Source code for mxnet.gluon.parameter

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=unnecessary-pass, too-many-lines
"""Neural network parameter."""
from __future__ import absolute_import

__all__ = ['DeferredInitializationError', 'Parameter', 'Constant',
           'ParameterDict', 'tensor_types']


from collections import OrderedDict, defaultdict
import warnings
import numpy as np

from ..base import mx_real_t, MXNetError
from .. import symbol, ndarray, initializer, context
from ..context import Context, cpu
from .. import autograd
from .utils import _indent, _brief_print_list, shape_is_known
from ..util import is_np_shape, is_np_array
from .. import numpy as _mx_np  # pylint: disable=reimported

# pylint: disable= invalid-name
tensor_types = (symbol.Symbol, ndarray.NDArray)
# pylint: enable= invalid-name

class DeferredInitializationError(MXNetError):
    """Error for unfinished deferred initialization."""
    pass

[docs]class Parameter(object): """A Container holding parameters (weights) of Blocks. :py:class:`Parameter` holds a copy of the parameter on each :py:class:`Context` after it is initialized with ``Parameter.initialize(...)``. If :py:attr:`grad_req` is not ``'null'``, it will also hold a gradient array on each :py:class:`Context`:: ctx = mx.gpu(0) x = mx.nd.zeros((16, 100), ctx=ctx) w = mx.gluon.Parameter('fc_weight', shape=(64, 100), init=mx.init.Xavier()) b = mx.gluon.Parameter('fc_bias', shape=(64,), init=mx.init.Zero()) w.initialize(ctx=ctx) b.initialize(ctx=ctx) out = mx.nd.FullyConnected(x, w.data(ctx), b.data(ctx), num_hidden=64) Parameters ---------- name : str Name of this parameter. grad_req : {'write', 'add', 'null'}, default 'write' Specifies how to update gradient to grad arrays. - ``'write'`` means everytime gradient is written to grad :py:class:`NDArray`. - ``'add'`` means everytime gradient is added to the grad :py:class:`NDArray`. You need to manually call ``zero_grad()`` to clear the gradient buffer before each iteration when using this option. - 'null' means gradient is not requested for this parameter. gradient arrays will not be allocated. shape : int or tuple of int, default None Shape of this parameter. By default shape is not specified. Parameter with unknown shape can be used for :py:class:`Symbol` API, but ``init`` will throw an error when using :py:class:`NDArray` API. dtype : numpy.dtype or str, default 'float32' Data type of this parameter. For example, ``numpy.float32`` or ``'float32'``. lr_mult : float, default 1.0 Learning rate multiplier. Learning rate will be multiplied by lr_mult when updating this parameter with optimizer. wd_mult : float, default 1.0 Weight decay multiplier (L2 regularizer coefficient). Works similar to lr_mult. init : Initializer, default None Initializer of this parameter. Will use the global initializer by default. stype: {'default', 'row_sparse', 'csr'}, defaults to 'default'. The storage type of the parameter. grad_stype: {'default', 'row_sparse', 'csr'}, defaults to 'default'. The storage type of the parameter's gradient. Attributes ---------- grad_req : {'write', 'add', 'null'} This can be set before or after initialization. Setting ``grad_req`` to ``'null'`` with ``x.grad_req = 'null'`` saves memory and computation when you don't need gradient w.r.t x. lr_mult : float Local learning rate multiplier for this Parameter. The actual learning rate is calculated with ``learning_rate * lr_mult``. You can set it with ``param.lr_mult = 2.0`` wd_mult : float Local weight decay multiplier for this Parameter. """ def __init__(self, name, grad_req='write', shape=None, dtype=mx_real_t, lr_mult=1.0, wd_mult=1.0, init=None, allow_deferred_init=False, differentiable=True, stype='default', grad_stype='default'): self._var = None self._data = None self._grad = None self._ctx_list = None self._ctx_map = None self._trainer = None self._deferred_init = () self._differentiable = differentiable self._allow_deferred_init = allow_deferred_init self._grad_req = None if isinstance(shape, int): shape = (shape,) self._shape = shape self.name = name self._dtype = dtype self.lr_mult = lr_mult