25 #ifndef MXNET_COMMON_UTILS_H_ 26 #define MXNET_COMMON_UTILS_H_ 28 #include <dmlc/logging.h> 30 #include <nnvm/graph.h> 35 #include <nnvm/graph_attr_types.h> 39 #include <type_traits> 47 #include "../operator/mxnet_op.h" 57 template<
typename DType,
typename IType>
58 MSHADOW_XINLINE
static void Map(
int i, DType* out,
const IType* indptr,
60 if (indptr[i+1] < 0 || indptr[i+1] < indptr[i] ||
61 (i == 0 && indptr[i] != 0) ||
62 (i == end - 1 && indptr[end] != idx_size))
72 template<
typename DType,
typename IType,
typename RType>
73 MSHADOW_XINLINE
static void Map(
int i, DType* out,
const IType* idx,
75 for (RType j = indptr[i]; j < indptr[i+1]; j++) {
76 if (idx[j] >= ncols || idx[j] < 0 ||
77 (j < indptr[i+1] - 1 && idx[j] >= idx[j+1])) {
90 template<
typename DType,
typename IType>
91 MSHADOW_XINLINE
static void Map(
int i, DType* out,
const IType* idx,
93 if ((i < end && idx[i+1] <= idx[i])
94 || idx[i] < 0 || idx[i] >= nrows)
99 template<
typename xpu>
101 const TBlob &err_cpu,
const bool full_check);
111 template<
typename xpu>
113 const TBlob &err_cpu,
const bool full_check) {
114 using namespace op::mxnet_op;
116 <<
"CheckFormatCSRImpl is for CSRNDArray";
121 if ((shape.ndim() != 2) ||
122 (idx_shape.ndim() != 1 || indptr_shape.ndim() != 1 || storage_shape.ndim() != 1) ||
123 (indptr_shape[0] != shape[0] + 1) ||
124 (idx_shape[0] != storage_shape[0])) {
125 MSHADOW_TYPE_SWITCH(err_cpu.
type_flag_, DType, {
126 DType* err = err_cpu.dptr<DType>();
132 MSHADOW_TYPE_SWITCH(err_cpu.
type_flag_, DType, {
133 MSHADOW_IDX_TYPE_SWITCH(input.aux_type(csr::kIndPtr), RType, {
134 MSHADOW_IDX_TYPE_SWITCH(input.aux_type(csr::kIdx), IType, {
135 mshadow::Stream<xpu> *s = rctx.get_stream<xpu>();
136 NDArray ret_xpu = NDArray(mshadow::Shape1(1),
137 rctx.get_ctx(), false, err_cpu.type_flag_);
138 TBlob val_xpu = ret_xpu.data();
139 Kernel<set_to_int<kNormalErr>, xpu>::Launch(s, val_xpu.Size(), val_xpu.dptr<DType>());
140 Kernel<csr_indptr_check, xpu>::Launch(s, indptr_shape[0] - 1, val_xpu.dptr<DType>(),
141 input.aux_data(csr::kIndPtr).dptr<RType>(),
142 indptr_shape[0] - 1, idx_shape[0]);
144 if (idx_shape[0] != 0) {
145 Kernel<csr_idx_check, xpu>::Launch(s, indptr_shape[0] - 1, val_xpu.dptr<DType>(),
146 input.aux_data(csr::kIdx).dptr<IType>(),
147 input.aux_data(csr::kIndPtr).dptr<RType>(), shape[1]);
149 mshadow::Copy(err_cpu.get<cpu, 1, DType>(),
150 val_xpu.get<xpu, 1, DType>(s), s);
165 template<
typename xpu>
167 const TBlob &err_cpu,
const bool full_check) {
168 using namespace op::mxnet_op;
170 <<
"CheckFormatRSPImpl is for RSPNDArray";
