float, optional, default=0.899999976 The decay rate for the 1st moment esti-
mates.

beta2 float, optional, default=0.999000013 The decay rate for the 2nd moment esti-
mates.

epsilon float, optional, default=9.99999997e-07 A small constant for numerical stability.

t int, required Index update count.
bias.correction

boolean, optional, default=1 Whether to use bias correction.

wd float, required Weight decay augments the objective function with a regulariza-
tion term that penalizes large weights. The penalty scales with the square of the
magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

396 mx.symbol.mp_lamb_update_phase2

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

name string, optional Name of the resulting symbol.

Details

.. math:: \begingather* grad32 = grad(float16) * rescale_grad if (grad < -clip_gradient) then grad =
-clip_gradient if (grad > clip_gradient) then grad = clip_gradient

mean = beta1 * mean + (1 - beta1) * grad; variance = beta2 * variance + (1. - beta2) * grad ^ 2;

if (bias_correction) then mean_hat = mean / (1. - beta1^t); var_hat = var / (1 - beta2^t); g =
mean_hat / (var_hat^(1/2) + epsilon) + wd * weight32; else g = mean / (var_data^(1/2) + epsilon)
+ wd * weight32; \endgather*

Defined in src/operator/optimizer_op.cc:L1024

Value

out The result mx.symbol

mx.symbol.mp_lamb_update_phase2

mp_lamb_update_phase2:Mixed Precision version Phase II of lamb
update it performs the following operations and updates grad.

Description

Link to paper: https://arxiv.org/pdf/1904.00962.pdf

Usage

mx.symbol.mp_lamb_update_phase2(...)

Arguments

weight NDArray-or-Symbol Weight

g NDArray-or-Symbol Output of mp_lamb_update_phase 1

r1 NDArray-or-Symbol r1

r2 NDArray-or-Symbol r2

weight32 NDArray-or-Symbol Weight32

lr float, required Learning rate

lower.bound float, optional, default=-1 Lower limit of norm of weight. If lower_bound <= 0,
Lower limit is not set

upper.bound float, optional, default=-1 Upper limit of norm of weight. If upper_bound <= 0,
Upper limit is not set

name string, optional Name of the resulting symbol.

mx.symbol.mp_nag_mom_update 397

Details

.. math:: \begingather* if (lower_bound >= 0) then r1 = max(r1, lower_bound) if (upper_bound >=
0) then r1 = max(r1, upper_bound)

if (r1 == 0 or r2 == 0) then lr = lr else lr = lr * (r1/r2) weight32 = weight32 - lr * g weight(float16)
= weight32 \endgather*

Defined in src/operator/optimizer_op.cc:L1066

Value

out The result mx.symbol

mx.symbol.mp_nag_mom_update

mp_nag_mom_update:Update function for multi-precision Nesterov
Accelerated Gradient(NAG) optimizer.

Description

Defined in src/operator/optimizer_op.cc:L736

Usage

mx.symbol.mp_nag_mom_update(...)

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mom NDArray-or-Symbol Momentum

weight32 NDArray-or-Symbol Weight32

lr float, required Learning rate

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

398 mx.symbol.mp_sgd_mom_update

mx.symbol.mp_sgd_mom_update

mp_sgd_mom_update:Updater function for multi-precision sgd opti-
mizer

Description

mp_sgd_mom_update:Updater function for multi-precision sgd optimizer

Usage

mx.symbol.mp_sgd_mom_update(...)

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mom NDArray-or-Symbol Momentum

weight32 NDArray-or-Symbol Weight32

lr float, required Learning rate

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse and both weight and momentum have the same stype

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.mp_sgd_update 399

mx.symbol.mp_sgd_update

mp_sgd_update:Updater function for multi-precision sgd optimizer

Description

mp_sgd_update:Updater function for multi-precision sgd optimizer

Usage

mx.symbol.mp_sgd_update(...)

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol gradient

weight32 NDArray-or-Symbol Weight32

lr float, required Learning rate

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.multi_all_finite

multi_all_finite:Check if all the float numbers in all the arrays are
finite (used for AMP)

Description

Defined in src/operator/contrib/all_finite.cc:L133

400 mx.symbol.multi_lars

Usage

mx.symbol.multi_all_finite(...)

Arguments

data NDArray-or-Symbol[] Arrays

num.arrays int, optional, default=’1’ Number of arrays.

init.output boolean, optional, default=1 Initialize output to 1.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.multi_lars multi_lars:Compute the LARS coefficients of multiple weights and
grads from their sums of square"

Description

Defined in src/operator/contrib/multi_lars.cc:L37

Usage

mx.symbol.multi_lars(...)

Arguments

lrs NDArray-or-Symbol Learning rates to scale by LARS coefficient

weights.sum.sq NDArray-or-Symbol sum of square of weights arrays

grads.sum.sq NDArray-or-Symbol sum of square of gradients arrays

wds NDArray-or-Symbol weight decays

eta float, required LARS eta

eps float, required LARS eps

rescale.grad float, optional, default=1 Gradient rescaling factor

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.multi_mp_sgd_mom_update 401

mx.symbol.multi_mp_sgd_mom_update

multi_mp_sgd_mom_update:Momentum update function for multi-
precision Stochastic Gradient Descent (SGD) optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Usage

mx.symbol.multi_mp_sgd_mom_update(...)

Arguments

data NDArray-or-Symbol[] Weights

lrs tuple of <float>, required Learning rates.

wds tuple of <float>, required Weight decay augments the objective function with
a regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

name string, optional Name of the resulting symbol.

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

Defined in src/operator/optimizer_op.cc:L463

Value

out The result mx.symbol

402 mx.symbol.multi_mp_sgd_update

mx.symbol.multi_mp_sgd_update

multi_mp_sgd_update:Update function for multi-precision Stochastic
Gradient Descent (SDG) optimizer.

Description

It updates the weights using::

Usage

mx.symbol.multi_mp_sgd_update(...)

Arguments

data NDArray-or-Symbol[] Weights

lrs tuple of <float>, required Learning rates.

wds tuple of <float>, required Weight decay augments the objective function with
a regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

name string, optional Name of the resulting symbol.

Details

weight = weight - learning_rate * (gradient + wd * weight)

Defined in src/operator/optimizer_op.cc:L408

Value

out The result mx.symbol

mx.symbol.multi_sgd_mom_update 403

mx.symbol.multi_sgd_mom_update

multi_sgd_mom_update:Momentum update function for Stochastic
Gradient Descent (SGD) optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Usage

mx.symbol.multi_sgd_mom_update(...)

Arguments

data NDArray-or-Symbol[] Weights, gradients and momentum

lrs tuple of <float>, required Learning rates.

wds tuple of <float>, required Weight decay augments the objective function with
a regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

name string, optional Name of the resulting symbol.

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

Defined in src/operator/optimizer_op.cc:L365

Value

out The result mx.symbol

404 mx.symbol.multi_sgd_update

mx.symbol.multi_sgd_update

multi_sgd_update:Update function for Stochastic Gradient Descent
(SDG) optimizer.

Description

It updates the weights using::

Usage

mx.symbol.multi_sgd_update(...)

Arguments

data NDArray-or-Symbol[] Weights

lrs tuple of <float>, required Learning rates.

wds tuple of <float>, required Weight decay augments the objective function with
a regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

name string, optional Name of the resulting symbol.

Details

weight = weight - learning_rate * (gradient + wd * weight)

Defined in src/operator/optimizer_op.cc:L320

Value

out The result mx.symbol

mx.symbol.multi_sum_sq 405

mx.symbol.multi_sum_sq

multi_sum_sq:Compute the sums of squares of multiple arrays

Description

Defined in src/operator/contrib/multi_sum_sq.cc:L36

Usage

mx.symbol.multi_sum_sq(...)

Arguments

data NDArray-or-Symbol[] Arrays

num.arrays int, required number of input arrays.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.nag_mom_update

nag_mom_update:Update function for Nesterov Accelerated Gradi-
ent(NAG) optimizer. It updates the weights using the following for-
mula,

Description

.. math:: v_t = \gamma v_t-1 + \eta * \nabla J(W_t-1 - \gamma v_t-1)\ W_t = W_t-1 - v_t

Usage

mx.symbol.nag_mom_update(...)

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mom NDArray-or-Symbol Momentum

lr float, required Learning rate

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

406 mx.symbol.nanprod

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

name string, optional Name of the resulting symbol.

Details

Where :math:‘\eta‘ is the learning rate of the optimizer :math:‘\gamma‘ is the decay rate of the
momentum estimate :math:‘\v_t‘ is the update vector at time step ‘t‘ :math:‘\W_t‘ is the weight
vector at time step ‘t‘

Defined in src/operator/optimizer_op.cc:L717

Value

out The result mx.symbol

mx.symbol.nanprod nanprod:Computes the product of array elements over given axes
treating Not a Numbers (“NaN“) as one.

Description

nanprod:Computes the product of array elements over given axes treating Not a Numbers (“NaN“)
as one.

Usage

mx.symbol.nanprod(...)

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

mx.symbol.nansum 407

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

name string, optional Name of the resulting symbol.

Details

Defined in src/operator/tensor/broadcast_reduce_prod_value.cc:L47

Value

out The result mx.symbol

mx.symbol.nansum nansum:Computes the sum of array elements over given axes treating
Not a Numbers (“NaN“) as zero.

Description

nansum:Computes the sum of array elements over given axes treating Not a Numbers (“NaN“) as
zero.

Usage

mx.symbol.nansum(...)

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

name string, optional Name of the resulting symbol.

408 mx.symbol.norm

Details

Defined in src/operator/tensor/broadcast_reduce_sum_value.cc:L102

Value

out The result mx.symbol

mx.symbol.negative negative:Numerical negative of the argument, element-wise.

Description

The storage type of “negative“ output depends upon the input storage type:

Usage

mx.symbol.negative(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

- negative(default) = default - negative(row_sparse) = row_sparse - negative(csr) = csr

Value

out The result mx.symbol

mx.symbol.norm norm:Computes the norm on an NDArray.

Description

This operator computes the norm on an NDArray with the specified axis, depending on the value of
the ord parameter. By default, it computes the L2 norm on the entire array. Currently only ord=2
supports sparse ndarrays.

Usage

mx.symbol.norm(...)

mx.symbol.normal 409

Arguments

data NDArray-or-Symbol The input

ord int, optional, default=’2’ Order of the norm. Currently ord=1 and ord=2 is sup-
ported.

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction. The default, ‘axis=()‘, will compute over all elements into a scalar
array with shape ‘(1,)‘. If ‘axis‘ is int, a reduction is performed on a particular
axis. If ‘axis‘ is a 2-tuple, it specifies the axes that hold 2-D matrices, and the
matrix norms of these matrices are computed.

out.dtype None, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’,optional, default=’None’
The data type of the output.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axis is left in the
result as dimension with size one.

name string, optional Name of the resulting symbol.

Details

Examples::

x = [[[1, 2], [3, 4]], [[2, 2], [5, 6]]]

norm(x, ord=2, axis=1) = [[3.1622777 4.472136] [5.3851647 6.3245554]]

norm(x, ord=1, axis=1) = [[4., 6.], [7., 8.]]

rsp = x.cast_storage(’row_sparse’)

norm(rsp) = [5.47722578]

csr = x.cast_storage(’csr’)

norm(csr) = [5.47722578]

Defined in src/operator/tensor/broadcast_reduce_norm_value.cc:L89

Value

out The result mx.symbol

mx.symbol.normal normal:Draw random samples from a normal (Gaussian) distribution.

Description

.. note:: The existing alias “normal“ is deprecated.

Usage

mx.symbol.normal(...)

410 mx.symbol.ones_like

Arguments

loc float, optional, default=0 Mean of the distribution.

scale float, optional, default=1 Standard deviation of the distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

Details

Samples are distributed according to a normal distribution parametrized by *loc* (mean) and *scale*
(standard deviation).

Example::

normal(loc=0, scale=1, shape=(2,2)) = [[1.89171135, -1.16881478], [-1.23474145, 1.55807114]]

Defined in src/operator/random/sample_op.cc:L113

Value

out The result mx.symbol

mx.symbol.ones_like ones_like:Return an array of ones with the same shape and type as the
input array.

Description

Examples::

Usage

mx.symbol.ones_like(...)

Arguments

data NDArray-or-Symbol The input

name string, optional Name of the resulting symbol.

Details

x = [[0., 0., 0.], [0., 0., 0.]]

ones_like(x) = [[1., 1., 1.], [1., 1., 1.]]

mx.symbol.one_hot 411

Value

out The result mx.symbol

mx.symbol.one_hot one_hot:Returns a one-hot array.

Description

The locations represented by ‘indices‘ take value ‘on_value‘, while all other locations take value
‘off_value‘.

Usage

mx.symbol.one_hot(...)

Arguments

indices NDArray-or-Symbol array of locations where to set on_value

depth int, required Depth of the one hot dimension.

on.value double, optional, default=1 The value assigned to the locations represented by
indices.

off.value double, optional, default=0 The value assigned to the locations not represented
by indices.

dtype ’bfloat16’, ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’int8’, ’uint8’,optional,
default=’float32’ DType of the output

name string, optional Name of the resulting symbol.

Details

‘one_hot‘ operation with ‘indices‘ of shape “(i0, i1)“ and ‘depth‘ of “d“ would result in an output
array of shape “(i0, i1, d)“ with::

output[i,j,:] = off_value output[i,j,indices[i,j]] = on_value

Examples::

one_hot([1,0,2,0], 3) = [[0. 1. 0.] [1. 0. 0.] [0. 0. 1.] [1. 0. 0.]]

one_hot([1,0,2,0], 3, on_value=8, off_value=1, dtype=’int32’) = [[1 8 1] [8 1 1] [1 1 8] [8 1 1]]

one_hot([[1,0],[1,0],[2,0]], 3) = [[[0. 1. 0.] [1. 0. 0.]]

[[0. 1. 0.] [1. 0. 0.]]

[[0. 0. 1.] [1. 0. 0.]]]

Defined in src/operator/tensor/indexing_op.cc:L797

Value

out The result mx.symbol

412 mx.symbol.Pad

mx.symbol.Pad Pad:Pads an input array with a constant or edge values of the array.

Description

.. note:: ‘Pad‘ is deprecated. Use ‘pad‘ instead.

Usage

mx.symbol.Pad(...)

Arguments

data NDArray-or-Symbol An n-dimensional input array.

mode ’constant’, ’edge’, ’reflect’, required Padding type to use. "constant" pads with
‘constant_value‘ "edge" pads using the edge values of the input array "reflect"
pads by reflecting values with respect to the edges.

pad.width Shape(tuple), required Widths of the padding regions applied to the edges of
each axis. It is a tuple of integer padding widths for each axis of the format “(be-
fore_1, after_1, ... , before_N, after_N)“. It should be of length “2*N“ where
“N“ is the number of dimensions of the array.This is equivalent to pad_width in
numpy.pad, but flattened.

constant.value double, optional, default=0 The value used for padding when ‘mode‘ is "con-
stant".

name string, optional Name of the resulting symbol.

Details

.. note:: Current implementation only supports 4D and 5D input arrays with padding applied only
on axes 1, 2 and 3. Expects axes 4 and 5 in ‘pad_width‘ to be zero.

This operation pads an input array with either a ‘constant_value‘ or edge values along each axis of
the input array. The amount of padding is specified by ‘pad_width‘.

‘pad_width‘ is a tuple of integer padding widths for each axis of the format “(before_1, after_1,
... , before_N, after_N)“. The ‘pad_width‘ should be of length “2*N“ where “N“ is the number of
dimensions of the array.

For dimension “N“ of the input array, “before_N“ and “after_N“ indicates how many values to
add before and after the elements of the array along dimension “N“. The widths of the higher two
dimensions “before_1“, “after_1“, “before_2“, “after_2“ must be 0.

Example::

x = [[[[1. 2. 3.] [4. 5. 6.]]

[[7. 8. 9.] [10. 11. 12.]]]

[[[11. 12. 13.] [14. 15. 16.]]

[[17. 18. 19.] [20. 21. 22.]]]]

mx.symbol.pad 413

pad(x,mode="edge", pad_width=(0,0,0,0,1,1,1,1)) =

[[[[1. 1. 2. 3. 3.] [1. 1. 2. 3. 3.] [4. 4. 5. 6. 6.] [4. 4. 5. 6. 6.]]

[[7. 7. 8. 9. 9.] [7. 7. 8. 9. 9.] [10. 10. 11. 12. 12.] [10. 10. 11. 12. 12.]]]

[[[11. 11. 12. 13. 13.] [11. 11. 12. 13. 13.] [14. 14. 15. 16. 16.] [14. 14. 15. 16. 16.]]

[[17. 17. 18. 19. 19.] [17. 17. 18. 19. 19.] [20. 20. 21. 22. 22.] [20. 20. 21. 22. 22.]]]]

pad(x, mode="constant", constant_value=0, pad_width=(0,0,0,0,1,1,1,1)) =

[[[[0. 0. 0. 0. 0.] [0. 1. 2. 3. 0.] [0. 4. 5. 6. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 0.] [0. 7. 8. 9. 0.] [0. 10. 11. 12. 0.] [0. 0. 0. 0. 0.]]]

[[[0. 0. 0. 0. 0.] [0. 11. 12. 13. 0.] [0. 14. 15. 16. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 0.] [0. 17. 18. 19. 0.] [0. 20. 21. 22. 0.] [0. 0. 0. 0. 0.]]]]

Defined in src/operator/pad.cc:L766

Value

out The result mx.symbol

mx.symbol.pad pad:Pads an input array with a constant or edge values of the array.

Description

.. note:: ‘Pad‘ is deprecated. Use ‘pad‘ instead.

Usage

mx.symbol.pad(...)

Arguments

data NDArray-or-Symbol An n-dimensional input array.

mode ’constant’, ’edge’, ’reflect’, required Padding type to use. "constant" pads with
‘constant_value‘ "edge" pads using the edge values of the input array "reflect"
pads by reflecting values with respect to the edges.

pad.width Shape(tuple), required Widths of the padding regions applied to the edges of
each axis. It is a tuple of integer padding widths for each axis of the format “(be-
fore_1, after_1, ... , before_N, after_N)“. It should be of length “2*N“ where
“N“ is the number of dimensions of the array.This is equivalent to pad_width in
numpy.pad, but flattened.

constant.value double, optional, default=0 The value used for padding when ‘mode‘ is "con-
stant".

name string, optional Name of the resulting symbol.

414 mx.symbol.pick

Details

.. note:: Current implementation only supports 4D and 5D input arrays with padding applied only
on axes 1, 2 and 3. Expects axes 4 and 5 in ‘pad_width‘ to be zero.

This operation pads an input array with either a ‘constant_value‘ or edge values along each axis of
the input array. The amount of padding is specified by ‘pad_width‘.

‘pad_width‘ is a tuple of integer padding widths for each axis of the format “(before_1, after_1,
... , before_N, after_N)“. The ‘pad_width‘ should be of length “2*N“ where “N“ is the number of
dimensions of the array.

For dimension “N“ of the input array, “before_N“ and “after_N“ indicates how many values to
add before and after the elements of the array along dimension “N“. The widths of the higher two
dimensions “before_1“, “after_1“, “before_2“, “after_2“ must be 0.

Example::

x = [[[[1. 2. 3.] [4. 5. 6.]]

[[7. 8. 9.] [10. 11. 12.]]]

[[[11. 12. 13.] [14. 15. 16.]]

[[17. 18. 19.] [20. 21. 22.]]]]

pad(x,mode="edge", pad_width=(0,0,0,0,1,1,1,1)) =

[[[[1. 1. 2. 3. 3.] [1. 1. 2. 3. 3.] [4. 4. 5. 6. 6.] [4. 4. 5. 6. 6.]]

[[7. 7. 8. 9. 9.] [7. 7. 8. 9. 9.] [10. 10. 11. 12. 12.] [10. 10. 11. 12. 12.]]]

[[[11. 11. 12. 13. 13.] [11. 11. 12. 13. 13.] [14. 14. 15. 16. 16.] [14. 14. 15. 16. 16.]]

[[17. 17. 18. 19. 19.] [17. 17. 18. 19. 19.] [20. 20. 21. 22. 22.] [20. 20. 21. 22. 22.]]]]

pad(x, mode="constant", constant_value=0, pad_width=(0,0,0,0,1,1,1,1)) =

[[[[0. 0. 0. 0. 0.] [0. 1. 2. 3. 0.] [0. 4. 5. 6. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 0.] [0. 7. 8. 9. 0.] [0. 10. 11. 12. 0.] [0. 0. 0. 0. 0.]]]

[[[0. 0. 0. 0. 0.] [0. 11. 12. 13. 0.] [0. 14. 15. 16. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 0.] [0. 17. 18. 19. 0.] [0. 20. 21. 22. 0.] [0. 0. 0. 0. 0.]]]]

Defined in src/operator/pad.cc:L766

Value

out The result mx.symbol

mx.symbol.pick pick:Picks elements from an input array according to the input indices
along the given axis.

Description

Given an input array of shape “(d0, d1)“ and indices of shape “(i0,)“, the result will be an output
array of shape “(i0,)“ with::

mx.symbol.pick 415

Usage

mx.symbol.pick(...)

Arguments

data NDArray-or-Symbol The input array

index NDArray-or-Symbol The index array

axis int or None, optional, default=’-1’ int or None. The axis to picking the elements.
Negative values means indexing from right to left. If is ‘None‘, the elements in
the index w.r.t the flattened input will be picked.

keepdims boolean, optional, default=0 If true, the axis where we pick the elements is left
in the result as dimension with size one.

mode ’clip’, ’wrap’,optional, default=’clip’ Specify how out-of-bound indices behave.
Default is "clip". "clip" means clip to the range. So, if all indices mentioned are
too large, they are replaced by the index that addresses the last element along an
axis. "wrap" means to wrap around.

name string, optional Name of the resulting symbol.

Details

output[i] = input[i, indices[i]]

By default, if any index mentioned is too large, it is replaced by the index that addresses the last
element along an axis (the ‘clip‘ mode).

This function supports n-dimensional input and (n-1)-dimensional indices arrays.

Examples::

x = [[1., 2.], [3., 4.], [5., 6.]]

// picks elements with specified indices along axis 0 pick(x, y=[0,1], 0) = [1., 4.]

// picks elements with specified indices along axis 1 pick(x, y=[0,1,0], 1) = [1., 4., 5.]

// picks elements with specified indices along axis 1 using ’wrap’ mode // to place indicies that
would normally be out of bounds pick(x, y=[2,-1,-2], 1, mode=’wrap’) = [1., 4., 5.]

y = [[1.], [0.], [2.]]

// picks elements with specified indices along axis 1 and dims are maintained pick(x, y, 1, keep-
dims=True) = [[2.], [3.], [6.]]

Defined in src/operator/tensor/broadcast_reduce_op_index.cc:L151

Value

out The result mx.symbol

416 mx.symbol.Pooling

mx.symbol.Pooling Pooling:Performs pooling on the input.

Description

The shapes for 1-D pooling are

Usage

mx.symbol.Pooling(...)

