mxnet
tensor_blob.h
Go to the documentation of this file.
1 /*
2  * Licensed to the Apache Software Foundation (ASF) under one
3  * or more contributor license agreements. See the NOTICE file
4  * distributed with this work for additional information
5  * regarding copyright ownership. The ASF licenses this file
6  * to you under the Apache License, Version 2.0 (the
7  * "License"); you may not use this file except in compliance
8  * with the License. You may obtain a copy of the License at
9  *
10  * http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing,
13  * software distributed under the License is distributed on an
14  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
15  * KIND, either express or implied. See the License for the
16  * specific language governing permissions and limitations
17  * under the License.
18  */
19 
28 #ifndef MXNET_TENSOR_BLOB_H_
29 #define MXNET_TENSOR_BLOB_H_
30 
31 #include <dmlc/logging.h>
32 #include <dmlc/json.h>
33 #include <dlpack/dlpack.h>
34 #include <vector>
35 #include <iostream>
36 #include <utility>
37 #include <algorithm>
38 #include "./base.h"
39 
40 namespace mxnet {
41 
42 // redefine DLPack enumeration to be backward compatible.
43 constexpr const int kCPU = kDLCPU;
44 constexpr const int kGPU = kDLGPU;
45 // extension type code under TVM function.
46 // Currently NNVM reserved 16 to 19 type code from TVM
47 // 16, 17, 18 is used by NNVM compiler already.
48 // Pick code 19 for MXNet NDArray
49 constexpr const int kTVMNDArrayTypeCode = 19;
50 
51 /* Forward declaration for friend declaration in TBlob */
52 class NDArray;
53 
66 class TBlob {
67  friend class NDArray;
68  public:
70  void *dptr_;
75 
77  TBlob(void)
78  : dptr_(NULL),
79  type_flag_(mshadow::DataType<real_t>::kFlag) {
80  SetDLTensor(cpu::kDevMask, 0);
81  }
89  template<typename DType>
90  TBlob(DType *dptr, const mxnet::TShape &shape, int dev_mask, int dev_id = -1)
91  : dptr_(dptr), shape_(shape),
92  type_flag_(mshadow::DataType<DType>::kFlag) {
93  SetDLTensor(dev_mask, dev_id);
94  }
103  TBlob(void *dptr, const mxnet::TShape &shape, int dev_mask, int type_flag, int dev_id = -1)
104  : dptr_(dptr), shape_(shape), type_flag_(type_flag) {
105  SetDLTensor(dev_mask, dev_id);
106  }
111  explicit TBlob(const DLTensor &dltensor)
112  : dptr_(dltensor.data),
113  shape_(mxnet::TShape(dltensor.shape, dltensor.shape + dltensor.ndim)),
114  type_flag_(DLDataTypeTransform(dltensor.dtype)),
115  dltensor_(dltensor) {
116  // compactness check for DLTensor
117  if (dltensor.strides != nullptr) {
118  // check strides
119  const int &ndim = dltensor.ndim;
120  const int64_t *shape = dltensor.shape;
121  const int64_t *strides = dltensor.strides;
122  if (ndim >= 1) {
123  bool err = false;
124  if (strides[ndim - 1] != 1) {
125  err = true;
126  } else {
127  for (int i = ndim - 2; i >= 0; --i) {
128  if (strides[i] != shape[i + 1] * strides[i + 1]) {
129  err = true;
130  break;
131  }
132  }
133  }
134  if (err) {
135  LOG(FATAL) << "Unsupported DLPack because MXNet only support compact tensor now";
136  }
137  }
138  }
139  }
147  template<typename Device, int dim, typename DType>
148  TBlob(const mshadow::Tensor<Device, dim, DType> &src) { // NOLINT(*)
149  *this = src;
150  }
159  template<typename Device, int dim, typename DType>
160  inline TBlob &operator=(const mshadow::Tensor<Device, dim, DType> &src) {
161  dptr_ = src.dptr_;
162  shape_ = src.shape_;
163  type_flag_ = mshadow::DataType<DType>::kFlag;
164  SetDLTensor(Device::kDevMask, -1);
165  return *this;
166  }
170  inline bool CheckContiguous(void) const {
171  return true;
172  }
178  inline TBlob reshape(const mxnet::TShape& shape) const {
179  CHECK_EQ(this->shape_.Size(), shape.Size()) << "Shape size mismatch "
180  << this->shape_.Size() << " v.s. " << shape.Size();
181  TBlob ret(this->dptr_, shape, this->dev_mask(), this->type_flag_, this->dev_id());
182  return ret;
183  }
191  template<typename Device, typename DType>
192  inline mshadow::Tensor<Device, 2, DType> FlatTo2D(
193  mshadow::Stream<Device> *stream = NULL) const {
194  CHECK(Device::kDevMask == this->dev_mask())
195  << "TBlob.get: device type do not match specified type";
196  CHECK(mshadow::DataType<DType>::kFlag == type_flag_)
197  << "TBlob.get_with_shape: data type do not match specified type."