173 MSHADOW_TYPE_SWITCH(err_cpu.
type_flag_, DType, {
174 DType* err = err_cpu.dptr<DType>();
179 if (idx_shape[0] == 0) {
183 MSHADOW_TYPE_SWITCH(err_cpu.
type_flag_, DType, {
184 MSHADOW_IDX_TYPE_SWITCH(input.aux_type(rowsparse::kIdx), IType, {
185 mshadow::Stream<xpu> *s = rctx.get_stream<xpu>();
186 NDArray ret_xpu = NDArray(mshadow::Shape1(1),
187 rctx.get_ctx(), false, err_cpu.type_flag_);
188 TBlob val_xpu = ret_xpu.data();
189 Kernel<set_to_int<kNormalErr>, xpu>::Launch(s, val_xpu.Size(), val_xpu.dptr<DType>());
191 Kernel<rsp_idx_check, xpu>::Launch(s, idx_shape[0],
192 val_xpu.dptr<DType>(), input.aux_data(rowsparse::kIdx).dptr<IType>(),
193 idx_shape[0] - 1, input.shape()[0]);
194 mshadow::Copy(err_cpu.get<cpu, 1, DType>(),
195 val_xpu.get<xpu, 1, DType>(s), s);
201 template<
typename xpu>
203 const TBlob &err_cpu,
const bool full_check) {
206 CheckFormatCSRImpl<xpu>(rctx, input, err_cpu, full_check);
208 CheckFormatRSPImpl<xpu>(rctx, input, err_cpu, full_check);
212 LOG(FATAL) <<
"Unknown storage type " << stype;
219 template<
typename xpu>
222 const TBlob& idx_data,
228 template<
typename xpu>
236 if (!vstorage.empty()) {
237 for (
const auto& i : vstorage) {
238 if (i != stype)
return false;
256 if (!vstorage.empty()) {
258 for (
const auto i : vstorage) {
261 }
else if (i == stype2) {
268 *has_both = has == 3;
280 if (!ndarrays.empty()) {
281 for (
const auto& nd : ndarrays) {
282 if (nd.storage_type() != stype) {
301 if (!ndarrays.empty()) {
303 for (
const auto& nd : ndarrays) {
305 if (stype == stype1) {
307 }
else if (stype == stype2) {
314 *has_both = has == 3;
327 return "fcompute_ex";
329 return "fcompute_fallback";
370 const std::vector<int>& in_attrs,
371 const std::vector<int>& out_attrs) {
372 std::ostringstream os;
373 os <<
"operator = " << attrs.op->name
374 <<
"\ninput storage types = [";
375 for (
const int attr : in_attrs) {
379 <<
"output storage types = [";
380 for (
const int attr : out_attrs) {
385 for (
auto kv : attrs.dict) {
386 os <<
"\"" << kv.first <<
"\" : " << kv.second <<
", ";
396 const std::vector<NDArray>& inputs,
397 const std::vector<OpReqType>& req,
398 const std::vector<NDArray>& outputs) {
399 std::string result =
"";
400 std::vector<int> in_stypes;
401 std::vector<int> out_stypes;
402 in_stypes.reserve(inputs.size());
403 out_stypes.reserve(outputs.size());
404 auto xform = [](
const NDArray arr) ->
int {
return arr.storage_type(); };
405 std::transform(inputs.begin(), inputs.end(), std::back_inserter(in_stypes), xform);
406 std::transform(outputs.begin(), outputs.end(), std::back_inserter(out_stypes), xform);
412 inline void LogOnce(
const std::string& message) {
413 typedef dmlc::ThreadLocalStore<std::unordered_set<std::string>> LogStore;
414 auto log_store = LogStore::Get();
415 if (log_store->find(message) == log_store->end()) {
416 LOG(INFO) << message;
417 log_store->insert(message);
425 const std::vector<int>* in_attrs,
426 const std::vector<int>* out_attrs) {
427 static bool log = dmlc::GetEnv(
"MXNET_STORAGE_FALLBACK_LOG_VERBOSE",
true);
430 std::ostringstream os;
431 const char* warning =
"\nThe operator with default storage type will be dispatched " 432 "for execution. You're seeing this warning message because the operator above is unable " 433 "to process the given ndarrays with specified storage types, context and parameter. " 434 "Temporary dense ndarrays are generated in order to execute the operator. " 435 "You can set environment variable MXNET_STORAGE_FALLBACK_LOG_VERBOSE to " 436 "0 to suppress this warning.";
437 os <<
"\nStorage type fallback detected:\n" << op_str << warning;
444 return dmlc::GetEnv(
"MXNET_GPU_WORKER_NTHREADS", 2);
451 int num_match_color = dmlc::GetEnv(
"MXNET_EXEC_NUM_TEMP", 1);
455 template<
typename T,
typename V>
458 #pragma omp parallel for reduction(+:sum) 459 for (
int i = 0; i < n; ++i) {
472 template<
typename RandomIt,
typename Compare>
474 size_t grainsize,
const Compare& comp) {
475 if (len < grainsize) {
478 std::thread thr(ParallelSortHelper<RandomIt, Compare>, first, len/2, grainsize, comp);
481 std::inplace_merge(first, first+len/2, first+len, comp);
494 template<
typename RandomIt,
typename Compare>
495 void ParallelSort(RandomIt first, RandomIt last,
size_t num_threads, Compare comp) {
496 const auto num = std::distance(first, last);
497 size_t grainsize =
std::max(num / num_threads + 5, static_cast<size_t>(1024*16));
510 template<
typename RandomIt>
513 std::less<
typename std::iterator_traits<RandomIt>::value_type>());
551 template <
class T,
size_t kSize>
572 template <
class T,
class... Args>
574 return std::unique_ptr<T>(
new T(std::forward<Args>(args)...));
588 using U =
typename std::remove_extent<T>::type;
589 return std::unique_ptr<T>(
new U[n]{});
600 template <
class T,
class... Args>
603 template<
typename FCompType>
606 static auto& fcompute_cpu = nnvm::Op::GetAttr<FCompType>(name +
"<cpu>");
607 static auto& fcompute_gpu = nnvm::Op::GetAttr<FCompType>(name +
"<gpu>");
609 if (ctx.