Arguments

data NDArray-or-Symbol Input data to the pooling operator.

kernel Shape(tuple), optional, default=[] Pooling kernel size: (y, x) or (d, y, x)

pool.type ’avg’, ’lp’, ’max’, ’sum’,optional, default=’max’ Pooling type to be applied.

global.pool boolean, optional, default=0 Ignore kernel size, do global pooling based on cur-
rent input feature map.

cudnn.off boolean, optional, default=0 Turn off cudnn pooling and use MXNet pooling
operator.

pooling.convention

’full’, ’same’, ’valid’,optional, default=’valid’ Pooling convention to be applied.

stride Shape(tuple), optional, default=[] Stride: for pooling (y, x) or (d, y, x). Defaults
to 1 for each dimension.

pad Shape(tuple), optional, default=[] Pad for pooling: (y, x) or (d, y, x). Defaults to
no padding.

p.value int or None, optional, default=’None’ Value of p for Lp pooling, can be 1 or 2,
required for Lp Pooling.

count.include.pad

boolean or None, optional, default=None Only used for AvgPool, specify whether
to count padding elements for averagecalculation. For example, with a 5*5 ker-
nel on a 3*3 corner of a image,the sum of the 9 valid elements will be divided
by 25 if this is set to true,or it will be divided by 9 if this is set to false. Defaults
to true.

layout None, ’NCDHW’, ’NCHW’, ’NCW’, ’NDHWC’, ’NHWC’, ’NWC’,optional,
default=’None’ Set layout for input and output. Empty for default layout: NCW
for 1d, NCHW for 2d and NCDHW for 3d.

name string, optional Name of the resulting symbol.

mx.symbol.Pooling_v1 417

Details

- **data** and **out**: *(batch_size, channel, width)* (NCW layout) or *(batch_size, width,
channel)* (NWC layout),

The shapes for 2-D pooling are

- **data** and **out**: *(batch_size, channel, height, width)* (NCHW layout) or *(batch_size,
height, width, channel)* (NHWC layout),

out_height = f(height, kernel[0], pad[0], stride[0]) out_width = f(width, kernel[1], pad[1], stride[1])

The definition of *f* depends on “pooling_convention“, which has two options:

- **valid** (default)::

f(x, k, p, s) = floor((x+2*p-k)/s)+1

- **full**, which is compatible with Caffe::

f(x, k, p, s) = ceil((x+2*p-k)/s)+1

When “global_pool“ is set to be true, then global pooling is performed. It will reset “kernel=(height,
width)“ and set the appropiate padding to 0.

Three pooling options are supported by “pool_type“:

- **avg**: average pooling - **max**: max pooling - **sum**: sum pooling - **lp**: Lp pooling

For 3-D pooling, an additional *depth* dimension is added before *height*. Namely the input
data and output will have shape *(batch_size, channel, depth, height, width)* (NCDHW layout) or
(batch_size, depth, height, width, channel) (NDHWC layout).

Notes on Lp pooling:

Lp pooling was first introduced by this paper: https://arxiv.org/pdf/1204.3968.pdf. L-1 pooling is
simply sum pooling, while L-inf pooling is simply max pooling. We can see that Lp pooling stands
between those two, in practice the most common value for p is 2.

For each window “X“, the mathematical expression for Lp pooling is:

:math:‘f(X) = \sqrt[p]\sum_x^X x^p‘

Defined in src/operator/nn/pooling.cc:L419

Value

out The result mx.symbol

mx.symbol.Pooling_v1 Pooling_v1:This operator is DEPRECATED. Perform pooling on the
input.

Description

The shapes for 2-D pooling is

Usage

mx.symbol.Pooling_v1(...)

418 mx.symbol.Pooling_v1

Arguments

data NDArray-or-Symbol Input data to the pooling operator.

kernel Shape(tuple), optional, default=[] pooling kernel size: (y, x) or (d, y, x)

pool.type ’avg’, ’max’, ’sum’,optional, default=’max’ Pooling type to be applied.

global.pool boolean, optional, default=0 Ignore kernel size, do global pooling based on cur-
rent input feature map.

pooling.convention

’full’, ’valid’,optional, default=’valid’ Pooling convention to be applied.

stride Shape(tuple), optional, default=[] stride: for pooling (y, x) or (d, y, x)

pad Shape(tuple), optional, default=[] pad for pooling: (y, x) or (d, y, x)

name string, optional Name of the resulting symbol.

Details

- **data**: *(batch_size, channel, height, width)* - **out**: *(batch_size, num_filter, out_height,
out_width)*, with::

out_height = f(height, kernel[0], pad[0], stride[0]) out_width = f(width, kernel[1], pad[1], stride[1])

The definition of *f* depends on “pooling_convention“, which has two options:

- **valid** (default)::

f(x, k, p, s) = floor((x+2*p-k)/s)+1

- **full**, which is compatible with Caffe::

f(x, k, p, s) = ceil((x+2*p-k)/s)+1

But “global_pool“ is set to be true, then do a global pooling, namely reset “kernel=(height, width)“.

Three pooling options are supported by “pool_type“:

- **avg**: average pooling - **max**: max pooling - **sum**: sum pooling

1-D pooling is special case of 2-D pooling with *weight=1* and *kernel[1]=1*.

For 3-D pooling, an additional *depth* dimension is added before *height*. Namely the input data
will have shape *(batch_size, channel, depth, height, width)*.

Defined in src/operator/pooling_v1.cc:L104

Value

out The result mx.symbol

mx.symbol.preloaded_multi_mp_sgd_mom_update 419

mx.symbol.preloaded_multi_mp_sgd_mom_update

preloaded_multi_mp_sgd_mom_update:Momentum update function
for multi-precision Stochastic Gradient Descent (SGD) optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Usage

mx.symbol.preloaded_multi_mp_sgd_mom_update(...)

Arguments

data NDArray-or-Symbol[] Weights, gradients, momentums, learning rates and weight
decays

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

name string, optional Name of the resulting symbol.

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

Defined in src/operator/contrib/preloaded_multi_sgd.cc:L200

Value

out The result mx.symbol

420 mx.symbol.preloaded_multi_sgd_mom_update

mx.symbol.preloaded_multi_mp_sgd_update

preloaded_multi_mp_sgd_update:Update function for multi-precision
Stochastic Gradient Descent (SDG) optimizer.

Description

It updates the weights using::

Usage

mx.symbol.preloaded_multi_mp_sgd_update(...)

Arguments

data NDArray-or-Symbol[] Weights, gradients, learning rates and weight decays

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.

name string, optional Name of the resulting symbol.

Details

weight = weight - learning_rate * (gradient + wd * weight)

Defined in src/operator/contrib/preloaded_multi_sgd.cc:L140

Value

out The result mx.symbol

mx.symbol.preloaded_multi_sgd_mom_update

preloaded_multi_sgd_mom_update:Momentum update function for
Stochastic Gradient Descent (SGD) optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Usage

mx.symbol.preloaded_multi_sgd_mom_update(...)

mx.symbol.preloaded_multi_sgd_update 421

Arguments

data NDArray-or-Symbol[] Weights, gradients, momentum, learning rates and weight
decays

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.
rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.
name string, optional Name of the resulting symbol.

Details

.. math::
v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t
It updates the weights using::
v = momentum * v - learning_rate * gradient weight += v
Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.
Defined in src/operator/contrib/preloaded_multi_sgd.cc:L91

Value

out The result mx.symbol

mx.symbol.preloaded_multi_sgd_update

preloaded_multi_sgd_update:Update function for Stochastic Gradient
Descent (SDG) optimizer.

Description

It updates the weights using::

Usage

mx.symbol.preloaded_multi_sgd_update(...)

Arguments

data NDArray-or-Symbol[] Weights, gradients, learning rates and weight decays
rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

num.weights int, optional, default=’1’ Number of updated weights.
name string, optional Name of the resulting symbol.

422 mx.symbol.prod

Details

weight = weight - learning_rate * (gradient + wd * weight)

Defined in src/operator/contrib/preloaded_multi_sgd.cc:L42

Value

out The result mx.symbol

mx.symbol.prod prod:Computes the product of array elements over given axes.

Description

Defined in src/operator/tensor/./broadcast_reduce_op.h:L31

Usage

mx.symbol.prod(...)

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.radians 423

mx.symbol.radians radians:Converts each element of the input array from degrees to ra-
dians.

Description

.. math:: radians([0, 90, 180, 270, 360]) = [0, \pi/2, \pi, 3\pi/2, 2\pi]

Usage

mx.symbol.radians(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “radians“ output depends upon the input storage type:

- radians(default) = default - radians(row_sparse) = row_sparse - radians(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L351

Value

out The result mx.symbol

mx.symbol.random_exponential

random_exponential:Draw random samples from an exponential dis-
tribution.

Description

Samples are distributed according to an exponential distribution parametrized by *lambda* (rate).

Usage

mx.symbol.random_exponential(...)

424 mx.symbol.random_gamma

Arguments

lam float, optional, default=1 Lambda parameter (rate) of the exponential distribu-
tion.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

Details

Example::

exponential(lam=4, shape=(2,2)) = [[0.0097189 , 0.08999364], [0.04146638, 0.31715935]]

Defined in src/operator/random/sample_op.cc:L137

Value

out The result mx.symbol

mx.symbol.random_gamma

random_gamma:Draw random samples from a gamma distribution.

Description

Samples are distributed according to a gamma distribution parametrized by *alpha* (shape) and
beta (scale).

Usage

mx.symbol.random_gamma(...)

Arguments

alpha float, optional, default=1 Alpha parameter (shape) of the gamma distribution.

beta float, optional, default=1 Beta parameter (scale) of the gamma distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

mx.symbol.random_generalized_negative_binomial 425

Details

Example::

gamma(alpha=9, beta=0.5, shape=(2,2)) = [[7.10486984, 3.37695289], [3.91697288, 3.65933681]]

Defined in src/operator/random/sample_op.cc:L125

Value

out The result mx.symbol

mx.symbol.random_generalized_negative_binomial

random_generalized_negative_binomial:Draw random samples from
a generalized negative binomial distribution.

Description

Samples are distributed according to a generalized negative binomial distribution parametrized by
mu (mean) and *alpha* (dispersion). *alpha* is defined as *1/k* where *k* is the failure limit
of the number of unsuccessful experiments (generalized to real numbers). Samples will always be
returned as a floating point data type.

Usage

mx.symbol.random_generalized_negative_binomial(...)

Arguments

mu float, optional, default=1 Mean of the negative binomial distribution.
alpha float, optional, default=1 Alpha (dispersion) parameter of the negative binomial

distribution.
shape Shape(tuple), optional, default=None Shape of the output.
ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).

Only used for imperative calls.
dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-

put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
name string, optional Name of the resulting symbol.

Details

Example::

generalized_negative_binomial(mu=2.0, alpha=0.3, shape=(2,2)) = [[2., 1.], [6., 4.]]

Defined in src/operator/random/sample_op.cc:L179

Value

out The result mx.symbol

426 mx.symbol.random_negative_binomial

mx.symbol.random_negative_binomial

random_negative_binomial:Draw random samples from a negative bi-
nomial distribution.

Description

Samples are distributed according to a negative binomial distribution parametrized by *k* (limit of
unsuccessful experiments) and *p* (failure probability in each experiment). Samples will always
be returned as a floating point data type.

Usage

mx.symbol.random_negative_binomial(...)

Arguments

k int, optional, default=’1’ Limit of unsuccessful experiments.

p float, optional, default=1 Failure probability in each experiment.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

Details

Example::

negative_binomial(k=3, p=0.4, shape=(2,2)) = [[4., 7.], [2., 5.]]

Defined in src/operator/random/sample_op.cc:L164

Value

out The result mx.symbol

mx.symbol.random_normal 427

mx.symbol.random_normal

random_normal:Draw random samples from a normal (Gaussian) dis-
tribution.

Description

.. note:: The existing alias “normal“ is deprecated.

Usage

mx.symbol.random_normal(...)

Arguments

loc float, optional, default=0 Mean of the distribution.

scale float, optional, default=1 Standard deviation of the distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

Details

Samples are distributed according to a normal distribution parametrized by *loc* (mean) and *scale*
(standard deviation).

Example::

normal(loc=0, scale=1, shape=(2,2)) = [[1.89171135, -1.16881478], [-1.23474145, 1.55807114]]

Defined in src/operator/random/sample_op.cc:L113

Value

out The result mx.symbol

428 mx.symbol.random_pdf_dirichlet

mx.symbol.random_pdf_dirichlet

random_pdf_dirichlet:Computes the value of the PDF of *sample* of
Dirichlet distributions with parameter *alpha*.

Description

The shape of *alpha* must match the leftmost subshape of *sample*. That is, *sample* can have the
same shape as *alpha*, in which case the output contains one density per distribution, or *sample*
can be a tensor of tensors with that shape, in which case the output is a tensor of densities such
that the densities at index *i* in the output are given by the samples at index *i* in *sample*
parameterized by the value of *alpha* at index *i*.

Usage

mx.symbol.random_pdf_dirichlet(...)

Arguments

sample NDArray-or-Symbol Samples from the distributions.

alpha NDArray-or-Symbol Concentration parameters of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

name string, optional Name of the resulting symbol.

Details

Examples::

random_pdf_dirichlet(sample=[[1,2],[2,3],[3,4]], alpha=[2.5, 2.5]) = [38.413498, 199.60245, 564.56085]

sample = [[[1, 2, 3], [10, 20, 30], [100, 200, 300]], [[0.1, 0.2, 0.3], [0.01, 0.02, 0.03], [0.001, 0.002,
0.003]]]

random_pdf_dirichlet(sample=sample, alpha=[0.1, 0.4, 0.9]) = [[2.3257459e-02, 5.8420084e-04,
1.4674458e-05], [9.2589635e-01, 3.6860607e+01, 1.4674468e+03]]

Defined in src/operator/random/pdf_op.cc:L316

Value

out The result mx.symbol

mx.symbol.random_pdf_exponential 429

mx.symbol.random_pdf_exponential

random_pdf_exponential:Computes the value of the PDF of *sample*
of exponential distributions with parameters *lam* (rate).

Description

The shape of *lam* must match the leftmost subshape of *sample*. That is, *sample* can have the
same shape as *lam*, in which case the output contains one density per distribution, or *sample*
can be a tensor of tensors with that shape, in which case the output is a tensor of densities such
that the densities at index *i* in the output are given by the samples at index *i* in *sample*
parameterized by the value of *lam* at index *i*.

Usage

mx.symbol.random_pdf_exponential(...)

Arguments

sample NDArray-or-Symbol Samples from the distributions.

lam NDArray-or-Symbol Lambda (rate) parameters of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

name string, optional Name of the resulting symbol.

Details

Examples::

random_pdf_exponential(sample=[[1, 2, 3]], lam=[1]) = [[0.36787945, 0.13533528, 0.04978707]]

sample = [[1,2,3], [1,2,3], [1,2,3]]

random_pdf_exponential(sample=sample, lam=[1,0.5,0.25]) = [[0.36787945, 0.13533528, 0.04978707],
[0.30326533, 0.18393973, 0.11156508], [0.1947002, 0.15163267, 0.11809164]]

Defined in src/operator/random/pdf_op.cc:L305

Value

out The result mx.symbol

430 mx.symbol.random_pdf_gamma

mx.symbol.random_pdf_gamma

random_pdf_gamma:Computes the value of the PDF of *sample* of
gamma distributions with parameters *alpha* (shape) and *beta*
(rate).

Description

alpha and *beta* must have the same shape, which must match the leftmost subshape of *sam-
ple*. That is, *sample* can have the same shape as *alpha* and *beta*, in which case the output
contains one density per distribution, or *sample* can be a tensor of tensors with that shape, in
which case the output is a tensor of densities such that the densities at index *i* in the output are
given by the samples at index *i* in *sample* parameterized by the values of *alpha* and *beta*
at index *i*.

Usage

mx.symbol.random_pdf_gamma(...)

Arguments

sample NDArray-or-Symbol Samples from the distributions.

alpha NDArray-or-Symbol Alpha (shape) parameters of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

beta NDArray-or-Symbol Beta (scale) parameters of the distributions.

name string, optional Name of the resulting symbol.

Details

Examples::

random_pdf_gamma(sample=[[1,2,3,4,5]], alpha=[5], beta=[1]) = [[0.01532831, 0.09022352, 0.16803136,
0.19536681, 0.17546739]]

sample = [[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]]

random_pdf_gamma(sample=sample, alpha=[5,6,7], beta=[1,1,1]) = [[0.01532831, 0.09022352,
0.16803136, 0.19536681, 0.17546739], [0.03608941, 0.10081882, 0.15629345, 0.17546739, 0.16062315],
[0.05040941, 0.10419563, 0.14622283, 0.16062315, 0.14900276]]

Defined in src/operator/random/pdf_op.cc:L303

Value

out The result mx.symbol

mx.symbol.random_pdf_generalized_negative_binomial 431

mx.symbol.random_pdf_generalized_negative_binomial

random_pdf_generalized_negative_binomial:Computes the value of
the PDF of *sample* of generalized negative binomial distributions
with parameters *mu* (mean) and *alpha* (dispersion). This can be
understood as a reparameterization of the negative binomial, where
k = *1 / alpha* and *p* = *1 / (mu * alpha + 1)*.

Description

mu and *alpha* must have the same shape, which must match the leftmost subshape of *sample*.
That is, *sample* can have the same shape as *mu* and *alpha*, in which case the output contains
one density per distribution, or *sample* can be a tensor of tensors with that shape, in which case
the output is a tensor of densities such that the densities at index *i* in the output are given by the
samples at index *i* in *sample* parameterized by the values of *mu* and *alpha* at index *i*.

Usage

mx.symbol.random_pdf_generalized_negative_binomial(...)

Arguments

sample NDArray-or-Symbol Samples from the distributions.

mu NDArray-or-Symbol Means of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

alpha NDArray-or-Symbol Alpha (dispersion) parameters of the distributions.

name string, optional Name of the resulting symbol.

Details

Examples::

random_pdf_generalized_negative_binomial(sample=[[1, 2, 3, 4]], alpha=[1], mu=[1]) = [[0.25,
0.125, 0.0625, 0.03125]]

sample = [[1,2,3,4], [1,2,3,4]] random_pdf_generalized_negative_binomial(sample=sample, alpha=[1,
0.6666], mu=[1, 1.5]) = [[0.25, 0.125, 0.0625, 0.03125], [0.26517063, 0.16573331, 0.09667706,
0.05437994]]

Defined in src/operator/random/pdf_op.cc:L314

Value

out The result mx.symbol

432 mx.symbol.random_pdf_negative_binomial

mx.symbol.random_pdf_negative_binomial

random_pdf_negative_binomial:Computes the value of the PDF of
samples of negative binomial distributions with parameters *k* (fail-
ure limit) and *p* (failure probability).

Description

k and *p* must have the same shape, which must match the leftmost subshape of *sample*. That
is, *sample* can have the same shape as *k* and *p*, in which case the output contains one density
per distribution, or *sample* can be a tensor of tensors with that shape, in which case the output is
a tensor of densities such that the densities at index *i* in the output are given by the samples at
index *i* in *sample* parameterized by the values of *k* and *p* at index *i*.

Usage

mx.symbol.random_pdf_negative_binomial(...)

Arguments

sample NDArray-or-Symbol Samples from the distributions.

k NDArray-or-Symbol Limits of unsuccessful experiments.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

p NDArray-or-Symbol Failure probabilities in each experiment.

name string, optional Name of the resulting symbol.

Details

Examples::

random_pdf_negative_binomial(sample=[[1,2,3,4]], k=[1], p=a[0.5]) = [[0.25, 0.125, 0.0625, 0.03125]]

Note that k may be real-valued sample = [[1,2,3,4], [1,2,3,4]] random_pdf_negative_binomial(sample=sample,
k=[1, 1.5], p=[0.5, 0.5]) = [[0.25, 0.125, 0.0625, 0.03125], [0.26516506, 0.16572815, 0.09667476,
0.05437956]]

Defined in src/operator/random/pdf_op.cc:L310

Value

out The result mx.symbol

mx.symbol.random_pdf_normal 433

mx.symbol.random_pdf_normal

random_pdf_normal:Computes the value of the PDF of *sample*
of normal distributions with parameters *mu* (mean) and *sigma*
(standard deviation).

Description

mu and *sigma* must have the same shape, which must match the leftmost subshape of *sample*.
That is, *sample* can have the same shape as *mu* and *sigma*, in which case the output contains
one density per distribution, or *sample* can be a tensor of tensors with that shape, in which case
the output is a tensor of densities such that the densities at index *i* in the output are given by the
samples at index *i* in *sample* parameterized by the values of *mu* and *sigma* at index *i*.

Usage

mx.symbol.random_pdf_normal(...)

Arguments

sample NDArray-or-Symbol Samples from the distributions.

mu NDArray-or-Symbol Means of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

sigma NDArray-or-Symbol Standard deviations of the distributions.

name string, optional Name of the resulting symbol.

Details

Examples::

sample = [[-2, -1, 0, 1, 2]] random_pdf_normal(sample=sample, mu=[0], sigma=[1]) = [[0.05399097,
0.24197073, 0.3989423, 0.24197073, 0.05399097]]

random_pdf_normal(sample=sample*2, mu=[0,0], sigma=[1,2]) = [[0.05399097, 0.24197073, 0.3989423,
0.24197073, 0.05399097], [0.12098537, 0.17603266, 0.19947115, 0.17603266, 0.12098537]]

Defined in src/operator/random/pdf_op.cc:L300

Value

out The result mx.symbol

434 mx.symbol.random_pdf_poisson

mx.symbol.random_pdf_poisson

random_pdf_poisson:Computes the value of the PDF of *sample* of
Poisson distributions with parameters *lam* (rate).

Description

The shape of *lam* must match the leftmost subshape of *sample*. That is, *sample* can have the
same shape as *lam*, in which case the output contains one density per distribution, or *sample*
can be a tensor of tensors with that shape, in which case the output is a tensor of densities such
that the densities at index *i* in the output are given by the samples at index *i* in *sample*
parameterized by the value of *lam* at index *i*.

Usage

mx.symbol.random_pdf_poisson(...)

Arguments

sample NDArray-or-Symbol Samples from the distributions.

lam NDArray-or-Symbol Lambda (rate) parameters of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

name string, optional Name of the resulting symbol.

Details

Examples::

random_pdf_poisson(sample=[[0,1,2,3]], lam=[1]) = [[0.36787945, 0.36787945, 0.18393973, 0.06131324]]

sample = [[0,1,2,3], [0,1,2,3], [0,1,2,3]]

random_pdf_poisson(sample=sample, lam=[1,2,3]) = [[0.36787945, 0.36787945, 0.18393973, 0.06131324],
[0.13533528, 0.27067056, 0.27067056, 0.18044704], [0.04978707, 0.14936121, 0.22404182, 0.22404182]]

Defined in src/operator/random/pdf_op.cc:L307

Value

out The result mx.symbol

mx.symbol.random_pdf_uniform 435

mx.symbol.random_pdf_uniform

random_pdf_uniform:Computes the value of the PDF of *sample* of
uniform distributions on the intervals given by *[low,high)*.

Description

low and *high* must have the same shape, which must match the leftmost subshape of *sample*.
That is, *sample* can have the same shape as *low* and *high*, in which case the output contains
one density per distribution, or *sample* can be a tensor of tensors with that shape, in which case
the output is a tensor of densities such that the densities at index *i* in the output are given by the
samples at index *i* in *sample* parameterized by the values of *low* and *high* at index *i*.

Usage

mx.symbol.random_pdf_uniform(...)

Arguments

sample NDArray-or-Symbol Samples from the distributions.

low NDArray-or-Symbol Lower bounds of the distributions.

is.log boolean, optional, default=0 If set, compute the density of the log-probability
instead of the probability.

high NDArray-or-Symbol Upper bounds of the distributions.

name string, optional Name of the resulting symbol.

Details

Examples::

random_pdf_uniform(sample=[[1,2,3,4]], low=[0], high=[10]) = [0.1, 0.1, 0.1, 0.1]

sample = [[[1, 2, 3], [1, 2, 3]], [[1, 2, 3], [1, 2, 3]]] low = [[0, 0], [0, 0]] high = [[5, 10], [15,
20]] random_pdf_uniform(sample=sample, low=low, high=high) = [[[0.2, 0.2, 0.2], [0.1, 0.1, 0.1
]], [[0.06667, 0.06667, 0.06667], [0.05, 0.05, 0.05]]]

Defined in src/operator/random/pdf_op.cc:L298

Value

out The result mx.symbol

436 mx.symbol.random_randint

mx.symbol.random_poisson

random_poisson:Draw random samples from a Poisson distribution.

