Source code for mxnet.visualization

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=invalid-name, too-many-locals, fixme
# pylint: disable=too-many-branches, too-many-statements
# pylint: disable=too-many-arguments
# pylint: disable=dangerous-default-value
"""Visualization module"""
from __future__ import absolute_import

import re
import copy
import json
import warnings
from .symbol import Symbol

def _str2tuple(string):
    """Convert shape string to list, internal use only.

    Parameters
    ----------
    string: str
        Shape string.

    Returns
    -------
    list of str
        Represents shape.
    """
    return re.findall(r"\d+", string)



[docs]def plot_network(symbol, title="plot", save_format='pdf', shape=None, dtype=None, node_attrs={}, hide_weights=True): """Creates a visualization (Graphviz digraph object) of the given computation graph. Graphviz must be installed for this function to work. Parameters ---------- title: str, optional Title of the generated visualization. symbol: Symbol A symbol from the computation graph. The generated digraph will visualize the part of the computation graph required to compute `symbol`. shape: dict, optional Specifies the shape of the input tensors. If specified, the visualization will include the shape of the tensors between the nodes. `shape` is a dictionary mapping input symbol names (str) to the corresponding tensor shape (tuple). dtype: dict, optional Specifies the type of the input tensors. If specified, the visualization will include the type of the tensors between the nodes. `dtype` is a dictionary mapping input symbol names (str) to the corresponding tensor type (e.g. `numpy.float32`). node_attrs: dict, optional Specifies the attributes for nodes in the generated visualization. `node_attrs` is a dictionary of Graphviz attribute names and values. For example:: node_attrs={"shape":"oval","fixedsize":"false"} will use oval shape for nodes and allow variable sized nodes in the visualization. hide_weights: bool, optional If True (default), then inputs with names of form *_weight* (corresponding to weight tensors) or *_bias* (corresponding to bias vectors) will be hidden for a cleaner visualization. Returns ------- dot: Digraph A Graphviz digraph object visualizing the computation graph to compute `symbol`. Example ------- >>> net = mx.sym.Variable('data') >>> net = mx.sym.FullyConnected(data=net, name='fc1', num_hidden=128) >>> net = mx.sym.Activation(data=net, name='relu1', act_type="relu") >>> net = mx.sym.FullyConnected(data=net, name='fc2', num_hidden=10) >>> net = mx.sym.SoftmaxOutput(data=net, name='out') >>> digraph = mx.viz.plot_network(net, shape={'data':(100,200)}, ... node_attrs={"fixedsize":"false"}) >>> digraph.view() Notes ----- If ``mxnet`` is imported, the visualization module can be used in its short-form. For example, if we ``import mxnet`` as follows:: import mxnet this method in visualization module can be used in its short-form as:: mxnet.viz.plot_network(...) """ # todo add shape support try: from graphviz import Digraph except: raise ImportError("Draw network requires graphviz library") if not isinstance(symbol, Symbol): raise TypeError("symbol must be a Symbol") internals = symbol.get_internals() draw_shape = shape is not None if draw_shape: _, out_shapes, _ = internals.infer_shape(**shape) if out_shapes is None: raise ValueError("Input shape is incomplete") shape_dict = dict(zip(internals.list_outputs(), out_shapes)) draw_type = dtype is not None if draw_type: _, out_types, _ = internals.infer_type(**dtype) if out_types is None: raise ValueError("Input type is incomplete") type_dict = dict(zip(internals.list_outputs(), out_types)) conf = json.loads(symbol.tojson()) nodes = conf["nodes"] # check if multiple nodes have the same name if len(nodes) != len(set([node["name"] for node in nodes])): seen_nodes = set() # find all repeated names repeated = set(node['name'] for node in nodes if node['name'] in seen_nodes or