self.wd_mult = wd_mult self.grad_req = grad_req self.init = init # sparse related storage type information valid_stypes = ['default', 'row_sparse', 'csr'] assert grad_stype in valid_stypes, "grad_stype for Parameter '%s' must be " \ "one of 'default', 'row_sparse', or 'csr', but got '%s'" % (name, grad_stype) assert stype in valid_stypes, "stype for Parameter '%s' must be " \ "one of 'default', 'row_sparse', or 'csr', but got '%s'" % (name, stype) self._grad_stype = grad_stype self._stype = stype def __repr__(self): s = 'Parameter {name} (shape={shape}, dtype={dtype})' return s.format(name=self.name, shape=self.shape, dtype=self.dtype) @property def grad_req(self): return self._grad_req @grad_req.setter def grad_req(self, req): assert req in ['write', 'add', 'null'], \ "grad_req must be one of 'write', 'add', or 'null', but got '%s'"%req if not self._differentiable: req = 'null' if self._grad_req == req: return self._grad_req = req if req == 'null' and self._grad is not None: self._grad = None self._data = [i.detach() for i in self._data] elif self._data is not None: self._init_grad() @property def dtype(self): """The type of the parameter. Setting the dtype value is equivalent to casting the value of the parameter """ return self._dtype @dtype.setter def dtype(self, dtype): self.cast(dtype) @property def shape(self): """The shape of the parameter. By default, an unknown dimension size is 0. However, when the NumPy semantic is turned on, unknown dimension size is -1. """ if self._shape is None: return None elif is_np_shape(): # Parameters shouldn't be zero-size. If one of its dimension is 0, # it means the parameter isn't initialized. In the NumPy semantics, # the unknown dimension should be marked with -1. return tuple(i if i != 0 else -1 for i in self._shape) else: return self._shape @shape.setter def shape(self, new_shape): if self._shape is None: self._shape = new_shape return assert len(self._shape) == len(new_shape) and \ all(j in (-1, 0, i) for i, j in zip(new_shape, self._shape)), \ "Expected shape %s is incompatible with given shape %s."%( str(new_shape), str(self._shape)) # -1 means unknown dim size in np_shape mode self._shape = new_shape def _set_trainer(self, trainer): """ Set the trainer this parameter is associated with. """ # trainer cannot be replaced for sparse params if self._stype != 'default' and self._trainer and trainer and self._trainer is not trainer: raise RuntimeError( "Failed to set the trainer for Parameter '%s' because it was already set. " \ "More than one trainers for a %s Parameter is not supported." \ %(self.name, self._stype)) self._trainer = trainer def _check_and_get(self, arr_list, ctx): if arr_list is not None: if ctx is list: return arr_list if ctx is None: if len(arr_list) == 1: return arr_list[0] else: ctx = context.current_context() ctx_list = self._ctx_map[ctx.device_typeid&1] if ctx.device_id < len(ctx_list): idx = ctx_list[ctx.device_id] if idx is not None: return arr_list[idx] raise RuntimeError( "Parameter '%s' was not initialized on context %s. " "It was only initialized on %s."%( self.name, str(ctx), str(self._ctx_list))) if self._deferred_init: raise DeferredInitializationError( "Parameter '%s' has not been initialized yet because initialization was " \ "deferred. Actual initialization happens during the first forward pass. " \ "Please pass one batch of data through the network before accessing Parameters. " \ "You can also avoid deferred initialization by specifying in_units, " \ "num_features, etc., for network layers."%(self.name)) raise RuntimeError( "Parameter '%s' has not been initialized. Note that " \ "you should initialize parameters and create Trainer " \ "with Block.collect_params() instead of Block.params " \ "because the later does not include Parameters of " \ "nested child Blocks"%(self.name)) def _get_row_sparse(self, arr_list, ctx, row_id): """ Get row_sparse data from row_sparse parameters based on row_id. """ # get row sparse params based on row ids if not isinstance(row_id, ndarray.NDArray): raise TypeError("row_id must have NDArray type, but %s is given"%(type(row_id))) if not self._trainer: raise RuntimeError("Cannot get row_sparse data for Parameter '%s' when no " \ "Trainer is created with it."