Description

Samples are distributed according to a Poisson distribution parametrized by *lambda* (rate). Sam-
ples will always be returned as a floating point data type.

Usage

mx.symbol.random_poisson(...)

Arguments

lam float, optional, default=1 Lambda parameter (rate) of the Poisson distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

Details

Example::

poisson(lam=4, shape=(2,2)) = [[5., 2.], [4., 6.]]

Defined in src/operator/random/sample_op.cc:L150

Value

out The result mx.symbol

mx.symbol.random_randint

random_randint:Draw random samples from a discrete uniform dis-
tribution.

Description

Samples are uniformly distributed over the half-open interval *[low, high)* (includes *low*, but
excludes *high*).

mx.symbol.random_uniform 437

Usage

mx.symbol.random_randint(...)

Arguments

low long, required Lower bound of the distribution.
high long, required Upper bound of the distribution.
shape Shape(tuple), optional, default=None Shape of the output.
ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).

Only used for imperative calls.
dtype ’None’, ’int32’, ’int64’,optional, default=’None’ DType of the output in case

this can’t be inferred. Defaults to int32 if not defined (dtype=None).
name string, optional Name of the resulting symbol.

Details

Example::

randint(low=0, high=5, shape=(2,2)) = [[0, 2], [3, 1]]

Defined in src/operator/random/sample_op.cc:L194

Value

out The result mx.symbol

mx.symbol.random_uniform

random_uniform:Draw random samples from a uniform distribution.

Description

.. note:: The existing alias “uniform“ is deprecated.

Usage

mx.symbol.random_uniform(...)

Arguments

low float, optional, default=0 Lower bound of the distribution.
high float, optional, default=1 Upper bound of the distribution.
shape Shape(tuple), optional, default=None Shape of the output.
ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).

Only used for imperative calls.
dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-

put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
name string, optional Name of the resulting symbol.

438 mx.symbol.ravel_multi_index

Details

Samples are uniformly distributed over the half-open interval *[low, high)* (includes *low*, but
excludes *high*).

Example::

uniform(low=0, high=1, shape=(2,2)) = [[0.60276335, 0.85794562], [0.54488319, 0.84725171]]

Defined in src/operator/random/sample_op.cc:L96

Value

out The result mx.symbol

mx.symbol.ravel_multi_index

ravel_multi_index:Converts a batch of index arrays into an array of
flat indices. The operator follows numpy conventions so a single multi
index is given by a column of the input matrix. The leading dimension
may be left unspecified by using -1 as placeholder.

Description

Examples::

A = [[3,6,6],[4,5,1]] ravel(A, shape=(7,6)) = [22,41,37] ravel(A, shape=(-1,6)) = [22,41,37]

Usage

mx.symbol.ravel_multi_index(...)

Arguments

data NDArray-or-Symbol Batch of multi-indices

shape Shape(tuple), optional, default=None Shape of the array into which the multi-
indices apply.

name string, optional Name of the resulting symbol.

Details

Defined in src/operator/tensor/ravel.cc:L42

Value

out The result mx.symbol

mx.symbol.rcbrt 439

mx.symbol.rcbrt rcbrt:Returns element-wise inverse cube-root value of the input.

Description

.. math:: rcbrt(x) = 1/\sqrt[3]x

Usage

mx.symbol.rcbrt(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

rcbrt([1,8,-125]) = [1.0, 0.5, -0.2]

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L323

Value

out The result mx.symbol

mx.symbol.reciprocal reciprocal:Returns the reciprocal of the argument, element-wise.

Description

Calculates 1/x.

Usage

mx.symbol.reciprocal(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

440 mx.symbol.relu

Details

Example::

reciprocal([-2, 1, 3, 1.6, 0.2]) = [-0.5, 1.0, 0.33333334, 0.625, 5.0]

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L43

Value

out The result mx.symbol

mx.symbol.relu relu:Computes rectified linear activation.

Description

.. math:: max(features, 0)

Usage

mx.symbol.relu(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “relu“ output depends upon the input storage type:

- relu(default) = default - relu(row_sparse) = row_sparse - relu(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L85

Value

out The result mx.symbol

mx.symbol.repeat 441

mx.symbol.repeat repeat:Repeats elements of an array. By default, “repeat“ flattens the
input array into 1-D and then repeats the elements:: x = [[1, 2], [3,
4]] repeat(x, repeats=2) = [1., 1., 2., 2., 3., 3., 4., 4.] The parame-
ter “axis“ specifies the axis along which to perform repeat:: repeat(x,
repeats=2, axis=1) = [[1., 1., 2., 2.], [3., 3., 4., 4.]] repeat(x, re-
peats=2, axis=0) = [[1., 2.], [1., 2.], [3., 4.], [3., 4.]] repeat(x,
repeats=2, axis=-1) = [[1., 1., 2., 2.], [3., 3., 4., 4.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L744

Usage

mx.symbol.repeat(...)

Arguments

data NDArray-or-Symbol Input data array

repeats int, required The number of repetitions for each element.

axis int or None, optional, default=’None’ The axis along which to repeat values.
The negative numbers are interpreted counting from the backward. By default,
use the flattened input array, and return a flat output array.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.reset_arrays

reset_arrays:Set to zero multiple arrays

Description

Defined in src/operator/contrib/reset_arrays.cc:L36

Usage

mx.symbol.reset_arrays(...)

442 mx.symbol.Reshape

Arguments

data NDArray-or-Symbol[] Arrays

num.arrays int, required number of input arrays.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.Reshape Reshape:Reshapes the input array. .. note:: “Reshape“ is deprecated,
use “reshape“ Given an array and a shape, this function returns a
copy of the array in the new shape. The shape is a tuple of integers
such as (2,3,4). The size of the new shape should be same as the size of
the input array. Example:: reshape([1,2,3,4], shape=(2,2)) = [[1,2],
[3,4]] Some dimensions of the shape can take special values from the
set 0, -1, -2, -3, -4. The significance of each is explained below: - “0“
copy this dimension from the input to the output shape. Example:: -
input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input
shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - “-1“ infers
the dimension of the output shape by using the remainder of the input
dimensions keeping the size of the new array same as that of the input
array. At most one dimension of shape can be -1. Example:: - input
shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape
= (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape =
(2,3,4), shape=(-1,), output shape = (24,) - “-2“ copy all/remainder
of the input dimensions to the output shape. Example:: - input shape
= (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4),
shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape
= (-2,1,1), output shape = (2,3,4,1,1) - “-3“ use the product of two
consecutive dimensions of the input shape as the output dimension.
Example:: - input shape = (2,3,4), shape = (-3,4), output shape =
(6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20)
- input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input
shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - “-4“ split one
dimension of the input into two dimensions passed subsequent to -4 in
shape (can contain -1). Example:: - input shape = (2,3,4), shape =
(-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape =
(2,-4,-1,3,-2), output shape = (2,1,3,4) If the argument ‘reverse‘ is set
to 1, then the special values are inferred from right to left. Example::
- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output
shape would be (40,5) - with reverse=1, output shape will be (50,4).

Description

Defined in src/operator/tensor/matrix_op.cc:L175

mx.symbol.reshape 443

Usage

mx.symbol.Reshape(...)

Arguments

data NDArray-or-Symbol Input data to reshape.

shape Shape(tuple), optional, default=[] The target shape

reverse boolean, optional, default=0 If true then the special values are inferred from
right to left

target.shape Shape(tuple), optional, default=[] (Deprecated! Use “shape“ instead.) Target
new shape. One and only one dim can be 0, in which case it will be inferred
from the rest of dims

keep.highest boolean, optional, default=0 (Deprecated! Use “shape“ instead.) Whether keep
the highest dim unchanged.If set to true, then the first dim in target_shape is
ignored,and always fixed as input

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

444 mx.symbol.reshape

mx.symbol.reshape reshape:Reshapes the input array. .. note:: “Reshape“ is deprecated,
use “reshape“ Given an array and a shape, this function returns a
copy of the array in the new shape. The shape is a tuple of integers
such as (2,3,4). The size of the new shape should be same as the size of
the input array. Example:: reshape([1,2,3,4], shape=(2,2)) = [[1,2],
[3,4]] Some dimensions of the shape can take special values from the
set 0, -1, -2, -3, -4. The significance of each is explained below: - “0“
copy this dimension from the input to the output shape. Example:: -
input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) - input
shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) - “-1“ infers
the dimension of the output shape by using the remainder of the input
dimensions keeping the size of the new array same as that of the input
array. At most one dimension of shape can be -1. Example:: - input
shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) - input shape
= (2,3,4), shape = (3,-1,8), output shape = (3,1,8) - input shape =
(2,3,4), shape=(-1,), output shape = (24,) - “-2“ copy all/remainder
of the input dimensions to the output shape. Example:: - input shape
= (2,3,4), shape = (-2,), output shape = (2,3,4) - input shape = (2,3,4),
shape = (2,-2), output shape = (2,3,4) - input shape = (2,3,4), shape
= (-2,1,1), output shape = (2,3,4,1,1) - “-3“ use the product of two
consecutive dimensions of the input shape as the output dimension.
Example:: - input shape = (2,3,4), shape = (-3,4), output shape =
(6,4) - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20)
- input shape = (2,3,4), shape = (0,-3), output shape = (2,12) - input
shape = (2,3,4), shape = (-3,-2), output shape = (6,4) - “-4“ split one
dimension of the input into two dimensions passed subsequent to -4 in
shape (can contain -1). Example:: - input shape = (2,3,4), shape =
(-4,1,2,-2), output shape =(1,2,3,4) - input shape = (2,3,4), shape =
(2,-4,-1,3,-2), output shape = (2,1,3,4) If the argument ‘reverse‘ is set
to 1, then the special values are inferred from right to left. Example::
- without reverse=1, for input shape = (10,5,4), shape = (-1,0), output
shape would be (40,5) - with reverse=1, output shape will be (50,4).

Description

Defined in src/operator/tensor/matrix_op.cc:L175

Usage

mx.symbol.reshape(...)

Arguments

data NDArray-or-Symbol Input data to reshape.

shape Shape(tuple), optional, default=[] The target shape

reverse boolean, optional, default=0 If true then the special values are inferred from
right to left

mx.symbol.reshape_like 445

target.shape Shape(tuple), optional, default=[] (Deprecated! Use “shape“ instead.) Target
new shape. One and only one dim can be 0, in which case it will be inferred
from the rest of dims

keep.highest boolean, optional, default=0 (Deprecated! Use “shape“ instead.) Whether keep
the highest dim unchanged.If set to true, then the first dim in target_shape is
ignored,and always fixed as input

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.reshape_like

reshape_like:Reshape some or all dimensions of ‘lhs‘ to have the same
shape as some or all dimensions of ‘rhs‘.

Description

Returns a **view** of the ‘lhs‘ array with a new shape without altering any data.

Usage

mx.symbol.reshape_like(...)

Arguments

lhs NDArray-or-Symbol First input.

rhs NDArray-or-Symbol Second input.

lhs.begin int or None, optional, default=’None’ Defaults to 0. The beginning index along
which the lhs dimensions are to be reshaped. Supports negative indices.

lhs.end int or None, optional, default=’None’ Defaults to None. The ending index along
which the lhs dimensions are to be used for reshaping. Supports negative in-
dices.

rhs.begin int or None, optional, default=’None’ Defaults to 0. The beginning index along
which the rhs dimensions are to be used for reshaping. Supports negative in-
dices.

rhs.end int or None, optional, default=’None’ Defaults to None. The ending index along
which the rhs dimensions are to be used for reshaping. Supports negative in-
dices.

name string, optional Name of the resulting symbol.

446 mx.symbol.reverse

Details

Example::

x = [1, 2, 3, 4, 5, 6] y = [[0, -4], [3, 2], [2, 2]] reshape_like(x, y) = [[1, 2], [3, 4], [5, 6]]

More precise control over how dimensions are inherited is achieved by specifying \ slices over the
‘lhs‘ and ‘rhs‘ array dimensions. Only the sliced ‘lhs‘ dimensions \ are reshaped to the ‘rhs‘ sliced
dimensions, with the non-sliced ‘lhs‘ dimensions staying the same.

Examples::

- lhs shape = (30,7), rhs shape = (15,2,4), lhs_begin=0, lhs_end=1, rhs_begin=0, rhs_end=2, output
shape = (15,2,7) - lhs shape = (3, 5), rhs shape = (1,15,4), lhs_begin=0, lhs_end=2, rhs_begin=1,
rhs_end=2, output shape = (15)

Negative indices are supported, and ‘None‘ can be used for either ‘lhs_end‘ or ‘rhs_end‘ to indicate
the end of the range.

Example::

- lhs shape = (30, 12), rhs shape = (4, 2, 2, 3), lhs_begin=-1, lhs_end=None, rhs_begin=1, rhs_end=None,
output shape = (30, 2, 2, 3)

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L512

Value

out The result mx.symbol

mx.symbol.reverse reverse:Reverses the order of elements along given axis while preserv-
ing array shape. Note: reverse and flip are equivalent. We use reverse
in the following examples. Examples:: x = [[0., 1., 2., 3., 4.], [5., 6.,
7., 8., 9.]] reverse(x, axis=0) = [[5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.]]
reverse(x, axis=1) = [[4., 3., 2., 1., 0.], [9., 8., 7., 6., 5.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L832

Usage

mx.symbol.reverse(...)

Arguments

data NDArray-or-Symbol Input data array
axis Shape(tuple), required The axis which to reverse elements.
name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.rint 447

mx.symbol.rint rint:Returns element-wise rounded value to the nearest integer of the
input.

Description

.. note:: - For input “n.5“ “rint“ returns “n“ while “round“ returns “n+1“. - For input “-n.5“ both
“rint“ and “round“ returns “-n-1“.

Usage

mx.symbol.rint(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

rint([-1.5, 1.5, -1.9, 1.9, 2.1]) = [-2., 1., -2., 2., 2.]

The storage type of “rint“ output depends upon the input storage type:

- rint(default) = default - rint(row_sparse) = row_sparse - rint(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L799

Value

out The result mx.symbol

mx.symbol.rmspropalex_update

rmspropalex_update:Update function for RMSPropAlex optimizer.

Description

‘RMSPropAlex‘ is non-centered version of ‘RMSProp‘.

Usage

mx.symbol.rmspropalex_update(...)

448 mx.symbol.rmspropalex_update

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

n NDArray-or-Symbol n

g NDArray-or-Symbol g

delta NDArray-or-Symbol delta

lr float, required Learning rate

rho float, optional, default=0.949999988 Decay rate.

momentum float, optional, default=0.899999976 Decay rate.

epsilon float, optional, default=9.99999994e-09 A small constant for numerical stability.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

clip.weights float, optional, default=-1 Clip weights to the range of [-clip_weights, clip_weights]
If clip_weights <= 0, weight clipping is turned off. weights = max(min(weights,
clip_weights), -clip_weights).

name string, optional Name of the resulting symbol.

Details

Define :math:‘E[g^2]_t‘ is the decaying average over past squared gradient and :math:‘E[g]_t‘ is
the decaying average over past gradient.

.. math:: E[g^2]_t = \rho * E[g^2]_t-1 + (1 - \rho) * g_t^2\ E[g]_t = \rho * E[g]_t-1 + (1 - \rho) *
g_t\ momentum_t = \gamma * momentum_t-1 - \frac\eta\sqrtE[g^2]_t - E[g]_t^2 + \epsilon g_t\

The update step is

.. math:: \theta_t+1 = \theta_t + momentum_t

The RMSPropAlex code follows the version in http://arxiv.org/pdf/1308.0850v5.pdf Eq(38) - Eq(45)
by Alex Graves, 2013.

Graves suggests the momentum term :math:‘\rho‘ to be 0.95, :math:‘\gamma‘ to be 0.9 and the
learning rate :math:‘\eta‘ to be 0.0001.

Defined in src/operator/optimizer_op.cc:L827

Value

out The result mx.symbol

mx.symbol.rmsprop_update 449

mx.symbol.rmsprop_update

rmsprop_update:Update function for ‘RMSProp‘ optimizer.

Description

‘RMSprop‘ is a variant of stochastic gradient descent where the gradients are divided by a cache
which grows with the sum of squares of recent gradients?

Usage

mx.symbol.rmsprop_update(...)

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

n NDArray-or-Symbol n

lr float, required Learning rate

rho float, optional, default=0.949999988 The decay rate of momentum estimates.

epsilon float, optional, default=9.99999994e-09 A small constant for numerical stability.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

clip.weights float, optional, default=-1 Clip weights to the range of [-clip_weights, clip_weights]
If clip_weights <= 0, weight clipping is turned off. weights = max(min(weights,
clip_weights), -clip_weights).

name string, optional Name of the resulting symbol.

Details

‘RMSProp‘ is similar to ‘AdaGrad‘, a popular variant of ‘SGD‘ which adaptively tunes the learning
rate of each parameter. ‘AdaGrad‘ lowers the learning rate for each parameter monotonically over
the course of training. While this is analytically motivated for convex optimizations, it may not be
ideal for non-convex problems. ‘RMSProp‘ deals with this heuristically by allowing the learning
rates to rebound as the denominator decays over time.

Define the Root Mean Square (RMS) error criterion of the gradient as :math:‘RMS[g]_t = \sqrtE[g^2]_t
+ \epsilon‘, where :math:‘g‘ represents gradient and :math:‘E[g^2]_t‘ is the decaying average over
past squared gradient.

450 mx.symbol.RNN

The :math:‘E[g^2]_t‘ is given by:

.. math:: E[g^2]_t = \rho * E[g^2]_t-1 + (1-\rho) * g_t^2

The update step is

.. math:: \theta_t+1 = \theta_t - \frac\etaRMS[g]_t g_t

The RMSProp code follows the version in http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
Tieleman & Hinton, 2012.

Hinton suggests the momentum term :math:‘\rho‘ to be 0.9 and the learning rate :math:‘\eta‘ to be
0.001.

Defined in src/operator/optimizer_op.cc:L788

Value

out The result mx.symbol

mx.symbol.RNN RNN:Applies recurrent layers to input data. Currently, vanilla RNN,
LSTM and GRU are implemented, with both multi-layer and bidirec-
tional support.

Description

When the input data is of type float32 and the environment variables MXNET_CUDA_ALLOW_TENSOR_CORE
and MXNET_CUDA_TENSOR_OP_MATH_ALLOW_CONVERSION are set to 1, this operator
will try to use pseudo-float16 precision (float32 math with float16 I/O) precision in order to use
Tensor Cores on suitable NVIDIA GPUs. This can sometimes give significant speedups.

Usage

mx.symbol.RNN(...)

Arguments

data NDArray-or-Symbol Input data to RNN

parameters NDArray-or-Symbol Vector of all RNN trainable parameters concatenated

state NDArray-or-Symbol initial hidden state of the RNN

state.cell NDArray-or-Symbol initial cell state for LSTM networks (only for LSTM)
sequence.length

NDArray-or-Symbol Vector of valid sequence lengths for each element in batch.
(Only used if use_sequence_length kwarg is True)

state.size int (non-negative), required size of the state for each layer

num.layers int (non-negative), required number of stacked layers

bidirectional boolean, optional, default=0 whether to use bidirectional recurrent layers

mode ’gru’, ’lstm’, ’rnn_relu’, ’rnn_tanh’, required the type of RNN to compute

mx.symbol.RNN 451

p float, optional, default=0 drop rate of the dropout on the outputs of each RNN
layer, except the last layer.

state.outputs boolean, optional, default=0 Whether to have the states as symbol outputs.
projection.size

int or None, optional, default=’None’ size of project size
lstm.state.clip.min

double or None, optional, default=None Minimum clip value of LSTM states.
This option must be used together with lstm_state_clip_max.

lstm.state.clip.max

double or None, optional, default=None Maximum clip value of LSTM states.
This option must be used together with lstm_state_clip_min.

lstm.state.clip.nan

boolean, optional, default=0 Whether to stop NaN from propagating in state by
clipping it to min/max. If clipping range is not specified, this option is ignored.

use.sequence.length

boolean, optional, default=0 If set to true, this layer takes in an extra input pa-
rameter ‘sequence_length‘ to specify variable length sequence

name string, optional Name of the resulting symbol.

Details

Vanilla RNN

Applies a single-gate recurrent layer to input X. Two kinds of activation function are supported:
ReLU and Tanh.

With ReLU activation function:

.. math:: h_t = relu(W_ih * x_t + b_ih + W_hh * h_(t-1) + b_hh)

With Tanh activtion function:

.. math:: h_t = \tanh(W_ih * x_t + b_ih + W_hh * h_(t-1) + b_hh)

Reference paper: Finding structure in time - Elman, 1988. https://crl.ucsd.edu/~elman/Papers/fsit.pdf

LSTM

Long Short-Term Memory - Hochreiter, 1997. http://www.bioinf.jku.at/publications/older/2604.pdf

.. math:: \beginarrayll i_t = \mathrmsigmoid(W_ii x_t + b_ii + W_hi h_(t-1) + b_hi) \ f_t = \math-
rmsigmoid(W_if x_t + b_if + W_hf h_(t-1) + b_hf) \ g_t = \tanh(W_ig x_t + b_ig + W_hc h_(t-1)
+ b_hg) \ o_t = \mathrmsigmoid(W_io x_t + b_io + W_ho h_(t-1) + b_ho) \ c_t = f_t * c_(t-1) + i_t
* g_t \ h_t = o_t * \tanh(c_t) \endarray

With the projection size being set, LSTM could use the projection feature to reduce the parameters
size and give some speedups without significant damage to the accuracy.

Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary
Speech Recognition - Sak et al. 2014. https://arxiv.org/abs/1402.1128

.. math:: \beginarrayll i_t = \mathrmsigmoid(W_ii x_t + b_ii + W_ri r_(t-1) + b_ri) \ f_t = \math-
rmsigmoid(W_if x_t + b_if + W_rf r_(t-1) + b_rf) \ g_t = \tanh(W_ig x_t + b_ig + W_rc r_(t-1) +
b_rg) \ o_t = \mathrmsigmoid(W_io x_t + b_o + W_ro r_(t-1) + b_ro) \ c_t = f_t * c_(t-1) + i_t *
g_t \ h_t = o_t * \tanh(c_t) r_t = W_hr h_t \endarray

452 mx.symbol.ROIPooling

GRU

Gated Recurrent Unit - Cho et al. 2014. http://arxiv.org/abs/1406.1078

The definition of GRU here is slightly different from paper but compatible with CUDNN.

.. math:: \beginarrayll r_t = \mathrmsigmoid(W_ir x_t + b_ir + W_hr h_(t-1) + b_hr) \ z_t =
\mathrmsigmoid(W_iz x_t + b_iz + W_hz h_(t-1) + b_hz) \ n_t = \tanh(W_in x_t + b_in + r_t *
(W_hn h_(t-1)+ b_hn)) \ h_t = (1 - z_t) * n_t + z_t * h_(t-1) \ \endarray

Defined in src/operator/rnn.cc:L363

Value

out The result mx.symbol

mx.symbol.ROIPooling ROIPooling:Performs region of interest(ROI) pooling on the input ar-
ray.

Description

ROI pooling is a variant of a max pooling layer, in which the output size is fixed and region of
interest is a parameter. Its purpose is to perform max pooling on the inputs of non-uniform sizes
to obtain fixed-size feature maps. ROI pooling is a neural-net layer mostly used in training a ‘Fast
R-CNN‘ network for object detection.

Usage

mx.symbol.ROIPooling(...)

