Executor interface.  
 More...
#include <executor.h>
 | 
|   | Executor (const Symbol &symbol, Context context, const std::vector< NDArray > &arg_arrays, const std::vector< NDArray > &grad_arrays, const std::vector< OpReqType > &grad_reqs, const std::vector< NDArray > &aux_arrays, const std::map< std::string, Context > &group_to_ctx=std::map< std::string, Context >(), Executor *shared_exec=nullptr) | 
|   | 
|   | Executor (const ExecutorHandle &h) | 
|   | 
| void  | Forward (bool is_train) | 
|   | Perform a Forward operation of Operator After this operation, user can get the result by using function head.  More...
  | 
|   | 
| void  | Backward (const std::vector< NDArray > &head_grads=std::vector< NDArray >()) | 
|   | Perform a Backward operation of the Operator. This must be called after Forward. After this operation, NDArrays specified by grad_in_args_store will be updated accordingly. User is allowed to pass in an empty Array if the head node is loss function and head gradeitn is not needed.  More...
  | 
|   | 
| void  | Reshape () | 
|   | 
| std::string  | DebugStr () | 
|   | update the arguments with given learning rate and optimizer  More...
  | 
|   | 
|   | ~Executor () | 
|   | destructor, free the handle  More...
  | 
|   | 
| std::map< std::string, NDArray >  | arg_dict () | 
|   | 
| std::map< std::string, NDArray >  | grad_dict () | 
|   | 
| std::map< std::string, NDArray >  | aux_dict () | 
|   | 
| mxnet::cpp::Executor::Executor  | 
( | 
const Symbol &  | 
symbol,  | 
 | 
 | 
Context  | 
context,  | 
 | 
 | 
const std::vector< NDArray > &  | 
arg_arrays,  | 
 | 
 | 
const std::vector< NDArray > &  | 
grad_arrays,  | 
 | 
 | 
const std::vector< OpReqType > &  | 
grad_reqs,  | 
 | 
 | 
const std::vector< NDArray > &  | 
aux_arrays,  | 
 | 
 | 
const std::map< std::string, Context > &  | 
group_to_ctx = std::map< std::string, Context >(),  | 
 | 
 | 
Executor *  | 
shared_exec = nullptr  | 
 | 
) | 
 |  | 
 
 
| mxnet::cpp::Executor::~Executor  | 
( | 
 | ) | 
 | 
 
 
 | 
inline  | 
 
destructor, free the handle 
 
 
| std::map<std::string, NDArray> mxnet::cpp::Executor::arg_dict  | 
( | 
 | ) | 
 | 
 
 
 | 
inline  | 
 
 
| std::map<std::string, NDArray> mxnet::cpp::Executor::aux_dict  | 
( | 
 | ) | 
 | 
 
 
 | 
inline  | 
 
 
| void mxnet::cpp::Executor::Backward  | 
( | 
const std::vector< NDArray > &  | 
head_grads = std::vector<NDArray>() | ) | 
 | 
 
 
 | 
inline  | 
 
Perform a Backward operation of the Operator. This must be called after Forward. After this operation, NDArrays specified by grad_in_args_store will be updated accordingly. User is allowed to pass in an empty Array if the head node is loss function and head gradeitn is not needed. 
- Parameters
 - 
| head_grads | the gradient of head nodes to be backproped.  | 
 
 
 
| std::string mxnet::cpp::Executor::DebugStr  | 
( | 
 | ) | 
 | 
 
update the arguments with given learning rate and optimizer 
- Returns
 - the SymbolHandle 
 
 
 
| void mxnet::cpp::Executor::Forward  | 
( | 
bool  | 
is_train | ) | 
 | 
 
 
 | 
inline  | 
 
Perform a Forward operation of Operator After this operation, user can get the result by using function head. 
 
 
| std::map<std::string, NDArray> mxnet::cpp::Executor::grad_dict  | 
( | 
 | ) | 
 | 
 
 
 | 
inline  | 
 
 
| void mxnet::cpp::Executor::Reshape  | 
( | 
 | ) | 
 | 
 
 
| std::vector<NDArray> mxnet::cpp::Executor::arg_arrays | 
 
 
| std::vector<NDArray> mxnet::cpp::Executor::aux_arrays | 
 
 
| std::vector<NDArray> mxnet::cpp::Executor::grad_arrays | 
 
 
| std::vector<NDArray> mxnet::cpp::Executor::outputs | 
 
arrays store the outputs of forward 
 
 
The documentation for this class was generated from the following file: