mx.symbol.LRN
¶
Description¶
Applies local response normalization to the input.
The local response normalization layer performs “lateral inhibition” by normalizing over local input regions.
If \(a_{x,y}^{i}\) is the activity of a neuron computed by applying kernel \(i\) at position \((x, y)\) and then applying the ReLU nonlinearity, the response-normalized activity \(b_{x,y}^{i}\) is given by the expression:
where the sum runs over \(n\) “adjacent” kernel maps at the same spatial position, and \(N\) is the total number of kernels in the layer.
Usage¶
mx.symbol.LRN(...)
Arguments¶
Argument |
Description |
---|---|
|
NDArray-or-Symbol. Input data to LRN |
|
float, optional, default=9.99999975e-05. The variance scaling parameter \(\alpha\) in the LRN expression. |
|
float, optional, default=0.75. The power parameter \(\beta\) in the LRN expression. |
|
float, optional, default=2. The parameter \(k\) in the LRN expression. |
|
int (non-negative), required. normalization window width in elements. |
|
string, optional. Name of the resulting symbol. |
Value¶
out
The result mx.symbol
Link to Source Code: http://github.com/apache/incubator-mxnet/blob/1.6.0/src/operator/nn/lrn.cc#L164