%self.name) results = self._check_and_get(arr_list, ctx) # fetch row sparse params from the trainer self._trainer._row_sparse_pull(self, results, row_id) return results def _load_init(self, data, ctx, cast_dtype=False, dtype_source='current'): """ (Re)initializes by loading from data. Parameters ---------- data : NDArray The data to load ctx : Context or list of Context Context(s) initialize loaded parameters on. cast_dtype : bool, default False Cast the data type of the parameter dtype_source : str, default 'current' must be in {'current', 'saved'} Only valid if cast_dtype=True, specify the source of the dtype for casting the parameters """ if cast_dtype: assert dtype_source in ['current', 'saved'] if self.shape: unknown_dim_size = -1 if is_np_shape() else 0 for self_dim, data_dim in zip(self.shape, data.shape): assert self_dim in (unknown_dim_size, data_dim), \ "Failed loading Parameter '%s' from saved params: " \ "shape incompatible expected %s vs saved %s"%( self.name, str(self.shape), str(data.shape)) self.shape = tuple(i if i != unknown_dim_size else j for i, j in zip(self.shape, data.shape)) if self.dtype: if cast_dtype and np.dtype(self.dtype).type != data.dtype: if dtype_source == 'current': data = data.astype(self.dtype, copy=False) elif dtype_source == 'saved': self.dtype = data.dtype else: assert np.dtype(self.dtype).type == data.dtype, \ "Failed loading Parameter '%s' from saved params: " \ "dtype incompatible expected %s vs saved %s. " \ "Set cast_dtype=True to cast the dtype of saved params."%( self.name, str(self.dtype), str(data.dtype)) if self._stype != data.stype: data = data.tostype(self._stype) if isinstance(ctx, Context): ctx = [ctx] if self._data is None: if self._deferred_init: assert ctx is None or set(ctx) == set(self._deferred_init[1]), \ "Failed to load Parameter '%s' on %s because it was " \ "previous initialized on %s."%( self.name, str(ctx), str(self.list_ctx())) ctx = self._deferred_init[1] elif ctx is None: ctx = [cpu()] self._init_impl(data, ctx) else: assert ctx is None or set(ctx) == set(self.list_ctx()), \ "Failed to load Parameter '%s' on %s because it was " \ "previous initialized on %s."%( self.name, str(ctx), str(self.list_ctx())) self.set_data(data) self._deferred_init = () def _finish_deferred_init(self): """Finishes deferred initialization.""" if not self._deferred_init: return init, ctx, default_init, data = self._deferred_init self._deferred_init = () assert shape_is_known(self.shape), \ "Cannot initialize Parameter '%s' because it has " \ "invalid shape: %s. Please specify in_units, " \ "in_channels, etc for `Block`s."%( self.name, str(self.shape)) with autograd.pause(): if data is None: kwargs = {'shape': self.shape, 'dtype': self.dtype, 'ctx': context.cpu()} if is_np_array(): if self._stype != 'default': raise ValueError("mxnet.numpy.zeros does not support stype = {}" .format(self._stype)) zeros_fn = _mx_np.zeros else: kwargs['stype'] = self._stype zeros_fn = ndarray.zeros data = zeros_fn(**kwargs) initializer.create(default_init)( initializer.InitDesc(self.name, {'__init__': init}), data) self._init_impl(data, ctx) def _init_impl(self, data, ctx_list): """Sets data and grad.""" self._ctx_list = list(ctx_list) self._ctx_map = [[], []] for i, ctx in enumerate(self._ctx_list): dev_list = self._ctx_map[ctx.device_typeid&1] while len(dev_list) <= ctx.device_id: dev_list.append(None) dev_list[ctx.device_id] = i self._data = [data.copyto(ctx) for ctx in self._ctx_list] self._init_grad() def _init_grad(self): """Initialize grad buffers.""" if self.grad_req == 'null': self._grad = None return if is_np_array(): if self._grad_stype != 'default': raise ValueError("mxnet.numpy.zeros does not support stype = {}" .format(self._grad_stype)) self._grad = [_mx_np.zeros(shape=i.shape, dtype=i.dtype, ctx=i.context) for i in self._data] else: self._grad = [ndarray.zeros(shape=i.shape, dtype=i.dtype, ctx=i.context, stype=self._grad_stype) for i in self._data] autograd.mark_variables(self._check_and_get(self._data, list), self._grad, self.grad_req) def _reduce(self): """Reduce data from multiple context to cpu.""" ctx = context.cpu() if self._stype == 'default': block = self.list_data() if is_np_array(): data = sum([w.copyto(ctx) for w in block]) / len(block) else: data = ndarray.add_n(*(w.copyto(ctx) for w in block)) / len(block) else: # fetch all rows for 'row_sparse' param all_row_ids = ndarray.arange(0, self.shape[0], dtype='int64', ctx=ctx) data = ndarray.zeros(self.shape, stype='row_sparse', ctx=ctx) self._trainer._row_sparse_pull(self, data, all_row_ids, full_idx=True) return data