198  << "Expected: " << type_flag_ << " v.s. given " << mshadow::DataType<DType>::kFlag;
199  return mshadow::Tensor<Device, 2, DType>(static_cast<DType*>(dptr_),
200  shape_.FlatTo2D(),
201  stream);
202  }
210  template<typename Device, typename DType>
211  inline mshadow::Tensor<Device, 1, DType> FlatTo1D(
212  mshadow::Stream<Device> *stream = NULL) const {
213  return this->get_with_shape<Device, 1, DType>(
214  mshadow::Shape1(shape_.Size()), stream);
215  }
217  inline int ndim(void) const {
218  return shape_.ndim();
219  }
226  inline index_t size(index_t idx) const {
227  return shape_[idx];
228  }
230  inline size_t Size(void) const {
231  return shape_.Size();
232  }
234  template<typename DType>
235  inline DType* dptr() const {
236  CHECK(mshadow::DataType<DType>::kFlag == type_flag_)
237  << "TBlob.get_with_shape: data type do not match specified type."
238  << "Expected: " << type_flag_ << " v.s. given " << mshadow::DataType<DType>::kFlag;
239  return static_cast<DType*>(dptr_);
240  }
242  inline int dev_mask() const {
243  return dltensor_.ctx.device_type;
244  }
246  inline int dev_id() const {
247  return dltensor_.ctx.device_id;
248  }
253  inline const DLTensor& dltensor() const {
254  return dltensor_;
255  }
256 
266  template<typename Device, int dim, typename DType>
267  inline mshadow::Tensor<Device, dim, DType> get(mshadow::Stream<Device> *stream = NULL) const {
268  CHECK(Device::kDevMask == this->dev_mask())
269  << "TBlob.get: device type do not match specified type";
270  return mshadow::Tensor<Device, dim, DType>(dptr<DType>(),
271  shape_.get<dim>(), shape_[shape_.ndim() - 1], stream);
272  }
283  template<typename Device, int dim, typename DType>
284  inline mshadow::Tensor<Device, dim, DType> get_with_shape(
285  const mshadow::Shape<dim> &shape,
286  mshadow::Stream<Device> *stream = NULL) const {
287  CHECK(Device::kDevMask == this->dev_mask())
288  << "TBlob.get: device type do not match specified type";
289  CHECK_EQ(this->CheckContiguous(), true) << "TBlob.get_reshape: must be contiguous";
290  CHECK_EQ(this->shape_.Size(), static_cast<size_t>(shape.Size()))
291  << "TBlob.get_with_shape: new and old shape do not match total elements";
292  return mshadow::Tensor<Device, dim, DType>(dptr<DType>(), shape,
293  shape[dim - 1], stream);
294  }
304  template<typename Device, typename DType>
305  inline mshadow::Tensor<Device, 3, DType> FlatTo3D(
306  int axis, mshadow::Stream<Device> *stream = NULL) const {
307  return this->get_with_shape<Device, 3, DType>(
308  this->shape_.FlatTo3D(axis), stream);
309  }
320  template<typename Device, typename DType>
321  inline mshadow::Tensor<Device, 3, DType> FlatTo3D(
322  int axis_begin, int axis_end,
323  mshadow::Stream<Device> *stream = NULL) const {
324  return this->get_with_shape<Device, 3, DType>(
325  this->shape_.FlatTo3D(axis_begin, axis_end), stream);
326  }
336  template<typename Device, int dim, typename DType>
337  inline mshadow::Tensor<Device, dim, DType> FlatToKD(
338  mshadow::Stream<Device> *stream = NULL) const {
339  mshadow::Shape<dim> shape;
340  shape[0] = 1;
341  // Pad higher dimensions in case dim > ndim()
342  for (int i = 0; i < dim - ndim(); ++i) {
343  shape[i] = 1;
344  }
345  // Collapse higher dimensions in case dim < ndim()
346  for (int i = 0; i < ndim() - dim + 1; ++i) {
347  shape[0] *= shape_[i];
348  }
349  // Preserve lower dimensions.