Arguments

data NDArray-or-Symbol The input array to the pooling operator, a 4D Feature maps

rois NDArray-or-Symbol Bounding box coordinates, a 2D array of [[batch_index,
x1, y1, x2, y2]], where (x1, y1) and (x2, y2) are top left and bottom right
corners of designated region of interest. ‘batch_index‘ indicates the index of
corresponding image in the input array

pooled.size Shape(tuple), required ROI pooling output shape (h,w)

spatial.scale float, required Ratio of input feature map height (or w) to raw image height (or
w). Equals the reciprocal of total stride in convolutional layers

name string, optional Name of the resulting symbol.

mx.symbol.round 453

Details

This operator takes a 4D feature map as an input array and region proposals as ‘rois‘, then it pools
over sub-regions of input and produces a fixed-sized output array regardless of the ROI size.

To crop the feature map accordingly, you can resize the bounding box coordinates by changing the
parameters ‘rois‘ and ‘spatial_scale‘.

The cropped feature maps are pooled by standard max pooling operation to a fixed size output
indicated by a ‘pooled_size‘ parameter. batch_size will change to the number of region bounding
boxes after ‘ROIPooling‘.

The size of each region of interest doesn’t have to be perfectly divisible by the number of pooling
sections(‘pooled_size‘).

Example::

x = [[[[0., 1., 2., 3., 4., 5.], [6., 7., 8., 9., 10., 11.], [12., 13., 14., 15., 16., 17.], [18., 19., 20., 21.,
22., 23.], [24., 25., 26., 27., 28., 29.], [30., 31., 32., 33., 34., 35.], [36., 37., 38., 39., 40., 41.], [
42., 43., 44., 45., 46., 47.]]]]

// region of interest i.e. bounding box coordinates. y = [[0,0,0,4,4]]

// returns array of shape (2,2) according to the given roi with max pooling. ROIPooling(x, y, (2,2),
1.0) = [[[[14., 16.], [26., 28.]]]]

// region of interest is changed due to the change in ‘spacial_scale‘ parameter. ROIPooling(x, y,
(2,2), 0.7) = [[[[7., 9.], [19., 21.]]]]

Defined in src/operator/roi_pooling.cc:L225

Value

out The result mx.symbol

mx.symbol.round round:Returns element-wise rounded value to the nearest integer of
the input.

Description

Example::

Usage

mx.symbol.round(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

454 mx.symbol.rsqrt

Details

round([-1.5, 1.5, -1.9, 1.9, 2.1]) = [-2., 2., -2., 2., 2.]

The storage type of “round“ output depends upon the input storage type:

- round(default) = default - round(row_sparse) = row_sparse - round(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L778

Value

out The result mx.symbol

mx.symbol.rsqrt rsqrt:Returns element-wise inverse square-root value of the input.

Description

.. math:: rsqrt(x) = 1/\sqrtx

Usage

mx.symbol.rsqrt(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

rsqrt([4,9,16]) = [0.5, 0.33333334, 0.25]

The storage type of “rsqrt“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L221

Value

out The result mx.symbol

mx.symbol.sample_exponential 455

mx.symbol.sample_exponential

sample_exponential:Concurrent sampling from multiple exponential
distributions with parameters lambda (rate).

Description

The parameters of the distributions are provided as an input array. Let *[s]* be the shape of the
input array, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the
operator, and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array
with shape *[s]x[t]*.

Usage

mx.symbol.sample_exponential(...)

Arguments

lam NDArray-or-Symbol Lambda (rate) parameters of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

Details

For any valid *n*-dimensional index *i* with respect to the input array, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input value at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input array.

Examples::

lam = [1.0, 8.5]

// Draw a single sample for each distribution sample_exponential(lam) = [0.51837951, 0.09994757]

// Draw a vector containing two samples for each distribution sample_exponential(lam, shape=(2))
= [[0.51837951, 0.19866663], [0.09994757, 0.50447971]]

Defined in src/operator/random/multisample_op.cc:L284

Value

out The result mx.symbol

456 mx.symbol.sample_gamma

mx.symbol.sample_gamma

sample_gamma:Concurrent sampling from multiple gamma distribu-
tions with parameters *alpha* (shape) and *beta* (scale).

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Usage

mx.symbol.sample_gamma(...)

Arguments

alpha NDArray-or-Symbol Alpha (shape) parameters of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

beta NDArray-or-Symbol Beta (scale) parameters of the distributions.

name string, optional Name of the resulting symbol.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Examples::

alpha = [0.0, 2.5] beta = [1.0, 0.7]

// Draw a single sample for each distribution sample_gamma(alpha, beta) = [0. , 2.25797319]

// Draw a vector containing two samples for each distribution sample_gamma(alpha, beta, shape=(2))
= [[0. , 0.], [2.25797319, 1.70734084]]

Defined in src/operator/random/multisample_op.cc:L282

Value

out The result mx.symbol

mx.symbol.sample_generalized_negative_binomial 457

mx.symbol.sample_generalized_negative_binomial

sample_generalized_negative_binomial:Concurrent sampling from
multiple generalized negative binomial distributions with parameters
mu (mean) and *alpha* (dispersion).

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Usage

mx.symbol.sample_generalized_negative_binomial(...)

Arguments

mu NDArray-or-Symbol Means of the distributions.
shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-

tribution.
dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-

put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).
alpha NDArray-or-Symbol Alpha (dispersion) parameters of the distributions.
name string, optional Name of the resulting symbol.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Samples will always be returned as a floating point data type.

Examples::

mu = [2.0, 2.5] alpha = [1.0, 0.1]

// Draw a single sample for each distribution sample_generalized_negative_binomial(mu, alpha) =
[0., 3.]

// Draw a vector containing two samples for each distribution sample_generalized_negative_binomial(mu,
alpha, shape=(2)) = [[0., 3.], [3., 1.]]

Defined in src/operator/random/multisample_op.cc:L293

Value

out The result mx.symbol

458 mx.symbol.sample_multinomial

mx.symbol.sample_multinomial

sample_multinomial:Concurrent sampling from multiple multinomial
distributions.

Description

data is an *n* dimensional array whose last dimension has length *k*, where *k* is the number
of possible outcomes of each multinomial distribution. This operator will draw *shape* samples
from each distribution. If shape is empty one sample will be drawn from each distribution.

Usage

mx.symbol.sample_multinomial(...)

Arguments

data NDArray-or-Symbol Distribution probabilities. Must sum to one on the last
axis.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

get.prob boolean, optional, default=0 Whether to also return the log probability of sam-
pled result. This is usually used for differentiating through stochastic variables,
e.g. in reinforcement learning.

dtype ’float16’, ’float32’, ’float64’, ’int32’, ’uint8’,optional, default=’int32’ DType of
the output in case this can’t be inferred.

name string, optional Name of the resulting symbol.

Details

If *get_prob* is true, a second array containing log likelihood of the drawn samples will also be
returned. This is usually used for reinforcement learning where you can provide reward as head
gradient for this array to estimate gradient.

Note that the input distribution must be normalized, i.e. *data* must sum to 1 along its last axis.

Examples::

probs = [[0, 0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1, 0]]

// Draw a single sample for each distribution sample_multinomial(probs) = [3, 0]

// Draw a vector containing two samples for each distribution sample_multinomial(probs, shape=(2))
= [[4, 2], [0, 0]]

// requests log likelihood sample_multinomial(probs, get_prob=True) = [2, 1], [0.2, 0.3]

Value

out The result mx.symbol

mx.symbol.sample_negative_binomial 459

mx.symbol.sample_negative_binomial

sample_negative_binomial:Concurrent sampling from multiple nega-
tive binomial distributions with parameters *k* (failure limit) and *p*
(failure probability).

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Usage

mx.symbol.sample_negative_binomial(...)

Arguments

k NDArray-or-Symbol Limits of unsuccessful experiments.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

p NDArray-or-Symbol Failure probabilities in each experiment.

name string, optional Name of the resulting symbol.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Samples will always be returned as a floating point data type.

Examples::

k = [20, 49] p = [0.4 , 0.77]

// Draw a single sample for each distribution sample_negative_binomial(k, p) = [15., 16.]

// Draw a vector containing two samples for each distribution sample_negative_binomial(k, p,
shape=(2)) = [[15., 50.], [16., 12.]]

Defined in src/operator/random/multisample_op.cc:L289

Value

out The result mx.symbol

460 mx.symbol.sample_normal

mx.symbol.sample_normal

sample_normal:Concurrent sampling from multiple normal distribu-
tions with parameters *mu* (mean) and *sigma* (standard deviation).

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Usage

mx.symbol.sample_normal(...)

Arguments

mu NDArray-or-Symbol Means of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

sigma NDArray-or-Symbol Standard deviations of the distributions.

name string, optional Name of the resulting symbol.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Examples::

mu = [0.0, 2.5] sigma = [1.0, 3.7]

// Draw a single sample for each distribution sample_normal(mu, sigma) = [-0.56410581, 0.95934606]

// Draw a vector containing two samples for each distribution sample_normal(mu, sigma, shape=(2))
= [[-0.56410581, 0.2928229], [0.95934606, 4.48287058]]

Defined in src/operator/random/multisample_op.cc:L279

Value

out The result mx.symbol

mx.symbol.sample_poisson 461

mx.symbol.sample_poisson

sample_poisson:Concurrent sampling from multiple Poisson distribu-
tions with parameters lambda (rate).

Description

The parameters of the distributions are provided as an input array. Let *[s]* be the shape of the
input array, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the
operator, and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array
with shape *[s]x[t]*.

Usage

mx.symbol.sample_poisson(...)

Arguments

lam NDArray-or-Symbol Lambda (rate) parameters of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

Details

For any valid *n*-dimensional index *i* with respect to the input array, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input value at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input array.

Samples will always be returned as a floating point data type.

Examples::

lam = [1.0, 8.5]

// Draw a single sample for each distribution sample_poisson(lam) = [0., 13.]

// Draw a vector containing two samples for each distribution sample_poisson(lam, shape=(2)) = [[
0., 4.], [13., 8.]]

Defined in src/operator/random/multisample_op.cc:L286

Value

out The result mx.symbol

462 mx.symbol.sample_uniform

mx.symbol.sample_uniform

sample_uniform:Concurrent sampling from multiple uniform distribu-
tions on the intervals given by *[low,high)*.

Description

The parameters of the distributions are provided as input arrays. Let *[s]* be the shape of the input
arrays, *n* be the dimension of *[s]*, *[t]* be the shape specified as the parameter of the operator,
and *m* be the dimension of *[t]*. Then the output will be a *(n+m)*-dimensional array with
shape *[s]x[t]*.

Usage

mx.symbol.sample_uniform(...)

Arguments

low NDArray-or-Symbol Lower bounds of the distributions.

shape Shape(tuple), optional, default=[] Shape to be sampled from each random dis-
tribution.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

high NDArray-or-Symbol Upper bounds of the distributions.

name string, optional Name of the resulting symbol.

Details

For any valid *n*-dimensional index *i* with respect to the input arrays, *output[i]* will be an *m*-
dimensional array that holds randomly drawn samples from the distribution which is parameterized
by the input values at index *i*. If the shape parameter of the operator is not set, then one sample
will be drawn per distribution and the output array has the same shape as the input arrays.

Examples::

low = [0.0, 2.5] high = [1.0, 3.7]

// Draw a single sample for each distribution sample_uniform(low, high) = [0.40451524, 3.18687344]

// Draw a vector containing two samples for each distribution sample_uniform(low, high, shape=(2))
= [[0.40451524, 0.18017688], [3.18687344, 3.68352246]]

Defined in src/operator/random/multisample_op.cc:L277

Value

out The result mx.symbol

mx.symbol.save 463

mx.symbol.save Save an mx.symbol object

Description

Save an mx.symbol object

Usage

mx.symbol.save(symbol, filename)

Arguments

symbol the mx.symbol object

filename the filename (including the path)

Examples

data = mx.symbol.Variable('data')
mx.symbol.save(data, 'temp.symbol')
data2 = mx.symbol.load('temp.symbol')

mx.symbol.scatter_nd scatter_nd:Scatters data into a new tensor according to indices.

Description

Given ‘data‘ with shape ‘(Y_0, ..., Y_K-1, X_M, ..., X_N-1)‘ and indices with shape ‘(M, Y_0, ...,
Y_K-1)‘, the output will have shape ‘(X_0, X_1, ..., X_N-1)‘, where ‘M <= N‘. If ‘M == N‘, data
shape should simply be ‘(Y_0, ..., Y_K-1)‘.

Usage

mx.symbol.scatter_nd(...)

Arguments

data NDArray-or-Symbol data

indices NDArray-or-Symbol indices

shape Shape(tuple), required Shape of output.

name string, optional Name of the resulting symbol.

464 mx.symbol.SequenceLast

Details

The elements in output is defined as follows::

output[indices[0, y_0, ..., y_K-1], ..., indices[M-1, y_0, ..., y_K-1], x_M, ..., x_N-1] = data[y_0, ...,
y_K-1, x_M, ..., x_N-1]

all other entries in output are 0.

.. warning::

If the indices have duplicates, the result will be non-deterministic and the gradient of ‘scatter_nd‘
will not be correct!!

Examples::

data = [2, 3, 0] indices = [[1, 1, 0], [0, 1, 0]] shape = (2, 2) scatter_nd(data, indices, shape) = [[0,
0], [2, 3]]

data = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] indices = [[0, 1], [1, 1]] shape = (2, 2, 2, 2) scatter_nd(data,
indices, shape) = [[[[0, 0], [0, 0]],

[[1, 2], [3, 4]]],

[[[0, 0], [0, 0]],

[[5, 6], [7, 8]]]]

Value

out The result mx.symbol

mx.symbol.SequenceLast

SequenceLast:Takes the last element of a sequence.

Description

This function takes an n-dimensional input array of the form [max_sequence_length, batch_size,
other_feature_dims] and returns a (n-1)-dimensional array of the form [batch_size, other_feature_dims].

Usage

mx.symbol.SequenceLast(...)

Arguments

data NDArray-or-Symbol n-dimensional input array of the form [max_sequence_length,
batch_size, other_feature_dims] where n>2

sequence.length

NDArray-or-Symbol vector of sequence lengths of the form [batch_size]
use.sequence.length

boolean, optional, default=0 If set to true, this layer takes in an extra input pa-
rameter ‘sequence_length‘ to specify variable length sequence

mx.symbol.SequenceMask 465

axis int, optional, default=’0’ The sequence axis. Only values of 0 and 1 are currently
supported.

name string, optional Name of the resulting symbol.

Details

Parameter ‘sequence_length‘ is used to handle variable-length sequences. ‘sequence_length‘ should
be an input array of positive ints of dimension [batch_size]. To use this parameter, set ‘use_sequence_length‘
to ‘True‘, otherwise each example in the batch is assumed to have the max sequence length.

.. note:: Alternatively, you can also use ‘take‘ operator.

Example::

x = [[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]],

[[10., 11., 12.], [13., 14., 15.], [16., 17., 18.]],

[[19., 20., 21.], [22., 23., 24.], [25., 26., 27.]]]

// returns last sequence when sequence_length parameter is not used SequenceLast(x) = [[19., 20.,
21.], [22., 23., 24.], [25., 26., 27.]]

// sequence_length is used SequenceLast(x, sequence_length=[1,1,1], use_sequence_length=True)
= [[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]

// sequence_length is used SequenceLast(x, sequence_length=[1,2,3], use_sequence_length=True)
= [[1., 2., 3.], [13., 14., 15.], [25., 26., 27.]]

Defined in src/operator/sequence_last.cc:L106

Value

out The result mx.symbol

mx.symbol.SequenceMask

SequenceMask:Sets all elements outside the sequence to a constant
value.

Description

This function takes an n-dimensional input array of the form [max_sequence_length, batch_size,
other_feature_dims] and returns an array of the same shape.

Usage

mx.symbol.SequenceMask(...)

466 mx.symbol.SequenceMask

Arguments

data NDArray-or-Symbol n-dimensional input array of the form [max_sequence_length,
batch_size, other_feature_dims] where n>2

sequence.length

NDArray-or-Symbol vector of sequence lengths of the form [batch_size]
use.sequence.length

boolean, optional, default=0 If set to true, this layer takes in an extra input pa-
rameter ‘sequence_length‘ to specify variable length sequence

value float, optional, default=0 The value to be used as a mask.

axis int, optional, default=’0’ The sequence axis. Only values of 0 and 1 are currently
supported.

name string, optional Name of the resulting symbol.

Details

Parameter ‘sequence_length‘ is used to handle variable-length sequences. ‘sequence_length‘ should
be an input array of positive ints of dimension [batch_size]. To use this parameter, set ‘use_sequence_length‘
to ‘True‘, otherwise each example in the batch is assumed to have the max sequence length and this
operator works as the ‘identity‘ operator.

Example::

x = [[[1., 2., 3.], [4., 5., 6.]],

[[7., 8., 9.], [10., 11., 12.]],

[[13., 14., 15.], [16., 17., 18.]]]

// Batch 1 B1 = [[1., 2., 3.], [7., 8., 9.], [13., 14., 15.]]

// Batch 2 B2 = [[4., 5., 6.], [10., 11., 12.], [16., 17., 18.]]

// works as identity operator when sequence_length parameter is not used SequenceMask(x) = [[[
1., 2., 3.], [4., 5., 6.]],

[[7., 8., 9.], [10., 11., 12.]],

[[13., 14., 15.], [16., 17., 18.]]]

// sequence_length [1,1] means 1 of each batch will be kept // and other rows are masked with
default mask value = 0 SequenceMask(x, sequence_length=[1,1], use_sequence_length=True) = [[[
1., 2., 3.], [4., 5., 6.]],

[[0., 0., 0.], [0., 0., 0.]],

[[0., 0., 0.], [0., 0., 0.]]]

// sequence_length [2,3] means 2 of batch B1 and 3 of batch B2 will be kept // and other rows
are masked with value = 1 SequenceMask(x, sequence_length=[2,3], use_sequence_length=True,
value=1) = [[[1., 2., 3.], [4., 5., 6.]],

[[7., 8., 9.], [10., 11., 12.]],

[[1., 1., 1.], [16., 17., 18.]]]

Defined in src/operator/sequence_mask.cc:L186

mx.symbol.SequenceReverse 467

Value

out The result mx.symbol

mx.symbol.SequenceReverse

SequenceReverse:Reverses the elements of each sequence.

Description

This function takes an n-dimensional input array of the form [max_sequence_length, batch_size,
other_feature_dims] and returns an array of the same shape.

Usage

mx.symbol.SequenceReverse(...)

Arguments

data NDArray-or-Symbol n-dimensional input array of the form [max_sequence_length,
batch_size, other dims] where n>2

sequence.length

NDArray-or-Symbol vector of sequence lengths of the form [batch_size]
use.sequence.length

boolean, optional, default=0 If set to true, this layer takes in an extra input pa-
rameter ‘sequence_length‘ to specify variable length sequence

axis int, optional, default=’0’ The sequence axis. Only 0 is currently supported.

name string, optional Name of the resulting symbol.

Details

Parameter ‘sequence_length‘ is used to handle variable-length sequences. ‘sequence_length‘ should
be an input array of positive ints of dimension [batch_size]. To use this parameter, set ‘use_sequence_length‘
to ‘True‘, otherwise each example in the batch is assumed to have the max sequence length.

Example::

x = [[[1., 2., 3.], [4., 5., 6.]],

[[7., 8., 9.], [10., 11., 12.]],

[[13., 14., 15.], [16., 17., 18.]]]

// Batch 1 B1 = [[1., 2., 3.], [7., 8., 9.], [13., 14., 15.]]

// Batch 2 B2 = [[4., 5., 6.], [10., 11., 12.], [16., 17., 18.]]

// returns reverse sequence when sequence_length parameter is not used SequenceReverse(x) = [[[
13., 14., 15.], [16., 17., 18.]],

[[7., 8., 9.], [10., 11., 12.]],

[[1., 2., 3.], [4., 5., 6.]]]

468 mx.symbol.sgd_mom_update

// sequence_length [2,2] means 2 rows of // both batch B1 and B2 will be reversed. SequenceRe-
verse(x, sequence_length=[2,2], use_sequence_length=True) = [[[7., 8., 9.], [10., 11., 12.]],

[[1., 2., 3.], [4., 5., 6.]],

[[13., 14., 15.], [16., 17., 18.]]]

// sequence_length [2,3] means 2 of batch B2 and 3 of batch B3 // will be reversed. SequenceRe-
verse(x, sequence_length=[2,3], use_sequence_length=True) = [[[7., 8., 9.], [16., 17., 18.]],

[[1., 2., 3.], [10., 11., 12.]],

[[13., 14, 15.], [4., 5., 6.]]]

Defined in src/operator/sequence_reverse.cc:L122

Value

out The result mx.symbol

mx.symbol.sgd_mom_update

sgd_mom_update:Momentum update function for Stochastic Gradient
Descent (SGD) optimizer.

Description

Momentum update has better convergence rates on neural networks. Mathematically it looks like
below:

Usage

mx.symbol.sgd_mom_update(...)

Arguments

weight NDArray-or-Symbol Weight
grad NDArray-or-Symbol Gradient
mom NDArray-or-Symbol Momentum
lr float, required Learning rate
momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.
wd float, optional, default=0 Weight decay augments the objective function with a

regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse and both weight and momentum have the same stype

name string, optional Name of the resulting symbol.

mx.symbol.sgd_update 469

Details

.. math::

v_1 = \alpha * \nabla J(W_0)\ v_t = \gamma v_t-1 - \alpha * \nabla J(W_t-1)\ W_t = W_t-1 + v_t

It updates the weights using::

v = momentum * v - learning_rate * gradient weight += v

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

However, if grad’s storage type is “row_sparse“, “lazy_update“ is True and weight’s storage type is
the same as momentum’s storage type, only the row slices whose indices appear in grad.indices are
updated (for both weight and momentum)::

for row in gradient.indices: v[row] = momentum[row] * v[row] - learning_rate * gradient[row]
weight[row] += v[row]

Defined in src/operator/optimizer_op.cc:L556

Value

out The result mx.symbol

mx.symbol.sgd_update sgd_update:Update function for Stochastic Gradient Descent (SGD)
optimizer.

Description

It updates the weights using::

Usage

mx.symbol.sgd_update(...)

Arguments

weight NDArray-or-Symbol Weight
grad NDArray-or-Symbol Gradient
lr float, required Learning rate
wd float, optional, default=0 Weight decay augments the objective function with a

regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.
clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]

If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

lazy.update boolean, optional, default=1 If true, lazy updates are applied if gradient’s stype
is row_sparse.

name string, optional Name of the resulting symbol.

470 mx.symbol.shape_array

Details

weight = weight - learning_rate * (gradient + wd * weight)

However, if gradient is of “row_sparse“ storage type and “lazy_update“ is True, only the row slices
whose indices appear in grad.indices are updated::

for row in gradient.indices: weight[row] = weight[row] - learning_rate * (gradient[row] + wd *
weight[row])

Defined in src/operator/optimizer_op.cc:L515

Value

out The result mx.symbol

mx.symbol.shape_array shape_array:Returns a 1D int64 array containing the shape of data.

Description

Example::

Usage

mx.symbol.shape_array(...)

Arguments

data NDArray-or-Symbol Input Array.

name string, optional Name of the resulting symbol.

Details

shape_array([[1,2,3,4], [5,6,7,8]]) = [2,4]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L574

Value

out The result mx.symbol

mx.symbol.shuffle 471

mx.symbol.shuffle shuffle:Randomly shuffle the elements.

Description

This shuffles the array along the first axis. The order of the elements in each subarray does not
change. For example, if a 2D array is given, the order of the rows randomly changes, but the order
of the elements in each row does not change.

Usage

mx.symbol.shuffle(...)