[docs] def initialize(self, init=None, ctx=None, default_init=initializer.Uniform(), force_reinit=False): """Initializes parameter and gradient arrays. Only used for :py:class:`NDArray` API. Parameters ---------- init : Initializer The initializer to use. Overrides :py:meth:`Parameter.init` and default_init. ctx : Context or list of Context, defaults to :py:meth:`context.current_context()`. Initialize Parameter on given context. If ctx is a list of Context, a copy will be made for each context. .. note:: Copies are independent arrays. User is responsible for keeping their values consistent when updating. Normally :py:class:`gluon.Trainer` does this for you. default_init : Initializer Default initializer is used when both :py:func:`init` and :py:meth:`Parameter.init` are ``None``. force_reinit : bool, default False Whether to force re-initialization if parameter is already initialized. Examples -------- >>> weight = mx.gluon.Parameter('weight', shape=(2, 2)) >>> weight.initialize(ctx=mx.cpu(0)) >>> weight.data() [[-0.01068833 0.01729892] [ 0.02042518 -0.01618656]] <NDArray 2x2 @cpu(0)> >>> weight.grad() [[ 0. 0.] [ 0. 0.]] <NDArray 2x2 @cpu(0)> >>> weight.initialize(ctx=[mx.gpu(0), mx.gpu(1)]) >>> weight.data(mx.gpu(0)) [[-0.00873779 -0.02834515] [ 0.05484822 -0.06206018]] <NDArray 2x2 @gpu(0)> >>> weight.data(mx.gpu(1)) [[-0.00873779 -0.02834515] [ 0.05484822 -0.06206018]] <NDArray 2x2 @gpu(1)> """ if self._data is not None and not force_reinit: warnings.warn("Parameter '%s' is already initialized, ignoring. " \ "Set force_reinit=True to re-initialize."%self.name, stacklevel=2) return self._data = self._grad = None if ctx is None: ctx = [context.current_context()] if isinstance(ctx, Context): ctx = [ctx] if init is None: init = default_init if self.init is None else self.init if not shape_is_known(self.shape): if self._allow_deferred_init: self._deferred_init = (init, ctx, default_init, None) return raise ValueError("Cannot initialize Parameter '%s' because it has " \ "invalid shape: %s."%(self.name, str(self.shape))) self._deferred_init = (init, ctx, default_init, None) self._finish_deferred_init()
[docs] def reset_ctx(self, ctx): """Re-assign Parameter to other contexts. Parameters ---------- ctx : Context or list of Context, default ``context.current_context()``. Assign Parameter to given context. If ctx is a list of Context, a copy will be made for each context. """ if ctx is None: ctx = [context.current_context()] if isinstance(ctx, Context): ctx = [ctx] if self._data: data = self._reduce() with autograd.pause(): self._init_impl(data, ctx) elif self._deferred_init: init, _, default_init, data = self._deferred_init self._deferred_init = (init, ctx, default_init, data) else: raise ValueError("Cannot reset context for Parameter '%s' because it " "has not been initialized."%self.name)
[docs] def set_data(self, data): """Sets this parameter's value on all contexts.""" self.shape = data.shape if self._data is None: assert self._deferred_init, \ "Parameter '%s' has not been initialized"%self.name self._deferred_init = self._deferred_init[:3] + (data,) return # if update_on_kvstore, we need to make sure the copy stored in kvstore is in sync if self._trainer and self._trainer._kv_initialized and self._trainer._update_on_kvstore: if self not in self._trainer._params_to_init: self._trainer._reset_kvstore() for arr in self._check_and_get(self._data, list): arr[:] = data