dev_mask() == cpu::kDevMask) {
610 return fcompute_cpu.get(op,
nullptr);
611 }
else if (ctx.
dev_mask() == gpu::kDevMask) {
612 return fcompute_gpu.get(op,
nullptr);
614 LOG(FATAL) <<
"Unknown device mask";
621 #endif // MXNET_COMMON_UTILS_H_
static MSHADOW_XINLINE void Map(int i, DType *out, const IType *idx, const RType *indptr, const nnvm::dim_t ncols)
Definition: utils.h:73
NDArrayStorageType
Definition: ndarray.h:61
void CheckFormatCSRImpl(const RunContext &rctx, const NDArray &input, const TBlob &err_cpu, const bool full_check)
Check the validity of CSRNDArray.
Definition: utils.h:112
DeviceType dev_mask() const
Get corresponding device mask.
Definition: base.h:151
NDArrayStorageType storage_type() const
Definition: ndarray.h:259
Engine that schedules all the operations according to dependency.
void CheckFormatImpl(const RunContext &rctx, const NDArray &input, const TBlob &err_cpu, const bool full_check)
Definition: utils.h:202
int GetNumThreadsPerGPU()
Definition: utils.h:442
void SparseRetainOpForwardRspWrapper(mshadow::Stream< xpu > *s, const NDArray &input_nd, const TBlob &idx_data, const OpReqType req, NDArray *output_nd)
Pick rows specified by user input index array from a row sparse ndarray and save them in the output s...
const TShape & storage_shape() const
Definition: ndarray.h:169
std::string operator_stype_string(const nnvm::NodeAttrs &attrs, const int dev_mask, const std::vector< int > &in_attrs, const std::vector< int > &out_attrs)
get string representation of the operator stypes
Definition: utils.h:368
namespace of mxnet
Definition: base.h:118
Additional operator attributes beside the ones provided by NNVM.
void KnownBound
Type of T.
Definition: utils.h:556
void ParallelSortHelper(RandomIt first, size_t len, size_t grainsize, const Compare &comp)
Helper function for ParallelSort. DO NOT call this function directly. Use the interface ParallelSort ...
Definition: utils.h:473
int type_flag_
type flag of the tensor blob
Definition: tensor_blob.h:74
FCompType GetFCompute(const nnvm::Op *op, const std::string &name, const Context &ctx)
Definition: utils.h:604
V ParallelAccumulate(const T *a, const int n, V start)
Definition: utils.h:456
void LogOnce(const std::string &message)
log message once. Intended for storage fallback warning messages.
Definition: utils.h:412
nnvm::TShape TShape
Shape data structure used to record shape information.
Definition: base.h:128
Context ctx
base Context
Definition: base.h:246
execution time context. The information needed in runtime for actual execution.
Definition: base.h:244
DispatchMode
the dispatch mode of the operator
Definition: op_attr_types.h:105
std::string stype_string(const int x)
get string representation of storage_type
Definition: utils.h:340
void CastStorageDispatch(const OpContext &ctx, const NDArray &input, const NDArray &output)
void CheckFormatWrapper(const RunContext &rctx, const NDArray &input, const TBlob &err_cpu, const bool full_check)
void ParallelSort(RandomIt first, RandomIt last, size_t num_threads, Compare comp)
Sort the elements in the range [first, last) into the ascending order defined by the comparator comp...
