mxnet
|
#include <mkldnn_types.h>
A descriptor of a Batch Normalization operation.
float mkldnn_batch_normalization_desc_t::batch_norm_epsilon |
Batch normalization epsilon parameter.
mkldnn_memory_desc_t mkldnn_batch_normalization_desc_t::data_desc |
Source and destination memory descriptor.
mkldnn_memory_desc_t mkldnn_batch_normalization_desc_t::data_scaleshift_desc |
Scale and shift data and gradient memory descriptors.
Scaleshift memory descriptor uses 2D mkldnn_nc format[2,Channels]. 1-st dimension contains gamma parameter, 2-nd dimension contains beta parameter.
mkldnn_memory_desc_t mkldnn_batch_normalization_desc_t::diff_data_desc |
Source and destination gradient memory descriptor.
mkldnn_memory_desc_t mkldnn_batch_normalization_desc_t::diff_data_scaleshift_desc |
unsigned mkldnn_batch_normalization_desc_t::flags |
mkldnn_memory_desc_t mkldnn_batch_normalization_desc_t::mean_desc |
Mean and variance data memory descriptors.
Mean and variance memory descriptors use 1D mkldnn_x format[Channels].
mkldnn_primitive_kind_t mkldnn_batch_normalization_desc_t::primitive_kind |
The kind of primitive. Used for self-identifying the primitive descriptor. Must be mkldnn_batch_normalization.
mkldnn_prop_kind_t mkldnn_batch_normalization_desc_t::prop_kind |
The kind of propagation. Possible values: mkldnn_forward_training, mkldnn_forward_inference, mkldnn_backward, and mkldnn_backward_data.
mkldnn_memory_desc_t mkldnn_batch_normalization_desc_t::variance_desc |