[docs] def row_sparse_data(self, row_id): """Returns a copy of the 'row_sparse' parameter on the same context as row_id's. The copy only retains rows whose ids occur in provided row ids. The parameter must have been initialized on this context before. Parameters ---------- row_id: NDArray Row ids to retain for the 'row_sparse' parameter. Returns ------- NDArray on row_id's context """ if self._stype != 'row_sparse': raise RuntimeError("Cannot return a copy of Parameter %s via row_sparse_data() " \ "because its storage type is %s. Please use data() instead." \ %(self.name, self._stype)) return self._get_row_sparse(self._data, row_id.context, row_id)
[docs] def list_row_sparse_data(self, row_id): """Returns copies of the 'row_sparse' parameter on all contexts, in the same order as creation. The copy only retains rows whose ids occur in provided row ids. The parameter must have been initialized before. Parameters ---------- row_id: NDArray Row ids to retain for the 'row_sparse' parameter. Returns ------- list of NDArrays """ if self._stype != 'row_sparse': raise RuntimeError("Cannot return copies of Parameter '%s' on all contexts via " \ "list_row_sparse_data() because its storage type is %s. Please " \ "use data() instead." % (self.name, self._stype)) return self._get_row_sparse(self._data, list, row_id)
[docs] def data(self, ctx=None): """Returns a copy of this parameter on one context. Must have been initialized on this context before. For sparse parameters, use :py:meth:`Parameter.row_sparse_data` instead. Parameters ---------- ctx : Context Desired context. Returns ------- NDArray on ctx """ if self._stype != 'default': raise RuntimeError("Cannot return a copy of Parameter '%s' on ctx %s via data() " \ "because its storage type is %s. Please use row_sparse_data() " \ "instead." % (self.name, str(ctx), self._stype)) return self._check_and_get(self._data, ctx)
[docs] def list_data(self): """Returns copies of this parameter on all contexts, in the same order as creation. For sparse parameters, use :py:meth:`Parameter.list_row_sparse_data` instead. Returns ------- list of NDArrays """ if self._stype != 'default': raise RuntimeError("Cannot return copies of Parameter '%s' on all contexts via " \ "list_data() because its storage type is %s. Please use " \ "row_sparse_data() instead." % (self.name, self._stype)) return self._check_and_get(self._data, list)
[docs] def grad(self, ctx=None): """Returns a gradient buffer for this parameter on one context. Parameters ---------- ctx : Context Desired context. """ if self._data is not None and self._grad is None: raise RuntimeError( "Cannot get gradient array for Parameter '%s' " \ "because grad_req='null'"%(self.name)) return self._check_and_get(self._grad, ctx)
[docs] def list_grad(self): """Returns gradient buffers on all contexts, in the same order as :py:meth:`values`.""" if self._data is not None and self._grad is None: raise RuntimeError( "Cannot get gradient array for Parameter '%s' " \ "because grad_req='null'"%(self.name)) return self._check_and_get(self._grad, list)
[docs] def list_ctx(self): """Returns a list of contexts this parameter is initialized on.""" if self._data is None: if self._deferred_init: return self._deferred_init[1] raise RuntimeError("Parameter '%s' has not been initialized"%self.name) return self._ctx_list
[docs] def zero_grad(self): """Sets gradient buffer on all contexts to 0. No action is taken if parameter is uninitialized or doesn't require gradient.""" if self._grad is None: return for i in self._grad: ndarray.zeros_like(i, out=i)
[docs] def var(self): """Returns a symbol representing this parameter.""" if self._var is None: self._var = symbol.var(self.name, shape=self.shape, dtype=self.dtype, lr_mult=self.lr_mult, wd_mult=self.wd_mult, init=self.init, stype=self._stype) if is_np_array(): self._var = self._var.as_np_ndarray() return self._var
[docs] def cast(self, dtype): """Cast data and gradient of this Parameter to a new data type. Parameters ---------- dtype : str or numpy.dtype The new data type. """ self._dtype = dtype if self._data is None: return with autograd.pause(): self._data = [i.astype(dtype) for i in self._data] if self._grad is None: return self._grad = [i.astype(dtype) for i in self._grad] autograd.mark_variables(self._data, self._grad, self.grad_req)