Definition: utils.h:495
All the possible information needed by Operator.Forward and Backward This is the superset of RunConte...
Definition: op_attr_types.h:66
bool ContainsOnlyStorage(const StorageTypeVector &vstorage, const NDArrayStorageType stype)
returns true if all storage types in vstorage are the same as target stype. false is returned for emp...
Definition: utils.h:234
std::string operator_string(const nnvm::NodeAttrs &attrs, const OpContext &ctx, const std::vector< NDArray > &inputs, const std::vector< OpReqType > &req, const std::vector< NDArray > &outputs)
get string representation of the operator
Definition: utils.h:394
Symbol max(const std::string &symbol_name, Symbol data, dmlc::optional< Shape > axis=dmlc::optional< Shape >(), bool keepdims=false, bool exclude=false)
Definition: op.h:2391
std::mt19937 RANDOM_ENGINE
Random Engine.
Definition: utils.h:519
Indices of RSPNDArray should be non-negative, less than the size of first dimension and in ascending ...
Definition: utils.h:89
const TShape & shape() const
Definition: ndarray.h:161
std::string dispatch_mode_string(const DispatchMode x)
get string representation of dispatch_mode
Definition: utils.h:322
std::string dev_type_string(const int dev_type)
get string representation of device type
Definition: utils.h:353
Symbol log(const std::string &symbol_name, Symbol data)
Definition: op.h:2010
Helper for non-array type T.
Definition: utils.h:530
Data structures that can appear in graph attributes.
IndPtr should be non-negative, in non-decreasing order, start with 0 and end with value equal with si...
Definition: utils.h:56
std::unique_ptr< T[]> UnknownBound
Type of T.
Definition: utils.h:545
OpReqType
operation request type to Forward and Backward
Definition: op_attr_types.h:45
nnvm::Op Op
operator structure from NNVM
Definition: base.h:130
RunContext run_ctx
RunContext related resources.
Definition: op_attr_types.h:70
int64_t dim_t
data type to store dim size
Definition: c_api.h:62
Symbol sort(const std::string &symbol_name, Symbol data, dmlc::optional< int > axis=dmlc::optional< int >(-1), bool is_ascend=true)
Definition: op.h:2674
std::unique_ptr< T > SingleObject
Type of T.
Definition: utils.h:534
void CheckFormatRSPImpl(const RunContext &rctx, const NDArray &input, const TBlob &err_cpu, const bool full_check)
Check the validity of RowSparseNDArray.
Definition: utils.h:166
int GetExecNumMatchColor()
Definition: utils.h:449
static MSHADOW_XINLINE void Map(int i, DType *out, const IType *idx, const nnvm::dim_t end, const nnvm::dim_t nrows)
Definition: utils.h:91
Symbol min(const std::string &symbol_name, Symbol data, dmlc::optional< Shape > axis=dmlc::optional< Shape >(), bool keepdims=false, bool exclude=false)
Definition: op.h:2428
void LogStorageFallback(const nnvm::NodeAttrs &attrs, const int dev_mask, const std::vector< int > *in_attrs, const std::vector< int > *out_attrs)
log storage fallback event
Definition: utils.h:423
helper::UniqueIf< T >::SingleObject MakeUnique(Args &&...args)
Constructs an object of type T and wraps it in a std::unique_ptr.
Definition: utils.h:573
Context information about the execution environment.
Definition: base.h:133
Indices should be non-negative, less than the number of columns and in ascending order per row...
Definition: utils.h:71
const TShape & aux_shape(size_t index) const
get the shape of aux_data(index)
Definition: ndarray.h:181
ndarray interface
Definition: ndarray.h:82
static MSHADOW_XINLINE void Map(int i, DType *out, const IType *indptr, const nnvm::dim_t end, const nnvm::dim_t idx_size)
Definition: utils.h:58
std::vector< int > StorageTypeVector
The result holder of storage type of each NodeEntry in the graph.
Definition: graph_attr_types.h:45
Symbol sum(const std::string &symbol_name, Symbol data, dmlc::optional< Shape > axis=dmlc::optional< Shape >(), bool keepdims=false, bool exclude=false)
Definition: op.h:2202
tensor blob class that can be used to hold tensor of any dimension, any device and any data type...
Definition: tensor_blob.h:66