gluon.Parameter

class mxnet.gluon.Parameter(name, grad_req='write', shape=None, dtype=<class 'numpy.float32'>, lr_mult=1.0, wd_mult=1.0, init=None, allow_deferred_init=False, differentiable=True, stype='default', grad_stype='default')[source]

Bases: object

A Container holding parameters (weights) of Blocks.

Parameter holds a copy of the parameter on each Context after it is initialized with Parameter.initialize(...). If grad_req is not 'null', it will also hold a gradient array on each Context:

ctx = mx.gpu(0)
x = mx.nd.zeros((16, 100), ctx=ctx)
w = mx.gluon.Parameter('fc_weight', shape=(64, 100), init=mx.init.Xavier())
b = mx.gluon.Parameter('fc_bias', shape=(64,), init=mx.init.Zero())
w.initialize(ctx=ctx)
b.initialize(ctx=ctx)
out = mx.nd.FullyConnected(x, w.data(ctx), b.data(ctx), num_hidden=64)

Methods

cast(dtype)

Cast data and gradient of this Parameter to a new data type.

data([ctx])

Returns a copy of this parameter on one context.

grad([ctx])

Returns a gradient buffer for this parameter on one context.

initialize([init, ctx, default_init, …])

Initializes parameter and gradient arrays.

list_ctx()

Returns a list of contexts this parameter is initialized on.

list_data()

Returns copies of this parameter on all contexts, in the same order as creation.

list_grad()

Returns gradient buffers on all contexts, in the same order as values().

list_row_sparse_data(row_id)

Returns copies of the ‘row_sparse’ parameter on all contexts, in the same order as creation.

reset_ctx(ctx)

Re-assign Parameter to other contexts.

row_sparse_data(row_id)

Returns a copy of the ‘row_sparse’ parameter on the same context as row_id’s.

set_data(data)

Sets this parameter’s value on all contexts.

var()

Returns a symbol representing this parameter.

zero_grad()

Sets gradient buffer on all contexts to 0.

Attributes

dtype

The type of the parameter.

shape

The shape of the parameter.

Parameters
  • name (str) – Name of this parameter.

  • grad_req ({'write', 'add', 'null'}, default 'write') –

    Specifies how to update gradient to grad arrays.

    • 'write' means everytime gradient is written to grad NDArray.

    • 'add' means everytime gradient is added to the grad NDArray. You need to manually call zero_grad() to clear the gradient buffer before each iteration when using this option.

    • ’null’ means gradient is not requested for this parameter. gradient arrays will not be allocated.

  • shape (int or tuple of int, default None) – Shape of this parameter. By default shape is not specified. Parameter with unknown shape can be used for Symbol API, but init will throw an error when using NDArray API.

  • dtype (numpy.dtype or str, default 'float32') – Data type of this parameter. For example, numpy.float32 or 'float32'.

  • lr_mult (float, default 1.0) – Learning rate multiplier. Learning rate will be multiplied by lr_mult when updating this parameter with optimizer.

  • wd_mult (float, default 1.0) – Weight decay multiplier (L2 regularizer coefficient). Works similar to lr_mult.

  • init (Initializer, default None) – Initializer of this parameter. Will use the global initializer by default.

  • stype ({'default', 'row_sparse', 'csr'}, defaults to 'default'.) – The storage type of the parameter.

  • grad_stype ({'default', 'row_sparse', 'csr'}, defaults to 'default'.) – The storage type of the parameter’s gradient.

grad_req

This can be set before or after initialization. Setting grad_req to 'null' with x.grad_req = 'null' saves memory and computation when you don’t need gradient w.r.t x.

Type

{‘write’, ‘add’, ‘null’}

lr_mult

Local learning rate multiplier for this Parameter. The actual learning rate is calculated with learning_rate * lr_mult. You can set it with param.lr_mult = 2.0

Type

float

wd_mult

Local weight decay multiplier for this Parameter.