class Constant(Parameter): """A constant parameter for holding immutable tensors. `Constant`s are ignored by `autograd` and `Trainer`, thus their values will not change during training. But you can still update their values manually with the `set_data` method. `Constant` s can be created with either:: const = mx.gluon.Constant('const', [[1,2],[3,4]]) or:: class Block(gluon.Block): def __init__(self, **kwargs): super(Block, self).__init__(**kwargs) self.const = self.params.get_constant('const', [[1,2],[3,4]]) Parameters ---------- name : str Name of the parameter. value : array-like Initial value for the constant. """ def __init__(self, name, value): if not isinstance(value, ndarray.NDArray): array_fn = _mx_np.array if is_np_array() else ndarray.array value = array_fn(value) self.value = value class Init(initializer.Initializer): def _init_weight(self, _, arr): value.copyto(arr) init_name = 'Constant_{}_{}'.format(name, id(self)) initializer.alias(init_name)(Init) super(Constant, self).__init__( name, grad_req='null', shape=value.shape, dtype=value.dtype, init=init_name) def __repr__(self): s = 'Constant {name} (shape={shape}, dtype={dtype})' return s.format(name=self.name, shape=self.shape, dtype=self.dtype) @property def grad_req(self): return 'null' @grad_req.setter def grad_req(self, req): if req != 'null': warnings.warn('Constant parameter "{}" does not support ' 'grad_req other than "null", and new value "{}" ' 'is ignored.'.format(self.name, req)) class ParameterDict(object): """A dictionary managing a set of parameters. Parameters ---------- prefix : str, default ``''`` The prefix to be prepended to all Parameters' names created by this dict. shared : ParameterDict or None If not ``None``, when this dict's :py:meth:`get` method creates a new parameter, will first try to retrieve it from "shared" dict. Usually used for sharing parameters with another Block. """ def __init__(self, prefix='', shared=None): self._prefix = prefix self._params = OrderedDict() self._shared = shared def __repr__(self): s = '{name}(\n{content}\n)' name = self._prefix+' ' if self._prefix else '' return s.format(name=name, content='\n'.join([_indent(' {0}'.format(v), 2) for v in self.values()])) def __getitem__(self, key): return self._params[key] def __iter__(self): return iter(self._params) def items(self): return self._params.items() def keys(self): return self._params.keys() def values(self): return self._params.values() @property def prefix(self): """Prefix of this dict. It will be prepended to :py:class:`Parameter`s' name created with :py:func:`get`.""" return self._prefix def _get_impl(self, name): if name in self._params: return self._params[name] if self._shared is not None and name in self._shared._params: self._params[name] = self._shared._params[name] return self._shared._params[name] return None def get(self, name, **kwargs): """Retrieves a :py:class:`Parameter` with name ``self.prefix+name``. If not found, :py:func:`get` will first try to retrieve it from "shared" dict. If still not found, :py:func:`get` will create a new :py:class:`Parameter` with key-word arguments and insert it to self. Parameters ---------- name : str Name of the desired Parameter. It will be prepended with this dictionary's prefix. **kwargs : dict The rest of key-word arguments for the created :py:class:`Parameter`. Returns ------- Parameter The created or retrieved :py:class:`Parameter`. """ name = self.prefix + name param = self._get_impl(name) if param is None: # pylint: disable=too-many-nested-blocks param = Parameter(name, **kwargs) self._params[name] = param else: for k, v in kwargs.items(): if hasattr(param, k) and getattr(param, k) is not None: existing = getattr(param, k) if k == 'shape' and len(v) == len(existing): inferred_shape = [] matched = True for dim1, dim2 in zip(v, existing): if dim1 != dim2 and dim1 > 0 and dim2 > 0: matched = False break elif dim1 == dim2: inferred_shape.append(dim1) elif dim1 in (0, -1): # -1 means unknown dim size in np_shape mode inferred_shape.append(dim2) else: inferred_shape.append(dim1) if matched: param._shape = tuple(inferred_shape) continue elif k == 'dtype' and np.dtype(v) == np.dtype(existing): continue assert v is None or v == existing, \ "Cannot retrieve Parameter '%s' because desired attribute " \ "does not match with stored for attribute '%s': " \ "desired '%s' vs stored '%s'."