Arguments

data NDArray-or-Symbol Data to be shuffled.
name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.sigmoid sigmoid:Computes sigmoid of x element-wise.

Description

.. math:: y = 1 / (1 + exp(-x))

Usage

mx.symbol.sigmoid(...)

Arguments

data NDArray-or-Symbol The input array.
name string, optional Name of the resulting symbol.

Details

The storage type of “sigmoid“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L119

Value

out The result mx.symbol

472 mx.symbol.signsgd_update

mx.symbol.sign sign:Returns element-wise sign of the input.

Description

Example::

Usage

mx.symbol.sign(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

sign([-2, 0, 3]) = [-1, 0, 1]

The storage type of “sign“ output depends upon the input storage type:

- sign(default) = default - sign(row_sparse) = row_sparse - sign(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L759

Value

out The result mx.symbol

mx.symbol.signsgd_update

signsgd_update:Update function for SignSGD optimizer.

Description

.. math::

Usage

mx.symbol.signsgd_update(...)

mx.symbol.signum_update 473

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

lr float, required Learning rate

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

name string, optional Name of the resulting symbol.

Details

g_t = \nabla J(W_t-1)\ W_t = W_t-1 - \eta_t \textsign(g_t)

It updates the weights using::

weight = weight - learning_rate * sign(gradient)

.. note:: - sparse ndarray not supported for this optimizer yet.

Defined in src/operator/optimizer_op.cc:L63

Value

out The result mx.symbol

mx.symbol.signum_update

signum_update:SIGN momentUM (Signum) optimizer.

Description

.. math::

Usage

mx.symbol.signum_update(...)

474 mx.symbol.sin

Arguments

weight NDArray-or-Symbol Weight

grad NDArray-or-Symbol Gradient

mom NDArray-or-Symbol Momentum

lr float, required Learning rate

momentum float, optional, default=0 The decay rate of momentum estimates at each epoch.

wd float, optional, default=0 Weight decay augments the objective function with a
regularization term that penalizes large weights. The penalty scales with the
square of the magnitude of each weight.

rescale.grad float, optional, default=1 Rescale gradient to grad = rescale_grad*grad.

clip.gradient float, optional, default=-1 Clip gradient to the range of [-clip_gradient, clip_gradient]
If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad,
clip_gradient), -clip_gradient).

wd.lh float, optional, default=0 The amount of weight decay that does not go into gra-
dient/momentum calculationsotherwise do weight decay algorithmically only.

name string, optional Name of the resulting symbol.

Details

g_t = \nabla J(W_t-1)\ m_t = \beta m_t-1 + (1 - \beta) g_t\ W_t = W_t-1 - \eta_t \textsign(m_t)

It updates the weights using:: state = momentum * state + (1-momentum) * gradient weight =
weight - learning_rate * sign(state)

Where the parameter “momentum“ is the decay rate of momentum estimates at each epoch.

.. note:: - sparse ndarray not supported for this optimizer yet.

Defined in src/operator/optimizer_op.cc:L92

Value

out The result mx.symbol

mx.symbol.sin sin:Computes the element-wise sine of the input array.

Description

The input should be in radians (:math:‘2\pi‘ rad equals 360 degrees).

Usage

mx.symbol.sin(...)

mx.symbol.sinh 475

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

.. math:: sin([0, \pi/4, \pi/2]) = [0, 0.707, 1]

The storage type of “sin“ output depends upon the input storage type:

- sin(default) = default - sin(row_sparse) = row_sparse - sin(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L47

Value

out The result mx.symbol

mx.symbol.sinh sinh:Returns the hyperbolic sine of the input array, computed element-
wise.

Description

.. math:: sinh(x) = 0.5\times(exp(x) - exp(-x))

Usage

mx.symbol.sinh(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “sinh“ output depends upon the input storage type:

- sinh(default) = default - sinh(row_sparse) = row_sparse - sinh(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L371

Value

out The result mx.symbol

476 mx.symbol.slice

mx.symbol.size_array size_array:Returns a 1D int64 array containing the size of data.

Description

Example::

Usage

mx.symbol.size_array(...)

Arguments

data NDArray-or-Symbol Input Array.

name string, optional Name of the resulting symbol.

Details

size_array([[1,2,3,4], [5,6,7,8]]) = [8]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L625

Value

out The result mx.symbol

mx.symbol.slice 477

mx.symbol.slice slice:Slices a region of the array. .. note:: “crop“ is deprecated.
Use “slice“ instead. This function returns a sliced array between
the indices given by ‘begin‘ and ‘end‘ with the corresponding ‘step‘.
For an input array of “shape=(d_0, d_1, ..., d_n-1)“, slice operation
with “begin=(b_0, b_1...b_m-1)“, “end=(e_0, e_1, ..., e_m-1)“, and
“step=(s_0, s_1, ..., s_m-1)“, where m <= n, results in an array with
the shape “(|e_0-b_0|/|s_0|, ..., |e_m-1-b_m-1|/|s_m-1|, d_m, ..., d_n-
1)“. The resulting array’s *k*-th dimension contains elements from
the *k*-th dimension of the input array starting from index “b_k“ (in-
clusive) with step “s_k“ until reaching “e_k“ (exclusive). If the *k*-th
elements are ‘None‘ in the sequence of ‘begin‘, ‘end‘, and ‘step‘, the
following rule will be used to set default values. If ‘s_k‘ is ‘None‘, set
‘s_k=1‘. If ‘s_k > 0‘, set ‘b_k=0‘, ‘e_k=d_k‘; else, set ‘b_k=d_k-1‘,
‘e_k=-1‘. The storage type of “slice“ output depends on storage types
of inputs - slice(csr) = csr - otherwise, “slice“ generates output with
default storage .. note:: When input data storage type is csr, it only
supports step=(), or step=(None,), or step=(1,) to generate a csr out-
put. For other step parameter values, it falls back to slicing a dense
tensor. Example:: x = [[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11.,
12.]] slice(x, begin=(0,1), end=(2,4)) = [[2., 3., 4.], [6., 7., 8.]]
slice(x, begin=(None, 0), end=(None, 3), step=(-1, 2)) = [[9., 11.],
[5., 7.], [1., 3.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L482

Usage

mx.symbol.slice(...)

Arguments

data NDArray-or-Symbol Source input

begin Shape(tuple), required starting indices for the slice operation, supports negative
indices.

end Shape(tuple), required ending indices for the slice operation, supports negative
indices.

step Shape(tuple), optional, default=[] step for the slice operation, supports negative
values.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

478 mx.symbol.SliceChannel

mx.symbol.SliceChannel

SliceChannel:Splits an array along a particular axis into multiple sub-
arrays.

Description

.. note:: “SliceChannel“ is deprecated. Use “split“ instead.

Usage

mx.symbol.SliceChannel(...)

Arguments

data NDArray-or-Symbol The input

num.outputs int, required Number of splits. Note that this should evenly divide the length of
the ‘axis‘.

axis int, optional, default=’1’ Axis along which to split.

squeeze.axis boolean, optional, default=0 If true, Removes the axis with length 1 from the
shapes of the output arrays. **Note** that setting ‘squeeze_axis‘ to “true“ re-
moves axis with length 1 only along the ‘axis‘ which it is split. Also ‘squeeze_axis‘
can be set to “true“ only if “input.shape[axis] == num_outputs“.

name string, optional Name of the resulting symbol.

Details

Note that ‘num_outputs‘ should evenly divide the length of the axis along which to split the
array.

Example::

x = [[[1.] [2.]] [[3.] [4.]] [[5.] [6.]]] x.shape = (3, 2, 1)

y = split(x, axis=1, num_outputs=2) // a list of 2 arrays with shape (3, 1, 1) y = [[[1.]] [[3.]] [[5.]]]

[[[2.]] [[4.]] [[6.]]]

y[0].shape = (3, 1, 1)

z = split(x, axis=0, num_outputs=3) // a list of 3 arrays with shape (1, 2, 1) z = [[[1.] [2.]]]

[[[3.] [4.]]]

[[[5.] [6.]]]

z[0].shape = (1, 2, 1)

‘squeeze_axis=1‘ removes the axis with length 1 from the shapes of the output arrays. **Note**
that setting ‘squeeze_axis‘ to “1“ removes axis with length 1 only along the ‘axis‘ which it is split.
Also ‘squeeze_axis‘ can be set to true only if “input.shape[axis] == num_outputs“.

Example::

mx.symbol.slice_axis 479

z = split(x, axis=0, num_outputs=3, squeeze_axis=1) // a list of 3 arrays with shape (2, 1) z = [[1.]
[2.]]

[[3.] [4.]]

[[5.] [6.]] z[0].shape = (2 ,1)

Defined in src/operator/slice_channel.cc:L107

Value

out The result mx.symbol

mx.symbol.slice_axis slice_axis:Slices along a given axis. Returns an array slice along a
given ‘axis‘ starting from the ‘begin‘ index to the ‘end‘ index. Ex-
amples:: x = [[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]]
slice_axis(x, axis=0, begin=1, end=3) = [[5., 6., 7., 8.], [9., 10., 11.,
12.]] slice_axis(x, axis=1, begin=0, end=2) = [[1., 2.], [5., 6.], [9.,
10.]] slice_axis(x, axis=1, begin=-3, end=-1) = [[2., 3.], [6., 7.], [
10., 11.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L571

Usage

mx.symbol.slice_axis(...)

Arguments

data NDArray-or-Symbol Source input

axis int, required Axis along which to be sliced, supports negative indexes.

begin int, required The beginning index along the axis to be sliced, supports negative
indexes.

end int or None, required The ending index along the axis to be sliced, supports
negative indexes.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

480 mx.symbol.slice_like

mx.symbol.slice_like slice_like:Slices a region of the array like the shape of another ar-
ray. This function is similar to “slice“, however, the ‘begin‘ are al-
ways ‘0‘s and ‘end‘ of specific axes are inferred from the second input
‘shape_like‘. Given the second ‘shape_like‘ input of “shape=(d_0,
d_1, ..., d_n-1)“, a “slice_like“ operator with default empty ‘axes‘,
it performs the following operation: “ out = slice(input, begin=(0, 0,
..., 0), end=(d_0, d_1, ..., d_n-1))“. When ‘axes‘ is not empty, it is
used to speficy which axes are being sliced. Given a 4-d input data,
“slice_like“ operator with “axes=(0, 2, -1)“ will perform the follow-
ing operation: “ out = slice(input, begin=(0, 0, 0, 0), end=(d_0,
None, d_2, d_3))“. Note that it is allowed to have first and sec-
ond input with different dimensions, however, you have to make sure
the ‘axes‘ are specified and not exceeding the dimension limits. For
example, given ‘input_1‘ with “shape=(2,3,4,5)“ and ‘input_2‘ with
“shape=(1,2,3)“, it is not allowed to use: “ out = slice_like(a, b)“
because ndim of ‘input_1‘ is 4, and ndim of ‘input_2‘ is 3. The follow-
ing is allowed in this situation: “ out = slice_like(a, b, axes=(0, 2))“
Example:: x = [[1., 2., 3., 4.], [5., 6., 7., 8.], [9., 10., 11., 12.]] y =
[[0., 0., 0.], [0., 0., 0.]] slice_like(x, y) = [[1., 2., 3.] [5., 6., 7.]]
slice_like(x, y, axes=(0, 1)) = [[1., 2., 3.] [5., 6., 7.]] slice_like(x, y,
axes=(0)) = [[1., 2., 3., 4.] [5., 6., 7., 8.]] slice_like(x, y, axes=(-1))
= [[1., 2., 3.] [5., 6., 7.] [9., 10., 11.]]

Description

Defined in src/operator/tensor/matrix_op.cc:L625

Usage

mx.symbol.slice_like(...)

Arguments

data NDArray-or-Symbol Source input

shape.like NDArray-or-Symbol Shape like input

axes Shape(tuple), optional, default=[] List of axes on which input data will be sliced
according to the corresponding size of the second input. By default will slice on
all axes. Negative axes are supported.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.smooth_l1 481

mx.symbol.smooth_l1 smooth_l1:Calculate Smooth L1 Loss(lhs, scalar) by summing

Description

.. math::

Usage

mx.symbol.smooth_l1(...)

Arguments

data NDArray-or-Symbol source input

scalar float scalar input

name string, optional Name of the resulting symbol.

Details

f(x) = \begincases (\sigma x)^2/2,& \textif x < 1/\sigma^2\ |x|-0.5/\sigma^2,& \textotherwise \end-
cases

where :math:‘x‘ is an element of the tensor *lhs* and :math:‘\sigma‘ is the scalar.

Example::

smooth_l1([1, 2, 3, 4]) = [0.5, 1.5, 2.5, 3.5] smooth_l1([1, 2, 3, 4], scalar=1) = [0.5, 1.5, 2.5, 3.5]

Defined in src/operator/tensor/elemwise_binary_scalar_op_extended.cc:L108

Value

out The result mx.symbol

mx.symbol.softmax softmax:Applies the softmax function.

Description

The resulting array contains elements in the range (0,1) and the elements along the given axis sum
up to 1.

Usage

mx.symbol.softmax(...)

482 mx.symbol.SoftmaxActivation

Arguments

data NDArray-or-Symbol The input array.

length NDArray-or-Symbol The length array.

axis int, optional, default=’-1’ The axis along which to compute softmax.

temperature double or None, optional, default=None Temperature parameter in softmax

dtype None, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to the same as input’s dtype if not
defined (dtype=None).

use.length boolean or None, optional, default=0 Whether to use the length input as a mask
over the data input.

name string, optional Name of the resulting symbol.

Details

.. math:: softmax(\mathbfz/t)_j = \frace^z_j/t\sum_k=1^K e^z_k/t

for :math:‘j = 1, ..., K‘

t is the temperature parameter in softmax function. By default, t equals 1.0

Example::

x = [[1. 1. 1.] [1. 1. 1.]]

softmax(x,axis=0) = [[0.5 0.5 0.5] [0.5 0.5 0.5]]

softmax(x,axis=1) = [[0.33333334, 0.33333334, 0.33333334], [0.33333334, 0.33333334, 0.33333334]]

Defined in src/operator/nn/softmax.cc:L134

Value

out The result mx.symbol

mx.symbol.SoftmaxActivation

SoftmaxActivation:Applies softmax activation to input. This is in-
tended for internal layers.

Description

.. note::

Usage

mx.symbol.SoftmaxActivation(...)

mx.symbol.softmax_cross_entropy 483

Arguments

data NDArray-or-Symbol The input array.

mode ’channel’, ’instance’,optional, default=’instance’ Specifies how to compute the
softmax. If set to “instance“, it computes softmax for each instance. If set to
“channel“, It computes cross channel softmax for each position of each instance.

name string, optional Name of the resulting symbol.

Details

This operator has been deprecated, please use ‘softmax‘.

If ‘mode‘ = “instance“, this operator will compute a softmax for each instance in the batch. This is
the default mode.

If ‘mode‘ = “channel“, this operator will compute a k-class softmax at each position of each in-
stance, where ‘k‘ = “num_channel“. This mode can only be used when the input array has at least
3 dimensions. This can be used for ‘fully convolutional network‘, ‘image segmentation‘, etc.

Example::

»> input_array = mx.nd.array([[3., 0.5, -0.5, 2., 7.], »> [2., -.4, 7., 3., 0.2]]) »> softmax_act =
mx.nd.SoftmaxActivation(input_array) »> print softmax_act.asnumpy() [[1.78322066e-02 1.46375655e-
03 5.38485940e-04 6.56010211e-03 9.73605454e-01] [6.56221947e-03 5.95310994e-04 9.73919690e-
01 1.78379621e-02 1.08472735e-03]]

Defined in src/operator/nn/softmax_activation.cc:L59

Value

out The result mx.symbol

mx.symbol.softmax_cross_entropy

softmax_cross_entropy:Calculate cross entropy of softmax output and
one-hot label.

Description

- This operator computes the cross entropy in two steps: - Applies softmax function on the input
array. - Computes and returns the cross entropy loss between the softmax output and the labels.

Usage

mx.symbol.softmax_cross_entropy(...)

Arguments

data NDArray-or-Symbol Input data

label NDArray-or-Symbol Input label

name string, optional Name of the resulting symbol.

484 mx.symbol.softmin

Details

- The softmax function and cross entropy loss is given by:

- Softmax Function:

.. math:: \textsoftmax(x)_i = \fracexp(x_i)\sum_j exp(x_j)

- Cross Entropy Function:

.. math:: \textCE(label, output) = - \sum_i \textlabel_i \log(\textoutput_i)

Example::

x = [[1, 2, 3], [11, 7, 5]]

label = [2, 0]

softmax(x) = [[0.09003057, 0.24472848, 0.66524094], [0.97962922, 0.01794253, 0.00242826]]

softmax_cross_entropy(data, label) = - log(0.66524084) - log(0.97962922) = 0.4281871

Defined in src/operator/loss_binary_op.cc:L59

Value

out The result mx.symbol

mx.symbol.softmin softmin:Applies the softmin function.

Description

The resulting array contains elements in the range (0,1) and the elements along the given axis sum
up to 1.

Usage

mx.symbol.softmin(...)

Arguments

data NDArray-or-Symbol The input array.

axis int, optional, default=’-1’ The axis along which to compute softmax.

temperature double or None, optional, default=None Temperature parameter in softmax

dtype None, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to the same as input’s dtype if not
defined (dtype=None).

use.length boolean or None, optional, default=0 Whether to use the length input as a mask
over the data input.

name string, optional Name of the resulting symbol.

mx.symbol.softsign 485

Details

.. math:: softmin(\mathbfz/t)_j = \frace^-z_j/t\sum_k=1^K e^-z_k/t

for :math:‘j = 1, ..., K‘

t is the temperature parameter in softmax function. By default, t equals 1.0

Example::

x = [[1. 2. 3.] [3. 2. 1.]]

softmin(x,axis=0) = [[0.88079703, 0.5, 0.11920292], [0.11920292, 0.5, 0.88079703]]

softmin(x,axis=1) = [[0.66524094, 0.24472848, 0.09003057], [0.09003057, 0.24472848, 0.66524094]]

Defined in src/operator/nn/softmin.cc:L57

Value

out The result mx.symbol

mx.symbol.softsign softsign:Computes softsign of x element-wise.

Description

.. math:: y = x / (1 + abs(x))

Usage

mx.symbol.softsign(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “softsign“ output is always dense

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L191

Value

out The result mx.symbol

486 mx.symbol.sort

mx.symbol.sort sort:Returns a sorted copy of an input array along the given axis.

Description

Examples::

Usage

mx.symbol.sort(...)

Arguments

data NDArray-or-Symbol The input array

axis int or None, optional, default=’-1’ Axis along which to choose sort the input
tensor. If not given, the flattened array is used. Default is -1.

is.ascend boolean, optional, default=1 Whether to sort in ascending or descending order.

name string, optional Name of the resulting symbol.

Details

x = [[1, 4], [3, 1]]

// sorts along the last axis sort(x) = [[1., 4.], [1., 3.]]

// flattens and then sorts sort(x, axis=None) = [1., 1., 3., 4.]

// sorts along the first axis sort(x, axis=0) = [[1., 1.], [3., 4.]]

// in a descend order sort(x, is_ascend=0) = [[4., 1.], [3., 1.]]

Defined in src/operator/tensor/ordering_op.cc:L133

Value

out The result mx.symbol

mx.symbol.space_to_depth 487

mx.symbol.space_to_depth

space_to_depth:Rearranges(permutes) blocks of spatial data
into depth. Similar to ONNX SpaceToDepth operator:
https://github.com/onnx/onnx/blob/master/docs/Operators.md#SpaceToDepth
The output is a new tensor where the values from height and width
dimension are moved to the depth dimension. The reverse of this
operation is “depth_to_space“. .. math:: \begingather* x \prime
= reshape(x, [N, C, H / block_size, block_size, W / block_size,
block_size]) \ x \prime \prime = transpose(x \prime, [0, 3, 5, 1,
2, 4]) \ y = reshape(x \prime \prime, [N, C * (block_size ^ 2), H /
block_size, W / block_size]) \endgather* where :math:‘x‘ is an input
tensor with default layout as :math:‘[N, C, H, W]‘: [batch, channels,
height, width] and :math:‘y‘ is the output tensor of layout :math:‘[N,
C * (block_size ^ 2), H / block_size, W / block_size]‘ Example:: x =
[[[[0, 6, 1, 7, 2, 8], [12, 18, 13, 19, 14, 20], [3, 9, 4, 10, 5, 11], [15,
21, 16, 22, 17, 23]]]] space_to_depth(x, 2) = [[[[0, 1, 2], [3, 4, 5]],
[[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]], [[18, 19, 20], [21,
22, 23]]]]

Description

Defined in src/operator/tensor/matrix_op.cc:L1019

Usage

mx.symbol.space_to_depth(...)

Arguments

data NDArray-or-Symbol Input ndarray

block.size int, required Blocks of [block_size. block_size] are moved

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

488 mx.symbol.split

mx.symbol.SpatialTransformer

SpatialTransformer:Applies a spatial transformer to input feature
map.

Description

SpatialTransformer:Applies a spatial transformer to input feature map.

Usage

mx.symbol.SpatialTransformer(...)

Arguments

data NDArray-or-Symbol Input data to the SpatialTransformerOp.

loc NDArray-or-Symbol localisation net, the output dim should be 6 when trans-
form_type is affine. You shold initialize the weight and bias with identity tran-
form.

target.shape Shape(tuple), optional, default=[0,0] output shape(h, w) of spatial transformer:
(y, x)

transform.type ’affine’, required transformation type

sampler.type ’bilinear’, required sampling type

cudnn.off boolean or None, optional, default=None whether to turn cudnn off

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.split split:Splits an array along a particular axis into multiple sub-arrays.

Description

.. note:: “SliceChannel“ is deprecated. Use “split“ instead.

Usage

mx.symbol.split(...)

mx.symbol.split 489

Arguments

data NDArray-or-Symbol The input

num.outputs int, required Number of splits. Note that this should evenly divide the length of
the ‘axis‘.

axis int, optional, default=’1’ Axis along which to split.

squeeze.axis boolean, optional, default=0 If true, Removes the axis with length 1 from the
shapes of the output arrays. **Note** that setting ‘squeeze_axis‘ to “true“ re-
moves axis with length 1 only along the ‘axis‘ which it is split. Also ‘squeeze_axis‘
can be set to “true“ only if “input.shape[axis] == num_outputs“.

name string, optional Name of the resulting symbol.

Details

Note that ‘num_outputs‘ should evenly divide the length of the axis along which to split the
array.

Example::

x = [[[1.] [2.]] [[3.] [4.]] [[5.] [6.]]] x.shape = (3, 2, 1)

y = split(x, axis=1, num_outputs=2) // a list of 2 arrays with shape (3, 1, 1) y = [[[1.]] [[3.]] [[5.]]]

[[[2.]] [[4.]] [[6.]]]

y[0].shape = (3, 1, 1)

z = split(x, axis=0, num_outputs=3) // a list of 3 arrays with shape (1, 2, 1) z = [[[1.] [2.]]]

[[[3.] [4.]]]

[[[5.] [6.]]]

z[0].shape = (1, 2, 1)

‘squeeze_axis=1‘ removes the axis with length 1 from the shapes of the output arrays. **Note**
that setting ‘squeeze_axis‘ to “1“ removes axis with length 1 only along the ‘axis‘ which it is split.
Also ‘squeeze_axis‘ can be set to true only if “input.shape[axis] == num_outputs“.

Example::

z = split(x, axis=0, num_outputs=3, squeeze_axis=1) // a list of 3 arrays with shape (2, 1) z = [[1.]
[2.]]

[[3.] [4.]]