350  for (int i = std::max(0, ndim() - dim + 1); i < ndim(); ++i) {
351  shape[i - ndim() + dim] = shape_[i];
352  }
353  return this->get_with_shape<Device, dim, DType>(shape, stream);
354  }
355 
356  private:
357  static DLDataType DTypeTransform(int type_flag) {
358  switch (type_flag) {
359  case mshadow::kFloat32: return DLDataType{kDLFloat, 32, 1};
360  case mshadow::kFloat64: return DLDataType{kDLFloat, 64, 1};
361  case mshadow::kFloat16: return DLDataType{kDLFloat, 16, 1};
362  case mshadow::kUint8: return DLDataType{kDLUInt, 8, 1};
363  case mshadow::kInt32: return DLDataType{kDLInt, 32, 1};
364  case mshadow::kInt8: return DLDataType{kDLInt, 8, 1};
365  case mshadow::kInt64: return DLDataType{kDLInt, 64, 1};
366  default: {
367  LOG(FATAL) << "Unknown type_flag=" << type_flag;
368  return DLDataType();
369  }
370  }
371  }
372  static int DLDataTypeTransform(DLDataType dldata_type) {
373  if (dldata_type.lanes != 1) {
374  LOG(FATAL) << "Unsupported DLDataType whose lanes != 1";
375  }
376  switch (dldata_type.code) {
377  case kDLFloat:
378  switch (dldata_type.bits) {
379  case 16: return mshadow::kFloat16;
380  case 32: return mshadow::kFloat32;
381  case 64: return mshadow::kFloat64;
382  }
383  break;
384  case kDLUInt:
385  switch (dldata_type.bits) {
386  case 8: return mshadow::kUint8;
387  }
388  break;
389  case kDLInt:
390  switch (dldata_type.bits) {
391  case 8: return mshadow::kInt8;
392  case 32: return mshadow::kInt32;
393  case 64: return mshadow::kInt64;
394  }
395  break;
396  }
397  LOG(FATAL) << "Unknown DLDataType{" << dldata_type.code
398  << ", " << dldata_type.bits
399  << ", " << dldata_type.lanes << "}";
400  return mshadow::kFloat32;
401  }
402 
403  inline void SetDLTensor(int dev_mask, int dev_id) {
404  dltensor_.data = dptr_;
405  dltensor_.ctx = DLContext{static_cast<DLDeviceType>(dev_mask), dev_id};
406  dltensor_.ndim = shape_.ndim();
407  dltensor_.dtype = DTypeTransform(type_flag_);
408  dltensor_.shape = shape_.data();
409  dltensor_.strides = nullptr;
410  dltensor_.byte_offset = 0;
411  }
412 
413  private:
415  DLTensor dltensor_;
416 };
417 } // namespace mxnet
418 
419 namespace dmlc {
420 // Add a few patches to support mxnet::TShape in dmlc/parameter.
421 DMLC_DECLARE_TYPE_NAME(mxnet::TShape, "Shape(tuple)");
423 DMLC_DECLARE_TYPE_NAME(mxnet::Tuple<dmlc::optional<int>>, "Shape(tuple)");
424 DMLC_DECLARE_TYPE_NAME(nnvm::Tuple<int>, "Shape(tuple)");
425 DMLC_DECLARE_TYPE_NAME(nnvm::Tuple<dmlc::optional<int>>, "Shape(tuple)");
426 
427 namespace parameter {
428 
429 template<>
430 class FieldEntry<mxnet::TShape>
431  : public FieldEntryBase<FieldEntry<mxnet::TShape>, mxnet::TShape> {
432  public:
433  FieldEntry() : enforce_nonzero_(false), expect_ndim_(0) {}
434  // parent class
435  typedef FieldEntryBase<FieldEntry<mxnet::TShape>, mxnet::TShape> Parent;
436 
437  virtual void Check(void *head) const {
438  Parent::Check(head);
439  mxnet::TShape &v = this->Get(head);
440  if (expect_ndim_ != 0 && v.ndim() != expect_ndim_) {
441  std::ostringstream os;
442  os << "value " << v << "for Parameter " << this->key_
443  << " has wrong dimensions, expected dimension=" << expect_ndim_;
444  throw dmlc::ParamError(os.str());
445  }
446  if (enforce_nonzero_) {
447  for (int i = 0; i < v.ndim(); ++i) {
448  if (v[i] == 0U) {
449  std::ostringstream os;
450  os << "value " << v << "for Parameter " << this->key_
451  << " is invalid, the input shape must be nonzero in all dimensions";
452  throw dmlc::ParamError(os.str());
453  }
454  }
455  }
456  }
458  this->enforce_nonzero_ = true;
459  return this->self();
460  }
462  expect_ndim_ = ndim;
463  return this->self();
464  }
465 
466  private:
467  // whether all the entries need to be nonzero
468  bool enforce_nonzero_;
469  // expected number of dimension, default = 0 means no restriction.