Type

float

cast(dtype)[source]

Cast data and gradient of this Parameter to a new data type.

Parameters

dtype (str or numpy.dtype) – The new data type.

data(ctx=None)[source]

Returns a copy of this parameter on one context. Must have been initialized on this context before. For sparse parameters, use Parameter.row_sparse_data() instead.

Parameters

ctx (Context) – Desired context.

Returns

Return type

NDArray on ctx

property dtype

The type of the parameter.

Setting the dtype value is equivalent to casting the value of the parameter

grad(ctx=None)[source]

Returns a gradient buffer for this parameter on one context.

Parameters

ctx (Context) – Desired context.

initialize(init=None, ctx=None, default_init=<mxnet.initializer.Uniform object>, force_reinit=False)[source]

Initializes parameter and gradient arrays. Only used for NDArray API.

Parameters
  • init (Initializer) – The initializer to use. Overrides Parameter.init() and default_init.

  • ctx (Context or list of Context, defaults to context.current_context().) –

    Initialize Parameter on given context. If ctx is a list of Context, a copy will be made for each context.

    Note

    Copies are independent arrays. User is responsible for keeping their values consistent when updating. Normally gluon.Trainer does this for you.

  • default_init (Initializer) – Default initializer is used when both init() and Parameter.init() are None.

  • force_reinit (bool, default False) – Whether to force re-initialization if parameter is already initialized.

Examples

>>> weight = mx.gluon.Parameter('weight', shape=(2, 2))
>>> weight.initialize(ctx=mx.cpu(0))
>>> weight.data()
[[-0.01068833  0.01729892]
 [ 0.02042518 -0.01618656]]
<NDArray 2x2 @cpu(0)>
>>> weight.grad()
[[ 0.  0.]
 [ 0.  0.]]
<NDArray 2x2 @cpu(0)>
>>> weight.initialize(ctx=[mx.gpu(0), mx.gpu(1)])
>>> weight.data(mx.gpu(0))
[[-0.00873779 -0.02834515]
 [ 0.05484822 -0.06206018]]
<NDArray 2x2 @gpu(0)>
>>> weight.data(mx.gpu(1))
[[-0.00873779 -0.02834515]
 [ 0.05484822 -0.06206018]]
<NDArray 2x2 @gpu(1)>
list_ctx()[source]

Returns a list of contexts this parameter is initialized on.

list_data()[source]

Returns copies of this parameter on all contexts, in the same order as creation. For sparse parameters, use Parameter.list_row_sparse_data() instead.

Returns

Return type

list of NDArrays

list_grad()[source]

Returns gradient buffers on all contexts, in the same order as values().

list_row_sparse_data(row_id)[source]

Returns copies of the ‘row_sparse’ parameter on all contexts, in the same order as creation. The copy only retains rows whose ids occur in provided row ids. The parameter must have been initialized before.

Parameters

row_id (NDArray) – Row ids to retain for the ‘row_sparse’ parameter.

Returns

Return type

list of NDArrays

reset_ctx(ctx)[source]

Re-assign Parameter to other contexts.

Parameters

ctx (Context or list of Context, default context.current_context().) – Assign Parameter to given context. If ctx is a list of Context, a copy will be made for each context.

row_sparse_data(row_id)[source]

Returns a copy of the ‘row_sparse’ parameter on the same context as row_id’s. The copy only retains rows whose ids occur in provided row ids. The parameter must have been initialized on this context before.

Parameters

row_id (NDArray) – Row ids to retain for the ‘row_sparse’ parameter.

Returns

Return type

NDArray on row_id’s context

set_data(data)[source]

Sets this parameter’s value on all contexts.

property shape

The shape of the parameter.

By default, an unknown dimension size is 0. However, when the NumPy semantic is turned on, unknown dimension size is -1.

var()[source]

Returns a symbol representing this parameter.

zero_grad()[source]

Sets gradient buffer on all contexts to 0. No action is taken if parameter is uninitialized or doesn’t require gradient.