[[5.] [6.]] z[0].shape = (2 ,1)

Defined in src/operator/slice_channel.cc:L107

Value

out The result mx.symbol

490 mx.symbol.square

mx.symbol.sqrt sqrt:Returns element-wise square-root value of the input.

Description

.. math:: \textrmsqrt(x) = \sqrtx

Usage

mx.symbol.sqrt(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

sqrt([4, 9, 16]) = [2, 3, 4]

The storage type of “sqrt“ output depends upon the input storage type:

- sqrt(default) = default - sqrt(row_sparse) = row_sparse - sqrt(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L170

Value

out The result mx.symbol

mx.symbol.square square:Returns element-wise squared value of the input.

Description

.. math:: square(x) = x^2

Usage

mx.symbol.square(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

mx.symbol.squeeze 491

Details

Example::

square([2, 3, 4]) = [4, 9, 16]

The storage type of “square“ output depends upon the input storage type:

- square(default) = default - square(row_sparse) = row_sparse - square(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_pow.cc:L119

Value

out The result mx.symbol

mx.symbol.squeeze squeeze:Remove single-dimensional entries from the shape of an
array. Same behavior of defining the output tensor shape as
numpy.squeeze for the most of cases. See the following note for ex-
ception. Examples:: data = [[[0], [1], [2]]] squeeze(data) = [0, 1, 2]
squeeze(data, axis=0) = [[0], [1], [2]] squeeze(data, axis=2) = [[0,
1, 2]] squeeze(data, axis=(0, 2)) = [0, 1, 2] .. Note:: The output of
this operator will keep at least one dimension not removed. For exam-
ple, squeeze([[[4]]]) = [4], while in numpy.squeeze, the output will
become a scalar.

Description

squeeze:Remove single-dimensional entries from the shape of an array. Same behavior of defining
the output tensor shape as numpy.squeeze for the most of cases. See the following note for excep-
tion. Examples:: data = [[[0], [1], [2]]] squeeze(data) = [0, 1, 2] squeeze(data, axis=0) = [[0], [1],
[2]] squeeze(data, axis=2) = [[0, 1, 2]] squeeze(data, axis=(0, 2)) = [0, 1, 2] .. Note:: The output
of this operator will keep at least one dimension not removed. For example, squeeze([[[4]]]) = [4],
while in numpy.squeeze, the output will become a scalar.

Usage

mx.symbol.squeeze(...)

Arguments

data NDArray-or-Symbol data to squeeze
axis Shape or None, optional, default=None Selects a subset of the single-dimensional

entries in the shape. If an axis is selected with shape entry greater than one, an
error is raised.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

492 mx.symbol.stop_gradient

mx.symbol.stack stack:Join a sequence of arrays along a new axis. The axis parameter
specifies the index of the new axis in the dimensions of the result. For
example, if axis=0 it will be the first dimension and if axis=-1 it will
be the last dimension. Examples:: x = [1, 2] y = [3, 4] stack(x, y) =
[[1, 2], [3, 4]] stack(x, y, axis=1) = [[1, 3], [2, 4]]

Description

stack:Join a sequence of arrays along a new axis. The axis parameter specifies the index of the new
axis in the dimensions of the result. For example, if axis=0 it will be the first dimension and if
axis=-1 it will be the last dimension. Examples:: x = [1, 2] y = [3, 4] stack(x, y) = [[1, 2], [3, 4]]
stack(x, y, axis=1) = [[1, 3], [2, 4]]

Usage

mx.symbol.stack(...)

Arguments

data NDArray-or-Symbol[] List of arrays to stack

axis int, optional, default=’0’ The axis in the result array along which the input arrays
are stacked.

num.args int, required Number of inputs to be stacked.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.stop_gradient

stop_gradient:Stops gradient computation.

Description

Stops the accumulated gradient of the inputs from flowing through this operator in the backward
direction. In other words, this operator prevents the contribution of its inputs to be taken into
account for computing gradients.

Usage

mx.symbol.stop_gradient(...)

mx.symbol.sum 493

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

v1 = [1, 2] v2 = [0, 1] a = Variable(’a’) b = Variable(’b’) b_stop_grad = stop_gradient(3 * b) loss =
MakeLoss(b_stop_grad + a)

executor = loss.simple_bind(ctx=cpu(), a=(1,2), b=(1,2)) executor.forward(is_train=True, a=v1, b=v2)
executor.outputs [1. 5.]

executor.backward() executor.grad_arrays [0. 0.] [1. 1.]

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L326

Value

out The result mx.symbol

mx.symbol.sum sum:Computes the sum of array elements over given axes.

Description

.. Note::

Usage

mx.symbol.sum(...)

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.
If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

494 mx.symbol.sum_axis

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

name string, optional Name of the resulting symbol.

Details

‘sum‘ and ‘sum_axis‘ are equivalent. For ndarray of csr storage type summation along axis 0 and
axis 1 is supported. Setting keepdims or exclude to True will cause a fallback to dense operator.

Example::

data = [[[1, 2], [2, 3], [1, 3]], [[1, 4], [4, 3], [5, 2]], [[7, 1], [7, 2], [7, 3]]]

sum(data, axis=1) [[4. 8.] [10. 9.] [21. 6.]]

sum(data, axis=[1,2]) [12. 19. 27.]

data = [[1, 2, 0], [3, 0, 1], [4, 1, 0]]

csr = cast_storage(data, ’csr’)

sum(csr, axis=0) [8. 3. 1.]

sum(csr, axis=1) [3. 4. 5.]

Defined in src/operator/tensor/broadcast_reduce_sum_value.cc:L67

Value

out The result mx.symbol

mx.symbol.sum_axis sum_axis:Computes the sum of array elements over given axes.

Description

.. Note::

Usage

mx.symbol.sum_axis(...)

Arguments

data NDArray-or-Symbol The input

axis Shape or None, optional, default=None The axis or axes along which to perform
the reduction.
The default, ‘axis=()‘, will compute over all elements into a scalar array with
shape ‘(1,)‘.
If ‘axis‘ is int, a reduction is performed on a particular axis.
If ‘axis‘ is a tuple of ints, a reduction is performed on all the axes specified in
the tuple.

mx.symbol.swapaxes 495

If ‘exclude‘ is true, reduction will be performed on the axes that are NOT in axis
instead.
Negative values means indexing from right to left.

keepdims boolean, optional, default=0 If this is set to ‘True‘, the reduced axes are left in
the result as dimension with size one.

exclude boolean, optional, default=0 Whether to perform reduction on axis that are NOT
in axis instead.

name string, optional Name of the resulting symbol.

Details

‘sum‘ and ‘sum_axis‘ are equivalent. For ndarray of csr storage type summation along axis 0 and
axis 1 is supported. Setting keepdims or exclude to True will cause a fallback to dense operator.

Example::

data = [[[1, 2], [2, 3], [1, 3]], [[1, 4], [4, 3], [5, 2]], [[7, 1], [7, 2], [7, 3]]]

sum(data, axis=1) [[4. 8.] [10. 9.] [21. 6.]]

sum(data, axis=[1,2]) [12. 19. 27.]

data = [[1, 2, 0], [3, 0, 1], [4, 1, 0]]

csr = cast_storage(data, ’csr’)

sum(csr, axis=0) [8. 3. 1.]

sum(csr, axis=1) [3. 4. 5.]

Defined in src/operator/tensor/broadcast_reduce_sum_value.cc:L67

Value

out The result mx.symbol

mx.symbol.swapaxes swapaxes:Interchanges two axes of an array.

Description

Examples::

Usage

mx.symbol.swapaxes(...)

Arguments

data NDArray-or-Symbol Input array.

dim1 int, optional, default=’0’ the first axis to be swapped.

dim2 int, optional, default=’0’ the second axis to be swapped.

name string, optional Name of the resulting symbol.

496 mx.symbol.SwapAxis

Details

x = [[1, 2, 3]]) swapaxes(x, 0, 1) = [[1], [2], [3]]

x = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] // (2,2,2) array

swapaxes(x, 0, 2) = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]]

Defined in src/operator/swapaxis.cc:L70

Value

out The result mx.symbol

mx.symbol.SwapAxis SwapAxis:Interchanges two axes of an array.

Description

Examples::

Usage

mx.symbol.SwapAxis(...)

Arguments

data NDArray-or-Symbol Input array.

dim1 int, optional, default=’0’ the first axis to be swapped.

dim2 int, optional, default=’0’ the second axis to be swapped.

name string, optional Name of the resulting symbol.

Details

x = [[1, 2, 3]]) swapaxes(x, 0, 1) = [[1], [2], [3]]

x = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] // (2,2,2) array

swapaxes(x, 0, 2) = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]]

Defined in src/operator/swapaxis.cc:L70

Value

out The result mx.symbol

mx.symbol.take 497

mx.symbol.take take:Takes elements from an input array along the given axis.

Description

This function slices the input array along a particular axis with the provided indices.

Usage

mx.symbol.take(...)

Arguments

a NDArray-or-Symbol The input array.

indices NDArray-or-Symbol The indices of the values to be extracted.

axis int, optional, default=’0’ The axis of input array to be taken.For input tensor of
rank r, it could be in the range of [-r, r-1]

mode ’clip’, ’raise’, ’wrap’,optional, default=’clip’ Specify how out-of-bound indices
bahave. Default is "clip". "clip" means clip to the range. So, if all indices
mentioned are too large, they are replaced by the index that addresses the last
element along an axis. "wrap" means to wrap around. "raise" means to raise an
error when index out of range.

name string, optional Name of the resulting symbol.

Details

Given data tensor of rank r >= 1, and indices tensor of rank q, gather entries of the axis dimension of
data (by default outer-most one as axis=0) indexed by indices, and concatenates them in an output
tensor of rank q + (r - 1).

Examples::

x = [4. 5. 6.]

// Trivial case, take the second element along the first axis.

take(x, [1]) = [5.]

// The other trivial case, axis=-1, take the third element along the first axis

take(x, [3], axis=-1, mode=’clip’) = [6.]

x = [[1., 2.], [3., 4.], [5., 6.]]

// In this case we will get rows 0 and 1, then 1 and 2. Along axis 0

take(x, [[0,1],[1,2]]) = [[[1., 2.], [3., 4.]],

[[3., 4.], [5., 6.]]]

// In this case we will get rows 0 and 1, then 1 and 2 (calculated by wrapping around). // Along axis
1

take(x, [[0, 3], [-1, -2]], axis=1, mode=’wrap’) = [[[1. 2.] [2. 1.]]

498 mx.symbol.tan

[[3. 4.] [4. 3.]]

[[5. 6.] [6. 5.]]]

The storage type of “take“ output depends upon the input storage type:

- take(default, default) = default - take(csr, default, axis=0) = csr

Defined in src/operator/tensor/indexing_op.cc:L691

Value

out The result mx.symbol

mx.symbol.tan tan:Computes the element-wise tangent of the input array.

Description

The input should be in radians (:math:‘2\pi‘ rad equals 360 degrees).

Usage

mx.symbol.tan(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

.. math:: tan([0, \pi/4, \pi/2]) = [0, 1, -inf]

The storage type of “tan“ output depends upon the input storage type:

- tan(default) = default - tan(row_sparse) = row_sparse - tan(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L140

Value

out The result mx.symbol

mx.symbol.tanh 499

mx.symbol.tanh tanh:Returns the hyperbolic tangent of the input array, computed
element-wise.

Description

.. math:: tanh(x) = sinh(x) / cosh(x)

Usage

mx.symbol.tanh(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

The storage type of “tanh“ output depends upon the input storage type:

- tanh(default) = default - tanh(row_sparse) = row_sparse - tanh(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_trig.cc:L451

Value

out The result mx.symbol

mx.symbol.tile tile:Repeats the whole array multiple times. If “reps“ has length
d, and input array has dimension of *n*. There are three cases:
- **n=d**. Repeat *i*-th dimension of the input by “reps[i]“ times::
x = [[1, 2], [3, 4]] tile(x, reps=(2,3)) = [[1., 2., 1., 2., 1., 2.], [3., 4.,
3., 4., 3., 4.], [1., 2., 1., 2., 1., 2.], [3., 4., 3., 4., 3., 4.]] - **n>d**.
“reps“ is promoted to length *n* by pre-pending 1’s to it. Thus for
an input shape “(2,3)“, “repos=(2,)“ is treated as “(1,2)“:: tile(x,
reps=(2,)) = [[1., 2., 1., 2.], [3., 4., 3., 4.]] - **n<d**. The input
is promoted to be d-dimensional by prepending new axes. So a shape
“(2,2)“ array is promoted to “(1,2,2)“ for 3-D replication:: tile(x,
reps=(2,2,3)) = [[[1., 2., 1., 2., 1., 2.], [3., 4., 3., 4., 3., 4.], [1., 2.,
1., 2., 1., 2.], [3., 4., 3., 4., 3., 4.]], [[1., 2., 1., 2., 1., 2.], [3., 4., 3.,
4., 3., 4.], [1., 2., 1., 2., 1., 2.], [3., 4., 3., 4., 3., 4.]]]

Description

Defined in src/operator/tensor/matrix_op.cc:L796

500 mx.symbol.topk

Usage

mx.symbol.tile(...)

Arguments

data NDArray-or-Symbol Input data array

reps Shape(tuple), required The number of times for repeating the tensor a. Each dim
size of reps must be a positive integer. If reps has length d, the result will have
dimension of max(d, a.ndim); If a.ndim < d, a is promoted to be d-dimensional
by prepending new axes. If a.ndim > d, reps is promoted to a.ndim by pre-
pending 1’s to it.

name string, optional Name of the resulting symbol.

Value

out The result mx.symbol

mx.symbol.topk topk:Returns the indices of the top *k* elements in an input array
along the given axis (by default). If ret_type is set to ’value’ returns
the value of top *k* elements (instead of indices). In case of ret_type =
’both’, both value and index would be returned. The returned elements
will be sorted.

Description

Examples::

Usage

mx.symbol.topk(...)

Arguments

data NDArray-or-Symbol The input array

axis int or None, optional, default=’-1’ Axis along which to choose the top k indices.
If not given, the flattened array is used. Default is -1.

k int, optional, default=’1’ Number of top elements to select, should be always
smaller than or equal to the element number in the given axis. A global sort is
performed if set k < 1.

ret.typ ’both’, ’indices’, ’mask’, ’value’,optional, default=’indices’ The return type.
"value" means to return the top k values, "indices" means to return the indices
of the top k values, "mask" means to return a mask array containing 0 and 1. 1
means the top k values. "both" means to return a list of both values and indices
of top k elements.

mx.symbol.transpose 501

is.ascend boolean, optional, default=0 Whether to choose k largest or k smallest elements.
Top K largest elements will be chosen if set to false.

dtype ’float16’, ’float32’, ’float64’, ’int32’, ’int64’, ’uint8’,optional, default=’float32’
DType of the output indices when ret_typ is "indices" or "both". An error will
be raised if the selected data type cannot precisely represent the indices.

name string, optional Name of the resulting symbol.

Details

x = [[0.3, 0.2, 0.4], [0.1, 0.3, 0.2]]

// returns an index of the largest element on last axis topk(x) = [[2.], [1.]]

// returns the value of top-2 largest elements on last axis topk(x, ret_typ=’value’, k=2) = [[0.4, 0.3],
[0.3, 0.2]]

// returns the value of top-2 smallest elements on last axis topk(x, ret_typ=’value’, k=2, is_ascend=1)
= [[0.2 , 0.3], [0.1 , 0.2]]

// returns the value of top-2 largest elements on axis 0 topk(x, axis=0, ret_typ=’value’, k=2) = [[
0.3, 0.3, 0.4], [0.1, 0.2, 0.2]]

// flattens and then returns list of both values and indices topk(x, ret_typ=’both’, k=2) = [[[0.4, 0.3],
[0.3, 0.2]] , [[2., 0.], [1., 2.]]]

Defined in src/operator/tensor/ordering_op.cc:L68

Value

out The result mx.symbol

mx.symbol.transpose transpose:Permutes the dimensions of an array. Examples:: x = [[1,
2], [3, 4]] transpose(x) = [[1., 3.], [2., 4.]] x = [[[1., 2.], [3., 4.]],
[[5., 6.], [7., 8.]]] transpose(x) = [[[1., 5.], [3., 7.]], [[2., 6.], [4.,
8.]]] transpose(x, axes=(1,0,2)) = [[[1., 2.], [5., 6.]], [[3., 4.], [7.,
8.]]]

Description

Defined in src/operator/tensor/matrix_op.cc:L328

Usage

mx.symbol.transpose(...)

Arguments

data NDArray-or-Symbol Source input
axes Shape(tuple), optional, default=[] Target axis order. By default the axes will be

inverted.
name string, optional Name of the resulting symbol.

502 mx.symbol.uniform

Value

out The result mx.symbol

mx.symbol.trunc trunc:Return the element-wise truncated value of the input.

Description

The truncated value of the scalar x is the nearest integer i which is closer to zero than x is. In short,
the fractional part of the signed number x is discarded.

Usage

mx.symbol.trunc(...)

Arguments

data NDArray-or-Symbol The input array.

name string, optional Name of the resulting symbol.

Details

Example::

trunc([-2.1, -1.9, 1.5, 1.9, 2.1]) = [-2., -1., 1., 1., 2.]

The storage type of “trunc“ output depends upon the input storage type:

- trunc(default) = default - trunc(row_sparse) = row_sparse - trunc(csr) = csr

Defined in src/operator/tensor/elemwise_unary_op_basic.cc:L857

Value

out The result mx.symbol

mx.symbol.uniform uniform:Draw random samples from a uniform distribution.

Description

.. note:: The existing alias “uniform“ is deprecated.

Usage

mx.symbol.uniform(...)

mx.symbol.unravel_index 503

Arguments

low float, optional, default=0 Lower bound of the distribution.

high float, optional, default=1 Upper bound of the distribution.

shape Shape(tuple), optional, default=None Shape of the output.

ctx string, optional, default=” Context of output, in format [cpu|gpu|cpu_pinned](n).
Only used for imperative calls.

dtype ’None’, ’float16’, ’float32’, ’float64’,optional, default=’None’ DType of the out-
put in case this can’t be inferred. Defaults to float32 if not defined (dtype=None).

name string, optional Name of the resulting symbol.

Details

Samples are uniformly distributed over the half-open interval *[low, high)* (includes *low*, but
excludes *high*).

Example::

uniform(low=0, high=1, shape=(2,2)) = [[0.60276335, 0.85794562], [0.54488319, 0.84725171]]

Defined in src/operator/random/sample_op.cc:L96

Value

out The result mx.symbol

mx.symbol.unravel_index

unravel_index:Converts an array of flat indices into a batch of index
arrays. The operator follows numpy conventions so a single multi
index is given by a column of the output matrix. The leading dimension
may be left unspecified by using -1 as placeholder.

Description

Examples::

Usage

mx.symbol.unravel_index(...)

Arguments

data NDArray-or-Symbol Array of flat indices

shape Shape(tuple), optional, default=None Shape of the array into which the multi-
indices apply.

name string, optional Name of the resulting symbol.

504 mx.symbol.UpSampling

Details

A = [22,41,37] unravel_index(A, shape=(7,6)) = [[3,6,6], [4,5,1]] unravel_index(A, shape=(-1,6))
= [[3,6,6], [4,5,1]]

B = [[22,41,37],[10,11,15]] unravel_index(B, shape=(7,6)) = [[[3,6,6],[1,1,2]], [[4,5,1],[4,5,3]]] un-
ravel_index(B, shape=(-1,6)) = [[[3,6,6],[1,1,2]], [[4,5,1],[4,5,3]]]

Defined in src/operator/tensor/ravel.cc:L76

Value

out The result mx.symbol

mx.symbol.UpSampling UpSampling:Upsamples the given input data.

Description

Two algorithms (“sample_type“) are available for upsampling:

Usage

mx.symbol.UpSampling(...)

Arguments

data NDArray-or-Symbol[] Array of tensors to upsample. For bilinear upsampling,
there should be 2 inputs - 1 data and 1 weight.

scale int, required Up sampling scale

num.filter int, optional, default=’0’ Input filter. Only used by bilinear sample_type.Since
bilinear upsampling uses deconvolution, num_filters is set to the number of
channels.

sample.type ’bilinear’, ’nearest’, required upsampling method
multi.input.mode

’concat’, ’sum’,optional, default=’concat’ How to handle multiple input. concat
means concatenate upsampled images along the channel dimension. sum means
add all images together, only available for nearest neighbor upsampling.

num.args int, required Number of inputs to be upsampled. For nearest neighbor upsam-
pling, this can be 1-N; the size of output will be(scale*h_0,scale*w_0) and all
other inputs will be upsampled to thesame size. For bilinear upsampling this
must be 2; 1 input and 1 weight.

workspace long (non-negative), optional, default=512 Tmp workspace for deconvolution
(MB)

name string, optional Name of the resulting symbol.

mx.symbol.Variable 505

Details

- Nearest Neighbor - Bilinear

Nearest Neighbor Upsampling

Input data is expected to be NCHW.

Example::

x = [[[[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]]]]

UpSampling(x, scale=2, sample_type=’nearest’) = [[[[1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1.] [1. 1. 1.
1. 1. 1.] [1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1.]]]]

Bilinear Upsampling

Uses ‘deconvolution‘ algorithm under the hood. You need provide both input data and the kernel.

Input data is expected to be NCHW.

‘num_filter‘ is expected to be same as the number of channels.

Example::

x = [[[[1. 1. 1.] [1. 1. 1.] [1. 1. 1.]]]]

w = [[[[1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.] [1. 1. 1. 1.]]]]

UpSampling(x, w, scale=2, sample_type=’bilinear’, num_filter=1) = [[[[1. 2. 2. 2. 2. 1.] [2. 4. 4.
4. 4. 2.] [2. 4. 4. 4. 4. 2.] [2. 4. 4. 4. 4. 2.] [2. 4. 4. 4. 4. 2.] [1. 2. 2. 2. 2. 1.]]]]

Defined in src/operator/nn/upsampling.cc:L173

Value

out The result mx.symbol

mx.symbol.Variable Create a symbolic variable with specified name.

Description

Create a symbolic variable with specified name.

Arguments

name string The name of the result symbol.

Value

The result symbol

506 mx.symbol.where

mx.symbol.where where:Return the elements, either from x or y, depending on the con-
dition.

Description

Given three ndarrays, condition, x, and y, return an ndarray with the elements from x or y, depending
on the elements from condition are true or false. x and y must have the same shape. If condition
has the same shape as x, each element in the output array is from x if the corresponding element in
the condition is true, and from y if false.

Usage

mx.symbol.where(...)

Arguments

condition NDArray-or-Symbol condition array

x NDArray-or-Symbol

y NDArray-or-Symbol

name string, optional Name of the resulting symbol.

Details

If condition does not have the same shape as x, it must be a 1D array whose size is the same as x’s
first dimension size. Each row of the output array is from x’s row if the corresponding element from
condition is true, and from y’s row if false.

Note that all non-zero values are interpreted as “True“ in condition.

Examples::

x = [[1, 2], [3, 4]] y = [[5, 6], [7, 8]] cond = [[0, 1], [-1, 0]]

where(cond, x, y) = [[5, 2], [3, 8]]

csr_cond = cast_storage(cond, ’csr’)

where(csr_cond, x, y) = [[5, 2], [3, 8]]

Defined in src/operator/tensor/control_flow_op.cc:L57

Value

out The result mx.symbol

mx.symbol.zeros_like 507

mx.symbol.zeros_like zeros_like:Return an array of zeros with the same shape, type and stor-
age type as the input array.

Description

The storage type of “zeros_like“ output depends on the storage type of the input

Usage

mx.symbol.zeros_like(...)

Arguments

data NDArray-or-Symbol The input

name string, optional Name of the resulting symbol.