%( name, k, str(v), str(getattr(param, k))) else: setattr(param, k, v) return param def get_constant(self, name, value=None): """Retrieves a :py:class:`.Constant` with name ``self.prefix+name``. If not found, :py:func:`get` will first try to retrieve it from "shared" dict. If still not found, :py:func:`get` will create a new :py:class:`.Constant` with key-word arguments and insert it to self. Parameters ---------- name : str Name of the desired Constant. It will be prepended with this dictionary's prefix. value : array-like Initial value of constant. Returns ------- :py:class:`.Constant` The created or retrieved :py:class:`.Constant`. """ name = self.prefix + name param = self._get_impl(name) if param is None: if value is None: raise KeyError("No constant named '{}'. Please specify value " \ "if you want to create a new constant.".format( name)) param = Constant(name, value) self._params[name] = param elif value is not None: assert isinstance(param, Constant), \ "Parameter '{}' already exists but it is not a constant.".format( name) if isinstance(value, ndarray.NDArray): value = value.asnumpy() assert param.shape == value.shape and \ (param.value.asnumpy() == value).all(), \ "Constant '{}' already exists but it's value doesn't match new " \ "value".format(name) return param def update(self, other): """Copies all Parameters in ``other`` to self.""" for k, v in other.items(): if k in self._params: assert self._params[k] is v, \ "Cannot update self with other because they have different " \ "Parameters with the same name '%s'"%k for k, v in other.items(): self._params[k] = v def initialize(self, init=initializer.Uniform(), ctx=None, verbose=False, force_reinit=False): """Initializes all Parameters managed by this dictionary to be used for :py:class:`NDArray` API. It has no effect when using :py:class:`Symbol` API. Parameters ---------- init : Initializer Global default Initializer to be used when :py:meth:`Parameter.init` is ``None``. Otherwise, :py:meth:`Parameter.init` takes precedence. ctx : Context or list of Context Keeps a copy of Parameters on one or many context(s). verbose : bool, default False Whether to verbosely print out details on initialization. force_reinit : bool, default False Whether to force re-initialization if parameter is already initialized. """ if verbose: init.set_verbosity(verbose=verbose) for _, v in self.items(): v.initialize(None, ctx, init, force_reinit=force_reinit) def zero_grad(self): """Sets all Parameters' gradient buffer to 0.""" # collect gradient arrays for each ctx arrays = defaultdict(list) for p in self.values(): if p.grad_req == 'null' or p._grad is None: continue for g in p.list_grad(): if g.stype == 'row_sparse': ndarray.zeros_like(g, out=g) else: arrays[g.context].append(g) if len(arrays) == 0: return if is_np_array(): for arr in arrays.values(): for ele in arr: ele[()] = 0 else: for arr in arrays.values(): ndarray.reset_arrays(*arr, num_arrays=len(arr)) def reset_ctx(self, ctx): """Re-assign all Parameters to other contexts. Parameters ---------- ctx : Context or list of Context, default :py:meth:`context.current_context()`. Assign Parameter to given context. If ctx is a list of Context, a copy will be made for each context. """ for i in self.values(): i.reset_ctx(ctx) def list_ctx(self): """Returns a list of all the contexts on which the underlying Parameters are initialized.""" s = set() for i in self.values(): s.update(i.list_ctx()) return list(s) def setattr(self, name, value): """Set an attribute to a new value for all Parameters. For example, set grad_req to null if you don't need gradient w.r.t a model's Parameters:: model.collect_params().setattr('grad_req', 'null') or change the learning rate multiplier:: model.collect_params().setattr('lr_mult', 0.5) Parameters ---------- name : str Name of the attribute. value : valid type for attribute name The new value for the attribute. """ for i in self.values(): setattr(i, name, value) def save(self, filename, strip_prefix=''): """Save parameters to file. Parameters ---------- filename : str Path to parameter file. strip_prefix : str, default '' Strip prefix from parameter names before saving. """ arg_dict = {} for param in self.values(): weight = param._reduce() if not param.name.startswith(strip_prefix): raise ValueError( "Prefix '%s' is to be striped before saving, but Parameter's " "name '%s' does not start with '%s'. " "this may be due to your Block shares parameters from other " "Blocks or you forgot to use 'with name_scope()' when creating " "child blocks. For more info on naming, please see " "https://mxnet.apache.org/api/python/docs/tutorials/packages/gluon/naming.html"%( strip_prefix, param.name, strip_prefix)) arg_dict[param.name[len(strip_prefix):]] = weight ndarray.save(filename, arg_dict) def load(self, filename, ctx=None, allow_missing=False, ignore_extra=False, restore_prefix='', cast_dtype=False, dtype_source="current"): """Load parameters from file. Parameters ---------- filename : str Path to parameter file. ctx : Context or list of Context Context(s) initialize loaded parameters on. allow_missing : bool, default False Whether to silently skip loading parameters not represents in the file. ignore_extra : bool, default False Whether to silently ignore parameters from the file that are not present in this ParameterDict. restore_prefix : str, default '' prepend prefix to names of stored parameters before loading. cast_dtype : bool, default False Cast the data type of the parameter dtype_source : str, default 'current' must be in {'current', 'saved'} Only valid if cast_dtype=True, specify the source of the dtype for casting the parameters """ if restore_prefix: for name in self.keys(): assert name.startswith(restore_prefix), \ "restore_prefix is '%s' but Parameters name '%s' does not start " \ "with '%s'"%(restore_prefix, name, restore_prefix) ndarray_load = ndarray.load(filename) self.load_dict(ndarray_load, ctx, allow_missing, ignore_extra, restore_prefix, filename, cast_dtype, dtype_source) def load_dict(self, param_dict, ctx=None, allow_missing=False, ignore_extra=False, restore_prefix='', filename=None, cast_dtype=False, dtype_source="current"): """Load parameters from dict Parameters ---------- param_dict : dict Dictionary containing model parameters, preprended with arg: and aux: names ctx : Context or list of Context Context(s) initialize loaded parameters on. allow_missing : bool, default False Whether to silently skip loading parameters not represented in the file. ignore_extra : bool, default False Whether to silently ignore parameters from the file that are not present in this ParameterDict. restore_prefix : str, default '' prepend prefix to names of stored parameters before loading filename : str, default None cast_dtype : bool, default False Cast the data type of the NDArray loaded from the checkpoint to the dtype provided by the Parameter if any """ lprefix = len(restore_prefix) loaded = [(k[4:] if k.startswith('arg:') or k.startswith('aux:') else k, v) \ for k, v in param_dict.items()] if isinstance(param_dict, dict) else param_dict arg_dict = {restore_prefix+k: v for k, v in loaded} error_str = "file: %s" % (filename) if filename else "param_dict" if not allow_missing: for name in self.keys(): assert name in arg_dict, \ "Parameter '%s' is missing in %s, which contains parameters: %s. " \ "Please make sure source and target networks have the same prefix."%( name[lprefix:], error_str, _brief_print_list(arg_dict.keys())) for name in arg_dict: if name not in self._params: assert ignore_extra, \ "Parameter '%s' loaded from %s is not present in ParameterDict, " \ "choices are: %s. Set ignore_extra to True to ignore. " \ "Please make sure source and target networks have the same prefix."%( name[lprefix:], error_str, _brief_print_list(self._params.keys())) continue self[name]._load_init(arg_dict[name], ctx, cast_dtype=cast_dtype, dtype_source=dtype_source)