470  int expect_ndim_;
471 };
472 
473 } // namespace parameter
474 } // namespace dmlc
475 
476 #endif // MXNET_TENSOR_BLOB_H_
TBlob & operator=(const mshadow::Tensor< Device, dim, DType > &src)
assignment from tensor
Definition: tensor_blob.h:160
mxnet::TShape shape_
shape of the tensor
Definition: tensor_blob.h:72
DMLC_DECLARE_TYPE_NAME(nnvm::Tuple< dmlc::optional< int >>,"Shape(tuple)")
constexpr const int kTVMNDArrayTypeCode
Definition: tensor_blob.h:49
TBlob(const DLTensor &dltensor)
constructor that construct TBlob from DLTensor
Definition: tensor_blob.h:111
namespace of mxnet
Definition: base.h:89
mshadow::default_real_t real_t
data type that will be used to store ndarray
Definition: base.h:97
TBlob(void)
default constructor, default copy assign will work
Definition: tensor_blob.h:77
int type_flag_
type flag of the tensor blob
Definition: tensor_blob.h:74
mshadow::Tensor< Device, dim, DType > get_with_shape(const mshadow::Shape< dim > &shape, mshadow::Stream< Device > *stream=NULL) const
fetch a tensor in given shape If size do not match the stored size, an error will be issued ...
Definition: tensor_blob.h:284
FieldEntry< mxnet::TShape > & set_expect_ndim(int ndim)
Definition: tensor_blob.h:461
FieldEntry< mxnet::TShape > & enforce_nonzero()
Definition: tensor_blob.h:457
FieldEntryBase< FieldEntry< mxnet::TShape >, mxnet::TShape > Parent
Definition: tensor_blob.h:435
mshadow::Tensor< Device, 1, DType > FlatTo1D(mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to 1 dimension, collapse all the dimensions together.
Definition: tensor_blob.h:211
const dim_t * data() const
Definition: tuple.h:505
TBlob(void *dptr, const mxnet::TShape &shape, int dev_mask, int type_flag, int dev_id=-1)
constructor that construct TBlob from contiguous memory
Definition: tensor_blob.h:103
constexpr const int kGPU
Definition: tensor_blob.h:44
Symbol max(const std::string &symbol_name, Symbol data, dmlc::optional< Shape > axis=dmlc::optional< Shape >(), bool keepdims=false, bool exclude=false)
Computes the max of array elements over given axes.
Definition: op.h:4101
index_t size(index_t idx) const
return size of i-th dimension, start counting from highest dimension. return type needs to be a signe...
Definition: tensor_blob.h:226
size_t Size() const
Definition: tuple.h:476
void * dptr_
pointer to the data
Definition: tensor_blob.h:70
Definition: ndarray.h:1488
DType * dptr() const
get pointer in dtype
Definition: tensor_blob.h:235
int ndim(void) const
return number of dimension of the tensor inside
Definition: tensor_blob.h:217
TBlob reshape(const mxnet::TShape &shape) const
reshape to shape
Definition: tensor_blob.h:178
TBlob(const mshadow::Tensor< Device, dim, DType > &src)
constructor from tensor
Definition: tensor_blob.h:148
A dynamic sized array data structure that is optimized for storing small number of elements with same...
Definition: tuple.h:54
TBlob(DType *dptr, const mxnet::TShape &shape, int dev_mask, int dev_id=-1)
constructor that construct TBlob from contiguous memory
Definition: tensor_blob.h:90
const DLTensor & dltensor() const
return the corresponding DLTensor
Definition: tensor_blob.h:253
A Shape class that is used to represent shape of each tensor.
Definition: tuple.h:395
mshadow::Tensor< Device, 3, DType > FlatTo3D(int axis_begin, int axis_end, mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to 3 dimension, collapse the dimension: [0, axis_begin), [axis_begin, axis_end], (axis_end, ndim).
Definition: tensor_blob.h:321
mshadow::Tensor< Device, dim, DType > FlatToKD(mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to specified number of dimensions, collapse the highest dimensions or pad with hig...
Definition: tensor_blob.h:337
mshadow::Tensor< Device, 2, DType > FlatTo2D(mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to 2 dimension, collapse the higher dimensions together
Definition: tensor_blob.h:192
virtual void Check(void *head) const
Definition: tensor_blob.h:437
int ndim() const
Definition: tuple.h:193
bool CheckContiguous(void) const
Definition: tensor_blob.h:170
mshadow::Tensor< Device, 3, DType > FlatTo3D(int axis, mshadow::Stream< Device > *stream=NULL) const
flatten the tensor to 3 dimension, collapse the dimension before and after specified axis...
Definition: tensor_blob.h:305
mshadow::index_t index_t
index type usually use unsigned
Definition: base.h:95
constexpr const int kCPU
Definition: tensor_blob.h:43
FieldEntry()
Definition: tensor_blob.h:433
ndarray interface
Definition: ndarray.h:82
int dev_mask() const
device mask of the corresponding device
Definition: tensor_blob.h:242
tensor blob class that can be used to hold tensor of any dimension, any device and any data type...
Definition: tensor_blob.h:66
int dev_id() const
device index of the corresponding device
Definition: tensor_blob.h:246
size_t Size(void) const
total number of elements in the tensor
Definition: tensor_blob.h:230