Details

- zeros_like(row_sparse) = row_sparse - zeros_like(csr) = csr - zeros_like(default) = default

Examples::

x = [[1., 1., 1.], [1., 1., 1.]]

zeros_like(x) = [[0., 0., 0.], [0., 0., 0.]]

Value

out The result mx.symbol

mx.unserialize Unserialize MXNet model from Robject.

Description

Unserialize MXNet model from Robject.

Usage

mx.unserialize(model)

Arguments

model The mxnet model loaded from RData files.

508 Ops.MXNDArray

mxnet MXNet: Flexible and Efficient GPU computing and Deep Learning.

Description

MXNet is a flexible and efficient GPU computing and deep learning framework.

Details

It enables you to write seamless tensor/matrix computation with multiple GPUs in R.

It also enables you construct and customize the state-of-art deep learning models in R, and apply
them to tasks such as image classification and data science challenges.

mxnet.export Internal function to generate mxnet_generated.R Users do not need to
call this function.

Description

Internal function to generate mxnet_generated.R Users do not need to call this function.

Usage

mxnet.export(path)

Arguments

path The path to the root of the package.

Ops.MXNDArray Binary operator overloading of mx.ndarray

Description

Binary operator overloading of mx.ndarray

Usage

S3 method for class 'MXNDArray'
Ops(e1, e2)

Arguments

e1 The second operand

outputs 509

outputs Get the outputs of a symbol.

Description

Get the outputs of a symbol.

Usage

outputs(x)

Arguments

x The input symbol

predict.MXFeedForwardModel

Predict the outputs given a model and dataset.

Description

Predict the outputs given a model and dataset.

Usage

S3 method for class 'MXFeedForwardModel'
predict(
model,
X,
ctx = NULL,
array.batch.size = 128,
array.layout = "auto",
allow.extra.params = FALSE

)

Arguments

model The MXNet Model.

X The dataset to predict.

ctx mx.cpu() or mx.gpu(). The device used to generate the prediction.
array.batch.size

The batch size used in batching. Only used when X is R’s array.

510 print.MXNDArray

array.layout can be "auto", "colmajor", "rowmajor", (detault=auto) The layout of array. "row-
major" is only supported for two dimensional array. For matrix, "rowmajor"
means dim(X) = c(nexample, nfeatures), "colmajor" means dim(X) = c(nfeatures,
nexample) "auto" will auto detect the layout by match the feature size, and will
report error when X is a square matrix to ask user to explicitly specify layout.

allow.extra.params

Whether allow extra parameters that are not needed by symbol. If this is TRUE,
no error will be thrown when arg_params or aux_params contain extra parame-
ters that is not needed by the executor.

print.MXNDArray print operator overload of mx.ndarray

Description

print operator overload of mx.ndarray

Usage

S3 method for class 'MXNDArray'
print(nd)

Arguments

nd The mx.ndarray

Index

∗Topic datasets
mx.metric.accuracy, 60
mx.metric.logistic_acc, 61
mx.metric.logloss, 61
mx.metric.mae, 62
mx.metric.mse, 62
mx.metric.Perplexity, 62
mx.metric.rmse, 63
mx.metric.rmsle, 63
mx.metric.top_k_accuracy, 63

arguments, 15
as.array.MXNDArray, 15
as.matrix.MXNDArray, 16

children, 16
ctx, 16

dim.MXNDArray, 17

graph.viz, 17

im2rec, 18
internals, 19
is.mx.context, 19
is.mx.dataiter, 20
is.mx.ndarray, 20
is.mx.symbol, 21
is.serialized, 21

length.MXNDArray, 21

mx.apply, 22
mx.callback.early.stop, 22
mx.callback.log.speedometer, 23
mx.callback.log.train.metric, 23
mx.callback.save.checkpoint, 24
mx.cpu, 24
mx.ctx.default, 24
mx.exec.backward, 25
mx.exec.forward, 25

mx.exec.update.arg.arrays, 26
mx.exec.update.aux.arrays, 26
mx.exec.update.grad.arrays, 27
mx.gpu, 27
mx.infer.rnn, 28
mx.infer.rnn.one, 28
mx.infer.rnn.one.unroll, 29
mx.init.create, 29
mx.init.internal.default, 30
mx.init.normal, 30
mx.init.uniform, 30
mx.init.Xavier, 31
mx.io.arrayiter, 31
mx.io.bucket.iter, 32
mx.io.CSVIter, 32
mx.io.extract, 34
mx.io.ImageDetRecordIter, 34
mx.io.ImageRecordInt8Iter, 38
mx.io.ImageRecordIter, 41
mx.io.ImageRecordIter_v1, 44
mx.io.ImageRecordUInt8Iter, 48
mx.io.ImageRecordUInt8Iter_v1, 51
mx.io.LibSVMIter, 54
mx.io.MNISTIter, 56
mx.io.RandomSampler, 57
mx.io.SequentialSampler, 57
mx.io.ThreadedDataLoader, 58
mx.kv.create, 59
mx.lr_scheduler.FactorScheduler, 59
mx.lr_scheduler.MultiFactorScheduler,

60
mx.metric.accuracy, 60
mx.metric.custom, 61
mx.metric.logistic_acc, 61
mx.metric.logloss, 61
mx.metric.mae, 62
mx.metric.mse, 62
mx.metric.Perplexity, 62
mx.metric.rmse, 63

511

512 INDEX

mx.metric.rmsle, 63
mx.metric.top_k_accuracy, 63
mx.model.buckets, 64
mx.model.FeedForward.create, 64
mx.model.init.params, 66
mx.model.load, 67
mx.model.save, 67
mx.nd.abs, 68
mx.nd.Activation, 68
mx.nd.adam.update, 69
mx.nd.add.n, 70
mx.nd.all.finite, 70
mx.nd.amp.cast, 71
mx.nd.amp.multicast, 71
mx.nd.arccos, 72
mx.nd.arccosh, 72
mx.nd.arcsin, 73
mx.nd.arcsinh, 73
mx.nd.arctan, 74
mx.nd.arctanh, 74
mx.nd.argmax, 75
mx.nd.argmax.channel, 75
mx.nd.argmin, 76
mx.nd.argsort, 77
mx.nd.array, 77
mx.nd.batch.dot, 78
mx.nd.batch.take, 79
mx.nd.BatchNorm, 79
mx.nd.BilinearSampler, 81
mx.nd.BlockGrad, 82
mx.nd.broadcast.add, 83
mx.nd.broadcast.axes, 83
mx.nd.broadcast.axis, 84
mx.nd.broadcast.div, 85
mx.nd.broadcast.equal, 85
mx.nd.broadcast.greater, 86
mx.nd.broadcast.greater.equal, 86
mx.nd.broadcast.hypot, 87
mx.nd.broadcast.lesser, 88
mx.nd.broadcast.lesser.equal, 88
mx.nd.broadcast.like, 89
mx.nd.broadcast.logical.and, 90
mx.nd.broadcast.logical.or, 90
mx.nd.broadcast.logical.xor, 91
mx.nd.broadcast.maximum, 91
mx.nd.broadcast.minimum, 92
mx.nd.broadcast.minus, 93
mx.nd.broadcast.mod, 93

mx.nd.broadcast.mul, 94
mx.nd.broadcast.not.equal, 95
mx.nd.broadcast.plus, 95
mx.nd.broadcast.power, 96
mx.nd.broadcast.sub, 97
mx.nd.broadcast.to, 97
mx.nd.Cast, 98
mx.nd.cast, 99
mx.nd.cast.storage, 99
mx.nd.cbrt, 100
mx.nd.ceil, 101
mx.nd.choose.element.0index, 101
mx.nd.clip, 102
mx.nd.col2im, 103
mx.nd.Concat, 104
mx.nd.concat, 104
mx.nd.Convolution, 105
mx.nd.Convolution.v1, 107
mx.nd.copyto, 108
mx.nd.Correlation, 109
mx.nd.cos, 110
mx.nd.cosh, 110
mx.nd.Crop, 111
mx.nd.crop, 112
mx.nd.ctc.loss, 113
mx.nd.CTCLoss, 114
mx.nd.cumsum, 116
mx.nd.Custom, 116
mx.nd.Deconvolution, 117
mx.nd.degrees, 118
mx.nd.depth.to.space, 119
mx.nd.diag, 119
mx.nd.digamma, 120
mx.nd.dot, 121
mx.nd.Dropout, 122
mx.nd.ElementWiseSum, 123
mx.nd.elemwise.add, 123
mx.nd.elemwise.div, 124
mx.nd.elemwise.mul, 124
mx.nd.elemwise.sub, 125
mx.nd.Embedding, 125
mx.nd.erf, 126
mx.nd.erfinv, 127
mx.nd.exp, 127
mx.nd.expand.dims, 128
mx.nd.expm1, 128
mx.nd.fill.element.0index, 129
mx.nd.fix, 129

INDEX 513

mx.nd.Flatten, 130
mx.nd.flatten, 130
mx.nd.flip, 131
mx.nd.floor, 131
mx.nd.ftml.update, 132
mx.nd.ftrl.update, 133
mx.nd.FullyConnected, 134
mx.nd.gamma, 135
mx.nd.gammaln, 135
mx.nd.gather.nd, 136
mx.nd.GridGenerator, 136
mx.nd.GroupNorm, 137
mx.nd.hard.sigmoid, 138
mx.nd.identity, 138
mx.nd.IdentityAttachKLSparseReg, 139
mx.nd.im2col, 139
mx.nd.InstanceNorm, 140
mx.nd.khatri.rao, 141
mx.nd.L2Normalization, 142
mx.nd.lamb.update.phase1, 143
mx.nd.lamb.update.phase2, 144
mx.nd.LayerNorm, 144
mx.nd.LeakyReLU, 145
mx.nd.linalg.det, 146
mx.nd.linalg.extractdiag, 147
mx.nd.linalg.extracttrian, 148
mx.nd.linalg.gelqf, 149
mx.nd.linalg.gemm, 150
mx.nd.linalg.gemm2, 151
mx.nd.linalg.inverse, 152
mx.nd.linalg.makediag, 153
mx.nd.linalg.maketrian, 153
mx.nd.linalg.potrf, 154
mx.nd.linalg.potri, 155
mx.nd.linalg.slogdet, 156
mx.nd.linalg.sumlogdiag, 157
mx.nd.linalg.syrk, 157
mx.nd.linalg.trmm, 158
mx.nd.linalg.trsm, 159
mx.nd.load, 160
mx.nd.log, 161
mx.nd.log.softmax, 161
mx.nd.log10, 162
mx.nd.log1p, 162
mx.nd.log2, 163
mx.nd.logical.not, 163
mx.nd.LRN, 164
mx.nd.make.loss, 164

mx.nd.MakeLoss, 165
mx.nd.max, 166
mx.nd.max.axis, 167
mx.nd.mean, 167
mx.nd.min, 168
mx.nd.min.axis, 169
mx.nd.moments, 169
mx.nd.mp.lamb.update.phase1, 170
mx.nd.mp.lamb.update.phase2, 171
mx.nd.mp.nag.mom.update, 172
mx.nd.mp.sgd.mom.update, 173
mx.nd.mp.sgd.update, 173
mx.nd.multi.all.finite, 174
mx.nd.multi.lars, 175
mx.nd.multi.mp.sgd.mom.update, 175
mx.nd.multi.mp.sgd.update, 176
mx.nd.multi.sgd.mom.update, 177
mx.nd.multi.sgd.update, 178
mx.nd.multi.sum.sq, 178
mx.nd.nag.mom.update, 179
mx.nd.nanprod, 180
mx.nd.nansum, 180
mx.nd.negative, 181
mx.nd.norm, 182
mx.nd.normal, 183
mx.nd.one.hot, 183
mx.nd.ones, 184
mx.nd.ones.like, 185
mx.nd.Pad, 185
mx.nd.pad, 187
mx.nd.pick, 188
mx.nd.Pooling, 189
mx.nd.Pooling.v1, 190
mx.nd.preloaded.multi.mp.sgd.mom.update,

192
mx.nd.preloaded.multi.mp.sgd.update,

193
mx.nd.preloaded.multi.sgd.mom.update,

193
mx.nd.preloaded.multi.sgd.update, 194
mx.nd.prod, 195
mx.nd.radians, 195
mx.nd.random.exponential, 196
mx.nd.random.gamma, 197
mx.nd.random.generalized.negative.binomial,

197
mx.nd.random.negative.binomial, 198
mx.nd.random.normal, 199

514 INDEX

mx.nd.random.pdf.dirichlet, 200
mx.nd.random.pdf.exponential, 200
mx.nd.random.pdf.gamma, 201
mx.nd.random.pdf.generalized.negative.binomial,

202
mx.nd.random.pdf.negative.binomial,

203
mx.nd.random.pdf.normal, 204
mx.nd.random.pdf.poisson, 205
mx.nd.random.pdf.uniform, 205
mx.nd.random.poisson, 206
mx.nd.random.randint, 207
mx.nd.random.uniform, 207
mx.nd.ravel.multi.index, 208
mx.nd.rcbrt, 209
mx.nd.reciprocal, 209
mx.nd.relu, 210
mx.nd.repeat, 210
mx.nd.reset.arrays, 211
mx.nd.Reshape, 211
mx.nd.reshape, 213
mx.nd.reshape.like, 214
mx.nd.reverse, 215
mx.nd.rint, 216
mx.nd.rmsprop.update, 216
mx.nd.rmspropalex.update, 217
mx.nd.RNN, 219
mx.nd.ROIPooling, 221
mx.nd.round, 222
mx.nd.rsqrt, 222
mx.nd.sample.exponential, 223
mx.nd.sample.gamma, 224
mx.nd.sample.generalized.negative.binomial,

225
mx.nd.sample.multinomial, 226
mx.nd.sample.negative.binomial, 227
mx.nd.sample.normal, 228
mx.nd.sample.poisson, 229
mx.nd.sample.uniform, 230
mx.nd.save, 231
mx.nd.scatter.nd, 231
mx.nd.SequenceLast, 232
mx.nd.SequenceMask, 233
mx.nd.SequenceReverse, 234
mx.nd.sgd.mom.update, 236
mx.nd.sgd.update, 237
mx.nd.shape.array, 238
mx.nd.shuffle, 238

mx.nd.sigmoid, 239
mx.nd.sign, 239
mx.nd.signsgd.update, 240
mx.nd.signum.update, 240
mx.nd.sin, 241
mx.nd.sinh, 242
mx.nd.size.array, 242
mx.nd.slice.axis, 243
mx.nd.slice.like, 244
mx.nd.SliceChannel, 245
mx.nd.smooth.l1, 246
mx.nd.softmax, 246
mx.nd.softmax.cross.entropy, 247
mx.nd.SoftmaxActivation, 248
mx.nd.softmin, 249
mx.nd.softsign, 250
mx.nd.sort, 250
mx.nd.space.to.depth, 251
mx.nd.SpatialTransformer, 251
mx.nd.split, 252
mx.nd.sqrt, 253
mx.nd.square, 254
mx.nd.squeeze, 254
mx.nd.stack, 255
mx.nd.stop.gradient, 256
mx.nd.sum, 256
mx.nd.sum.axis, 257
mx.nd.swapaxes, 258
mx.nd.SwapAxis, 259
mx.nd.take, 259
mx.nd.tan, 260
mx.nd.tanh, 261
mx.nd.tile, 262
mx.nd.topk, 262
mx.nd.transpose, 263
mx.nd.trunc, 264
mx.nd.uniform, 265
mx.nd.unravel.index, 265
mx.nd.UpSampling, 266
mx.nd.where, 267
mx.nd.zeros, 268
mx.nd.zeros.like, 269
mx.opt.adadelta, 269
mx.opt.adagrad, 270
mx.opt.adam, 271
mx.opt.create, 271
mx.opt.get.updater, 272
mx.opt.nag, 272

INDEX 515

mx.opt.rmsprop, 273
mx.opt.sgd, 274
mx.profiler.config, 275
mx.profiler.state, 275
mx.rnorm, 276
mx.runif, 276
mx.serialize, 277
mx.set.seed, 277
mx.simple.bind, 278
mx.symbol.abs, 278
mx.symbol.Activation, 279
mx.symbol.adam_update, 279
mx.symbol.add_n, 281
mx.symbol.all_finite, 281
mx.symbol.amp_cast, 282
mx.symbol.amp_multicast, 282
mx.symbol.arccos, 283
mx.symbol.arccosh, 284
mx.symbol.arcsin, 284
mx.symbol.arcsinh, 285
mx.symbol.arctan, 286
mx.symbol.arctanh, 286
mx.symbol.argmax, 287
mx.symbol.argmax_channel, 288
mx.symbol.argmin, 288
mx.symbol.argsort, 289
mx.symbol.batch_dot, 292
mx.symbol.batch_take, 293
mx.symbol.BatchNorm, 290
mx.symbol.BilinearSampler, 293
mx.symbol.BlockGrad, 295
mx.symbol.broadcast_add, 295
mx.symbol.broadcast_axes, 296
mx.symbol.broadcast_axis, 297
mx.symbol.broadcast_div, 298
mx.symbol.broadcast_equal, 298
mx.symbol.broadcast_greater, 299
mx.symbol.broadcast_greater_equal, 300
mx.symbol.broadcast_hypot, 300
mx.symbol.broadcast_lesser, 301
mx.symbol.broadcast_lesser_equal, 302
mx.symbol.broadcast_like, 303
mx.symbol.broadcast_logical_and, 304
mx.symbol.broadcast_logical_or, 304
mx.symbol.broadcast_logical_xor, 305
mx.symbol.broadcast_maximum, 306
mx.symbol.broadcast_minimum, 306
mx.symbol.broadcast_minus, 307

mx.symbol.broadcast_mod, 308
mx.symbol.broadcast_mul, 309
mx.symbol.broadcast_not_equal, 309
mx.symbol.broadcast_plus, 310
mx.symbol.broadcast_power, 311
mx.symbol.broadcast_sub, 312
mx.symbol.broadcast_to, 313
mx.symbol.Cast, 314
mx.symbol.cast, 314
mx.symbol.cast_storage, 315
mx.symbol.cbrt, 316
mx.symbol.ceil, 316
mx.symbol.choose_element_0index, 317
mx.symbol.clip, 318
mx.symbol.col2im, 319
mx.symbol.Concat, 320
mx.symbol.concat, 321
mx.symbol.Convolution, 321
mx.symbol.Convolution_v1, 323
mx.symbol.Correlation, 324
mx.symbol.cos, 326
mx.symbol.cosh, 326
mx.symbol.Crop, 327
mx.symbol.crop, 328
mx.symbol.ctc_loss, 330
mx.symbol.CTCLoss, 329
mx.symbol.cumsum, 332
mx.symbol.Custom, 332
mx.symbol.Deconvolution, 333
mx.symbol.degrees, 334
mx.symbol.depth_to_space, 335
mx.symbol.diag, 336
mx.symbol.digamma, 337
mx.symbol.dot, 338
mx.symbol.Dropout, 339
mx.symbol.ElementWiseSum, 340
mx.symbol.elemwise_add, 341
mx.symbol.elemwise_div, 341
mx.symbol.elemwise_mul, 342
mx.symbol.elemwise_sub, 342
mx.symbol.Embedding, 343
mx.symbol.erf, 344
mx.symbol.erfinv, 345
mx.symbol.exp, 346
mx.symbol.expand_dims, 346
mx.symbol.expm1, 347
mx.symbol.fill_element_0index, 348
mx.symbol.fix, 348

516 INDEX

mx.symbol.Flatten, 349
mx.symbol.flatten, 350
mx.symbol.flip, 350
mx.symbol.floor, 351
mx.symbol.ftml_update, 352
mx.symbol.ftrl_update, 353
mx.symbol.FullyConnected, 354
mx.symbol.gamma, 355
mx.symbol.gammaln, 355
mx.symbol.gather_nd, 356
mx.symbol.GridGenerator, 356
mx.symbol.Group, 357
mx.symbol.GroupNorm, 358
mx.symbol.hard_sigmoid, 359
mx.symbol.identity, 359
mx.symbol.IdentityAttachKLSparseReg,

360
mx.symbol.im2col, 360
mx.symbol.infer.shape, 361
mx.symbol.InstanceNorm, 362
mx.symbol.khatri_rao, 363
mx.symbol.L2Normalization, 364
mx.symbol.lamb_update_phase1, 365
mx.symbol.lamb_update_phase2, 366
mx.symbol.LayerNorm, 367
mx.symbol.LeakyReLU, 368
mx.symbol.linalg_det, 369
mx.symbol.linalg_extractdiag, 370
mx.symbol.linalg_extracttrian, 371
mx.symbol.linalg_gelqf, 372
mx.symbol.linalg_gemm, 373
mx.symbol.linalg_gemm2, 374
mx.symbol.linalg_inverse, 375
mx.symbol.linalg_makediag, 376
mx.symbol.linalg_maketrian, 377
mx.symbol.linalg_potrf, 378
mx.symbol.linalg_potri, 379
mx.symbol.linalg_slogdet, 380
mx.symbol.linalg_sumlogdiag, 381
mx.symbol.linalg_syrk, 382
mx.symbol.linalg_trmm, 383
mx.symbol.linalg_trsm, 384
mx.symbol.load, 385
mx.symbol.load.json, 385
mx.symbol.log, 386
mx.symbol.log10, 386
mx.symbol.log1p, 387
mx.symbol.log2, 387

mx.symbol.log_softmax, 388
mx.symbol.logical_not, 388
mx.symbol.LRN, 389
mx.symbol.make_loss, 391
mx.symbol.MakeLoss, 390
mx.symbol.max, 392
mx.symbol.max_axis, 393
mx.symbol.mean, 393
mx.symbol.moments, 394
mx.symbol.mp_lamb_update_phase1, 395
mx.symbol.mp_lamb_update_phase2, 396
mx.symbol.mp_nag_mom_update, 397
mx.symbol.mp_sgd_mom_update, 398
mx.symbol.mp_sgd_update, 399
mx.symbol.multi_all_finite, 399
mx.symbol.multi_lars, 400
mx.symbol.multi_mp_sgd_mom_update, 401
mx.symbol.multi_mp_sgd_update, 402
mx.symbol.multi_sgd_mom_update, 403
mx.symbol.multi_sgd_update, 404
mx.symbol.multi_sum_sq, 405
mx.symbol.nag_mom_update, 405
mx.symbol.nanprod, 406
mx.symbol.nansum, 407
mx.symbol.negative, 408
mx.symbol.norm, 408
mx.symbol.normal, 409
mx.symbol.one_hot, 411
mx.symbol.ones_like, 410
mx.symbol.Pad, 412
mx.symbol.pad, 413
mx.symbol.pick, 414
mx.symbol.Pooling, 416
mx.symbol.Pooling_v1, 417
mx.symbol.preloaded_multi_mp_sgd_mom_update,

419
mx.symbol.preloaded_multi_mp_sgd_update,

420
mx.symbol.preloaded_multi_sgd_mom_update,

420
mx.symbol.preloaded_multi_sgd_update,

421
mx.symbol.prod, 422
mx.symbol.radians, 423
mx.symbol.random_exponential, 423
mx.symbol.random_gamma, 424
mx.symbol.random_generalized_negative_binomial,

425

INDEX 517

mx.symbol.random_negative_binomial,
426

mx.symbol.random_normal, 427
mx.symbol.random_pdf_dirichlet, 428
mx.symbol.random_pdf_exponential, 429
mx.symbol.random_pdf_gamma, 430
mx.symbol.random_pdf_generalized_negative_binomial,