seen_nodes.add(node['name'])) warning_message = "There are multiple variables with the same name in your graph, " \ "this may result in cyclic graph. Repeated names: " + ','.join(repeated) warnings.warn(warning_message, RuntimeWarning) # default attributes of node node_attr = {"shape": "box", "fixedsize": "true", "width": "1.3", "height": "0.8034", "style": "filled"} # merge the dict provided by user and the default one node_attr.update(node_attrs) dot = Digraph(name=title, format=save_format) # color map cm = ("#8dd3c7", "#fb8072", "#ffffb3", "#bebada", "#80b1d3", "#fdb462", "#b3de69", "#fccde5") def looks_like_weight(name): """Internal helper to figure out if node should be hidden with `hide_weights`. """ weight_like = ('_weight', '_bias', '_beta', '_gamma', '_moving_var', '_moving_mean', '_running_var', '_running_mean') return name.endswith(weight_like) # make nodes hidden_nodes = set() for node in nodes: op = node["op"] name = node["name"] # input data attr = copy.deepcopy(node_attr) label = name if op == "null": if looks_like_weight(node["name"]): if hide_weights: hidden_nodes.add(node["name"]) # else we don't render a node, but # don't add it to the hidden_nodes set # so it gets rendered as an empty oval continue attr["shape"] = "oval" # inputs get their own shape label = node["name"] attr["fillcolor"] = cm[0] elif op == "Convolution": label = "Convolution\n{kernel}/{stride}, {filter}".format( kernel="x".join(_str2tuple(node["attrs"]["kernel"])), stride="x".join(_str2tuple(node["attrs"]["stride"])) if "stride" in node["attrs"] else "1", filter=node["attrs"]["num_filter"] ) attr["fillcolor"] = cm[1] elif op == "FullyConnected": label = "FullyConnected\n{hidden}".format(hidden=node["attrs"]["num_hidden"]) attr["fillcolor"] = cm[1] elif op == "BatchNorm": attr["fillcolor"] = cm[3] elif op == 'Activation': act_type = node["attrs"]["act_type"] label = 'Activation\n{activation}'.format(activation=act_type) attr["fillcolor"] = cm[2] elif op == 'LeakyReLU': attrs = node.get("attrs") act_type = attrs.get("act_type", "Leaky") if attrs else "Leaky" label = 'LeakyReLU\n{activation}'.format(activation=act_type) attr["fillcolor"] = cm[2] elif op == "Pooling": label = "Pooling\n{pooltype}, {kernel}/{stride}".format(pooltype=node["attrs"]["pool_type"], kernel="x".join(_str2tuple(node["attrs"]["kernel"])) if "kernel" in node["attrs"] else "[]", stride="x".join(_str2tuple(node["attrs"]["stride"])) if "stride" in node["attrs"] else "1") attr["fillcolor"] = cm[4] elif op in ("Concat", "Flatten", "Reshape"): attr["fillcolor"] = cm[5] elif op == "Softmax": attr["fillcolor"] = cm[6] else: attr["fillcolor"] = cm[7] if op == "Custom": label = node["attrs"]["op_type"] dot.node(name=name, label=label, **attr) # add edges for node in nodes: # pylint: disable=too-many-nested-blocks op = node["op"] name = node["name"] if op == "null": continue else: inputs = node["inputs"] if node['op'] == '_contrib_BilinearResize2D': inputs = [inputs[0]] for item in inputs: input_node = nodes[item[0]] input_name = input_node["name"] if input_name not in hidden_nodes: attr = {"dir": "back", 'arrowtail':'open', 'label': ''} # add shapes if draw_shape: if input_node["op"] != "null": key = input_name + "_output" if "attrs" in input_node: params = input_node["attrs"] if "num_outputs" in params: key += str(int(params["num_outputs"]) - 1) shape = shape_dict[key][1:] label = "x".join([str(x) for x in shape]) attr["label"] = label else: key = input_name shape = shape_dict[key][1:] label = "x".join([str(x) for x in shape]) attr["label"] = label if draw_type: if input_node["op"] != "null": key = input_name + "_output" if "attrs" in input_node: params = input_node["attrs"] if "num_outputs" in params: key += str(int(params["num_outputs"]) - 1) dtype = type_dict[key] attr["label"] += '(' + dtype.__name__ + ')' else: key = input_name dtype = type_dict[key] attr["label"] += '(' + dtype.__name__ + ')' dot.edge(tail_name=name, head_name=input_name, **attr) return dot