431
mx.symbol.random_pdf_negative_binomial,

432
mx.symbol.random_pdf_normal, 433
mx.symbol.random_pdf_poisson, 434
mx.symbol.random_pdf_uniform, 435
mx.symbol.random_poisson, 436
mx.symbol.random_randint, 436
mx.symbol.random_uniform, 437
mx.symbol.ravel_multi_index, 438
mx.symbol.rcbrt, 439
mx.symbol.reciprocal, 439
mx.symbol.relu, 440
mx.symbol.repeat, 441
mx.symbol.reset_arrays, 441
mx.symbol.Reshape, 442
mx.symbol.reshape, 443
mx.symbol.reshape_like, 445
mx.symbol.reverse, 446
mx.symbol.rint, 447
mx.symbol.rmsprop_update, 449
mx.symbol.rmspropalex_update, 447
mx.symbol.RNN, 450
mx.symbol.ROIPooling, 452
mx.symbol.round, 453
mx.symbol.rsqrt, 454
mx.symbol.sample_exponential, 455
mx.symbol.sample_gamma, 456
mx.symbol.sample_generalized_negative_binomial,

457
mx.symbol.sample_multinomial, 458
mx.symbol.sample_negative_binomial,

459
mx.symbol.sample_normal, 460
mx.symbol.sample_poisson, 461
mx.symbol.sample_uniform, 462
mx.symbol.save, 463
mx.symbol.scatter_nd, 463
mx.symbol.SequenceLast, 464
mx.symbol.SequenceMask, 465
mx.symbol.SequenceReverse, 467

mx.symbol.sgd_mom_update, 468
mx.symbol.sgd_update, 469
mx.symbol.shape_array, 470
mx.symbol.shuffle, 471
mx.symbol.sigmoid, 471
mx.symbol.sign, 472
mx.symbol.signsgd_update, 472
mx.symbol.signum_update, 473
mx.symbol.sin, 474
mx.symbol.sinh, 475
mx.symbol.size_array, 476
mx.symbol.slice, 476
mx.symbol.slice_axis, 479
mx.symbol.slice_like, 480
mx.symbol.SliceChannel, 478
mx.symbol.smooth_l1, 481
mx.symbol.softmax, 481
mx.symbol.softmax_cross_entropy, 483
mx.symbol.SoftmaxActivation, 482
mx.symbol.softmin, 484
mx.symbol.softsign, 485
mx.symbol.sort, 486
mx.symbol.space_to_depth, 487
mx.symbol.SpatialTransformer, 488
mx.symbol.split, 488
mx.symbol.sqrt, 490
mx.symbol.square, 490
mx.symbol.squeeze, 491
mx.symbol.stack, 492
mx.symbol.stop_gradient, 492
mx.symbol.sum, 493
mx.symbol.sum_axis, 494
mx.symbol.swapaxes, 495
mx.symbol.SwapAxis, 496
mx.symbol.take, 497
mx.symbol.tan, 498
mx.symbol.tanh, 499
mx.symbol.tile, 499
mx.symbol.topk, 500
mx.symbol.transpose, 501
mx.symbol.trunc, 502
mx.symbol.uniform, 502
mx.symbol.unravel_index, 503
mx.symbol.UpSampling, 504
mx.symbol.Variable, 505
mx.symbol.where, 506
mx.symbol.zeros_like, 507
mx.unserialize, 507

518 INDEX

mxnet, 508
mxnet.export, 508

Ops.MXNDArray, 508
outputs, 509

predict.MXFeedForwardModel, 509
print.MXNDArray, 510

	arguments
	as.array.MXNDArray
	as.matrix.MXNDArray
	children
	ctx
	dim.MXNDArray
	graph.viz
	im2rec
	internals
	is.mx.context
	is.mx.dataiter
	is.mx.ndarray
	is.mx.symbol
	is.serialized
	length.MXNDArray
	mx.apply
	mx.callback.early.stop
	mx.callback.log.speedometer
	mx.callback.log.train.metric
	mx.callback.save.checkpoint
	mx.cpu
	mx.ctx.default
	mx.exec.backward
	mx.exec.forward
	mx.exec.update.arg.arrays
	mx.exec.update.aux.arrays
	mx.exec.update.grad.arrays
	mx.gpu
	mx.infer.rnn
	mx.infer.rnn.one
	mx.infer.rnn.one.unroll
	mx.init.create
	mx.init.internal.default
	mx.init.normal
	mx.init.uniform
	mx.init.Xavier
	mx.io.arrayiter
	mx.io.bucket.iter
	mx.io.CSVIter
	mx.io.extract
	mx.io.ImageDetRecordIter
	mx.io.ImageRecordInt8Iter
	mx.io.ImageRecordIter
	mx.io.ImageRecordIter_v1
	mx.io.ImageRecordUInt8Iter
	mx.io.ImageRecordUInt8Iter_v1
	mx.io.LibSVMIter
	mx.io.MNISTIter
	mx.io.RandomSampler
	mx.io.SequentialSampler
	mx.io.ThreadedDataLoader
	mx.kv.create
	mx.lr_scheduler.FactorScheduler
	mx.lr_scheduler.MultiFactorScheduler
	mx.metric.accuracy
	mx.metric.custom
	mx.metric.logistic_acc
	mx.metric.logloss
	mx.metric.mae
	mx.metric.mse
	mx.metric.Perplexity
	mx.metric.rmse
	mx.metric.rmsle
	mx.metric.top_k_accuracy
	mx.model.buckets
	mx.model.FeedForward.create
	mx.model.init.params
	mx.model.load
	mx.model.save
	mx.nd.abs
	mx.nd.Activation
	mx.nd.adam.update
	mx.nd.add.n
	mx.nd.all.finite
	mx.nd.amp.cast
	mx.nd.amp.multicast
	mx.nd.arccos
	mx.nd.arccosh
	mx.nd.arcsin
	mx.nd.arcsinh
	mx.nd.arctan
	mx.nd.arctanh
	mx.nd.argmax
	mx.nd.argmax.channel
	mx.nd.argmin
	mx.nd.argsort
	mx.nd.array
	mx.nd.batch.dot
	mx.nd.batch.take
	mx.nd.BatchNorm
	mx.nd.BilinearSampler
	mx.nd.BlockGrad
	mx.nd.broadcast.add
	mx.nd.broadcast.axes
	mx.nd.broadcast.axis
	mx.nd.broadcast.div
	mx.nd.broadcast.equal
	mx.nd.broadcast.greater
	mx.nd.broadcast.greater.equal
	mx.nd.broadcast.hypot
	mx.nd.broadcast.lesser
	mx.nd.broadcast.lesser.equal
	mx.nd.broadcast.like
	mx.nd.broadcast.logical.and
	mx.nd.broadcast.logical.or
	mx.nd.broadcast.logical.xor
	mx.nd.broadcast.maximum
	mx.nd.broadcast.minimum
	mx.nd.broadcast.minus
	mx.nd.broadcast.mod
	mx.nd.broadcast.mul
	mx.nd.broadcast.not.equal
	mx.nd.broadcast.plus
	mx.nd.broadcast.power
	mx.nd.broadcast.sub
	mx.nd.broadcast.to
	mx.nd.Cast
	mx.nd.cast
	mx.nd.cast.storage
	mx.nd.cbrt
	mx.nd.ceil
	mx.nd.choose.element.0index
	mx.nd.clip
	mx.nd.col2im
	mx.nd.Concat
	mx.nd.concat
	mx.nd.Convolution
	mx.nd.Convolution.v1
	mx.nd.copyto
	mx.nd.Correlation
	mx.nd.cos
	mx.nd.cosh
	mx.nd.Crop
	mx.nd.crop
	mx.nd.ctc.loss
	mx.nd.CTCLoss
	mx.nd.cumsum
	mx.nd.Custom
	mx.nd.Deconvolution
	mx.nd.degrees
	mx.nd.depth.to.space
	mx.nd.diag
	mx.nd.digamma
	mx.nd.dot
	mx.nd.Dropout
	mx.nd.ElementWiseSum
	mx.nd.elemwise.add
	mx.nd.elemwise.div
	mx.nd.elemwise.mul
	mx.nd.elemwise.sub
	mx.nd.Embedding
	mx.nd.erf
	mx.nd.erfinv
	mx.nd.exp
	mx.nd.expand.dims
	mx.nd.expm1
	mx.nd.fill.element.0index
	mx.nd.fix
	mx.nd.Flatten
	mx.nd.flatten
	mx.nd.flip
	mx.nd.floor
	mx.nd.ftml.update
	mx.nd.ftrl.update
	mx.nd.FullyConnected
	mx.nd.gamma
	mx.nd.gammaln
	mx.nd.gather.nd
	mx.nd.GridGenerator
	mx.nd.GroupNorm
	mx.nd.hard.sigmoid
	mx.nd.identity
	mx.nd.IdentityAttachKLSparseReg
	mx.nd.im2col
	mx.nd.InstanceNorm
	mx.nd.khatri.rao
	mx.nd.L2Normalization
	mx.nd.lamb.update.phase1
	mx.nd.lamb.update.phase2
	mx.nd.LayerNorm
	mx.nd.LeakyReLU
	mx.nd.linalg.det
	mx.nd.linalg.extractdiag
	mx.nd.linalg.extracttrian
	mx.nd.linalg.gelqf
	mx.nd.linalg.gemm
	mx.nd.linalg.gemm2
	mx.nd.linalg.inverse
	mx.nd.linalg.makediag
	mx.nd.linalg.maketrian
	mx.nd.linalg.potrf
	mx.nd.linalg.potri
	mx.nd.linalg.slogdet
	mx.nd.linalg.sumlogdiag
	mx.nd.linalg.syrk
	mx.nd.linalg.trmm
	mx.nd.linalg.trsm
	mx.nd.load
	mx.nd.log
	mx.nd.log.softmax
	mx.nd.log10
	mx.nd.log1p
	mx.nd.log2
	mx.nd.logical.not
	mx.nd.LRN
	mx.nd.make.loss
	mx.nd.MakeLoss
	mx.nd.max
	mx.nd.max.axis
	mx.nd.mean
	mx.nd.min
	mx.nd.min.axis
	mx.nd.moments
	mx.nd.mp.lamb.update.phase1
	mx.nd.mp.lamb.update.phase2
	mx.nd.mp.nag.mom.update
	mx.nd.mp.sgd.mom.update
	mx.nd.mp.sgd.update
	mx.nd.multi.all.finite
	mx.nd.multi.lars
	mx.nd.multi.mp.sgd.mom.update
	mx.nd.multi.mp.sgd.update
	mx.nd.multi.sgd.mom.update
	mx.nd.multi.sgd.update
	mx.nd.multi.sum.sq
	mx.nd.nag.mom.update
	mx.nd.nanprod
	mx.nd.nansum
	mx.nd.negative
	mx.nd.norm
	mx.nd.normal
	mx.nd.one.hot
	mx.nd.ones
	mx.nd.ones.like
	mx.nd.Pad
	mx.nd.pad
	mx.nd.pick
	mx.nd.Pooling
	mx.nd.Pooling.v1
	mx.nd.preloaded.multi.mp.sgd.mom.update
	mx.nd.preloaded.multi.mp.sgd.update
	mx.nd.preloaded.multi.sgd.mom.update
	mx.nd.preloaded.multi.sgd.update
	mx.nd.prod
	mx.nd.radians
	mx.nd.random.exponential
	mx.nd.random.gamma
	mx.nd.random.generalized.negative.binomial
	mx.nd.random.negative.binomial
	mx.nd.random.normal
	mx.nd.random.pdf.dirichlet
	mx.nd.random.pdf.exponential
	mx.nd.random.pdf.gamma
	mx.nd.random.pdf.generalized.negative.binomial
	mx.nd.random.pdf.negative.binomial
	mx.nd.random.pdf.normal
	mx.nd.random.pdf.poisson
	mx.nd.random.pdf.uniform
	mx.nd.random.poisson
	mx.nd.random.randint
	mx.nd.random.uniform
	mx.nd.ravel.multi.index
	mx.nd.rcbrt
	mx.nd.reciprocal
	mx.nd.relu
	mx.nd.repeat
	mx.nd.reset.arrays
	mx.nd.Reshape
	mx.nd.reshape
	mx.nd.reshape.like
	mx.nd.reverse
	mx.nd.rint
	mx.nd.rmsprop.update
	mx.nd.rmspropalex.update
	mx.nd.RNN
	mx.nd.ROIPooling
	mx.nd.round
	mx.nd.rsqrt
	mx.nd.sample.exponential
	mx.nd.sample.gamma
	mx.nd.sample.generalized.negative.binomial
	mx.nd.sample.multinomial
	mx.nd.sample.negative.binomial
	mx.nd.sample.normal
	mx.nd.sample.poisson
	mx.nd.sample.uniform
	mx.nd.save
	mx.nd.scatter.nd
	mx.nd.SequenceLast
	mx.nd.SequenceMask
	mx.nd.SequenceReverse
	mx.nd.sgd.mom.update
	mx.nd.sgd.update
	mx.nd.shape.array
	mx.nd.shuffle
	mx.nd.sigmoid
	mx.nd.sign
	mx.nd.signsgd.update
	mx.nd.signum.update
	mx.nd.sin
	mx.nd.sinh
	mx.nd.size.array
	mx.nd.slice.axis
	mx.nd.slice.like
	mx.nd.SliceChannel
	mx.nd.smooth.l1
	mx.nd.softmax
	mx.nd.softmax.cross.entropy
	mx.nd.SoftmaxActivation
	mx.nd.softmin
	mx.nd.softsign
	mx.nd.sort
	mx.nd.space.to.depth
	mx.nd.SpatialTransformer
	mx.nd.split
	mx.nd.sqrt
	mx.nd.square
	mx.nd.squeeze
	mx.nd.stack
	mx.nd.stop.gradient
	mx.nd.sum
	mx.nd.sum.axis
	mx.nd.swapaxes
	mx.nd.SwapAxis
	mx.nd.take
	mx.nd.tan
	mx.nd.tanh
	mx.nd.tile
	mx.nd.topk
	mx.nd.transpose
	mx.nd.trunc
	mx.nd.uniform
	mx.nd.unravel.index
	mx.nd.UpSampling
	mx.nd.where
	mx.nd.zeros
	mx.nd.zeros.like
	mx.opt.adadelta
	mx.opt.adagrad
	mx.opt.adam
	mx.opt.create
	mx.opt.get.updater
	mx.opt.nag
	mx.opt.rmsprop
	mx.opt.sgd
	mx.profiler.config
	mx.profiler.state
	mx.rnorm
	mx.runif
	mx.serialize
	mx.set.seed
	mx.simple.bind
	mx.symbol.abs
	mx.symbol.Activation
	mx.symbol.adam_update
	mx.symbol.add_n
	mx.symbol.all_finite
	mx.symbol.amp_cast
	mx.symbol.amp_multicast
	mx.symbol.arccos
	mx.symbol.arccosh
	mx.symbol.arcsin
	mx.symbol.arcsinh
	mx.symbol.arctan
	mx.symbol.arctanh
	mx.symbol.argmax
	mx.symbol.argmax_channel
	mx.symbol.argmin
	mx.symbol.argsort
	mx.symbol.BatchNorm
	mx.symbol.batch_dot
	mx.symbol.batch_take
	mx.symbol.BilinearSampler
	mx.symbol.BlockGrad
	mx.symbol.broadcast_add
	mx.symbol.broadcast_axes
	mx.symbol.broadcast_axis
	mx.symbol.broadcast_div
	mx.symbol.broadcast_equal
	mx.symbol.broadcast_greater
	mx.symbol.broadcast_greater_equal
	mx.symbol.broadcast_hypot
	mx.symbol.broadcast_lesser
	mx.symbol.broadcast_lesser_equal
	mx.symbol.broadcast_like
	mx.symbol.broadcast_logical_and
	mx.symbol.broadcast_logical_or
	mx.symbol.broadcast_logical_xor
	mx.symbol.broadcast_maximum
	mx.symbol.broadcast_minimum
	mx.symbol.broadcast_minus
	mx.symbol.broadcast_mod
	mx.symbol.broadcast_mul
	mx.symbol.broadcast_not_equal
	mx.symbol.broadcast_plus
	mx.symbol.broadcast_power
	mx.symbol.broadcast_sub
	mx.symbol.broadcast_to
	mx.symbol.Cast
	mx.symbol.cast
	mx.symbol.cast_storage
	mx.symbol.cbrt
	mx.symbol.ceil
	mx.symbol.choose_element_0index
	mx.symbol.clip
	mx.symbol.col2im
	mx.symbol.Concat
	mx.symbol.concat
	mx.symbol.Convolution
	mx.symbol.Convolution_v1
	mx.symbol.Correlation
	mx.symbol.cos
	mx.symbol.cosh
	mx.symbol.Crop
	mx.symbol.crop
	mx.symbol.CTCLoss
	mx.symbol.ctc_loss
	mx.symbol.cumsum
	mx.symbol.Custom
	mx.symbol.Deconvolution
	mx.symbol.degrees
	mx.symbol.depth_to_space
	mx.symbol.diag
	mx.symbol.digamma
	mx.symbol.dot
	mx.symbol.Dropout
	mx.symbol.ElementWiseSum
	mx.symbol.elemwise_add
	mx.symbol.elemwise_div
	mx.symbol.elemwise_mul
	mx.symbol.elemwise_sub
	mx.symbol.Embedding
	mx.symbol.erf
	mx.symbol.erfinv
	mx.symbol.exp
	mx.symbol.expand_dims
	mx.symbol.expm1
	mx.symbol.fill_element_0index
	mx.symbol.fix
	mx.symbol.Flatten
	mx.symbol.flatten
	mx.symbol.flip
	mx.symbol.floor
	mx.symbol.ftml_update
	mx.symbol.ftrl_update
	mx.symbol.FullyConnected
	mx.symbol.gamma
	mx.symbol.gammaln
	mx.symbol.gather_nd
	mx.symbol.GridGenerator
	mx.symbol.Group
	mx.symbol.GroupNorm
	mx.symbol.hard_sigmoid
	mx.symbol.identity
	mx.symbol.IdentityAttachKLSparseReg
	mx.symbol.im2col
	mx.symbol.infer.shape
	mx.symbol.InstanceNorm
	mx.symbol.khatri_rao
	mx.symbol.L2Normalization
	mx.symbol.lamb_update_phase1
	mx.symbol.lamb_update_phase2
	mx.symbol.LayerNorm
	mx.symbol.LeakyReLU
	mx.symbol.linalg_det
	mx.symbol.linalg_extractdiag
	mx.symbol.linalg_extracttrian
	mx.symbol.linalg_gelqf
	mx.symbol.linalg_gemm
	mx.symbol.linalg_gemm2
	mx.symbol.linalg_inverse
	mx.symbol.linalg_makediag
	mx.symbol.linalg_maketrian
	mx.symbol.linalg_potrf
	mx.symbol.linalg_potri
	mx.symbol.linalg_slogdet
	mx.symbol.linalg_sumlogdiag
	mx.symbol.linalg_syrk
	mx.symbol.linalg_trmm
	mx.symbol.linalg_trsm
	mx.symbol.load
	mx.symbol.load.json
	mx.symbol.log
	mx.symbol.log10
	mx.symbol.log1p
	mx.symbol.log2
	mx.symbol.logical_not
	mx.symbol.log_softmax
	mx.symbol.LRN
	mx.symbol.MakeLoss
	mx.symbol.make_loss
	mx.symbol.max
	mx.symbol.max_axis
	mx.symbol.mean
	mx.symbol.moments
	mx.symbol.mp_lamb_update_phase1
	mx.symbol.mp_lamb_update_phase2
	mx.symbol.mp_nag_mom_update
	mx.symbol.mp_sgd_mom_update
	mx.symbol.mp_sgd_update
	mx.symbol.multi_all_finite
	mx.symbol.multi_lars
	mx.symbol.multi_mp_sgd_mom_update
	mx.symbol.multi_mp_sgd_update
	mx.symbol.multi_sgd_mom_update
	mx.symbol.multi_sgd_update
	mx.symbol.multi_sum_sq
	mx.symbol.nag_mom_update
	mx.symbol.nanprod
	mx.symbol.nansum
	mx.symbol.negative
	mx.symbol.norm
	mx.symbol.normal
	mx.symbol.ones_like
	mx.symbol.one_hot
	mx.symbol.Pad
	mx.symbol.pad
	mx.symbol.pick
	mx.symbol.Pooling
	mx.symbol.Pooling_v1
	mx.symbol.preloaded_multi_mp_sgd_mom_update
	mx.symbol.preloaded_multi_mp_sgd_update
	mx.symbol.preloaded_multi_sgd_mom_update
	mx.symbol.preloaded_multi_sgd_update
	mx.symbol.prod
	mx.symbol.radians
	mx.symbol.random_exponential
	mx.symbol.random_gamma
	mx.symbol.random_generalized_negative_binomial
	mx.symbol.random_negative_binomial
	mx.symbol.random_normal
	mx.symbol.random_pdf_dirichlet
	mx.symbol.random_pdf_exponential
	mx.symbol.random_pdf_gamma
	mx.symbol.random_pdf_generalized_negative_binomial
	mx.symbol.random_pdf_negative_binomial
	mx.symbol.random_pdf_normal
	mx.symbol.random_pdf_poisson
	mx.symbol.random_pdf_uniform
	mx.symbol.random_poisson
	mx.symbol.random_randint
	mx.symbol.random_uniform
	mx.symbol.ravel_multi_index
	mx.symbol.rcbrt
	mx.symbol.reciprocal
	mx.symbol.relu
	mx.symbol.repeat
	mx.symbol.reset_arrays
	mx.symbol.Reshape
	mx.symbol.reshape
	mx.symbol.reshape_like
	mx.symbol.reverse
	mx.symbol.rint
	mx.symbol.rmspropalex_update
	mx.symbol.rmsprop_update
	mx.symbol.RNN
	mx.symbol.ROIPooling
	mx.symbol.round
	mx.symbol.rsqrt
	mx.symbol.sample_exponential
	mx.symbol.sample_gamma
	mx.symbol.sample_generalized_negative_binomial
	mx.symbol.sample_multinomial
	mx.symbol.sample_negative_binomial
	mx.symbol.sample_normal
	mx.symbol.sample_poisson
	mx.symbol.sample_uniform
	mx.symbol.save
	mx.symbol.scatter_nd
	mx.symbol.SequenceLast
	mx.symbol.SequenceMask
	mx.symbol.SequenceReverse
	mx.symbol.sgd_mom_update
	mx.symbol.sgd_update
	mx.symbol.shape_array
	mx.symbol.shuffle
	mx.symbol.sigmoid
	mx.symbol.sign
	mx.symbol.signsgd_update
	mx.symbol.signum_update
	mx.symbol.sin
	mx.symbol.sinh
	mx.symbol.size_array
	mx.symbol.slice
	mx.symbol.SliceChannel
	mx.symbol.slice_axis
	mx.symbol.slice_like
	mx.symbol.smooth_l1
	mx.symbol.softmax
	mx.symbol.SoftmaxActivation
	mx.symbol.softmax_cross_entropy
	mx.symbol.softmin
	mx.symbol.softsign
	mx.symbol.sort
	mx.symbol.space_to_depth
	mx.symbol.SpatialTransformer
	mx.symbol.split
	mx.symbol.sqrt
	mx.symbol.square
	mx.symbol.squeeze
	mx.symbol.stack
	mx.symbol.stop_gradient
	mx.symbol.sum
	mx.symbol.sum_axis
	mx.symbol.swapaxes
	mx.symbol.SwapAxis
	mx.symbol.take
	mx.symbol.tan
	mx.symbol.tanh
	mx.symbol.tile
	mx.symbol.topk
	mx.symbol.transpose
	mx.symbol.trunc
	mx.symbol.uniform
	mx.symbol.unravel_index
	mx.symbol.UpSampling
	mx.symbol.Variable
	mx.symbol.where
	mx.symbol.zeros_like
	mx.unserialize
	mxnet
	mxnet.export
	Ops.MXNDArray
	outputs
	predict.MXFeedForwardModel
	print.MXNDArray
	Index

