Source code for mxnet.lr_scheduler
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Scheduling learning rate."""
import logging
from math import cos, pi
[docs]class LRScheduler(object):
"""Base class of a learning rate scheduler.
A scheduler returns a new learning rate based on the number of updates that have
been performed.
Parameters
----------
base_lr : float, optional
The initial learning rate.
warmup_steps: int
number of warmup steps used before this scheduler starts decay
warmup_begin_lr: float
if using warmup, the learning rate from which it starts warming up
warmup_mode: string
warmup can be done in two modes.
'linear' mode gradually increases lr with each step in equal increments
'constant' mode keeps lr at warmup_begin_lr for warmup_steps
"""
def __init__(self, base_lr=0.01,
warmup_steps=0, warmup_begin_lr=0, warmup_mode='linear'):
self.base_lr = base_lr
assert isinstance(warmup_steps, int)
self.warmup_steps = warmup_steps
self.warmup_final_lr = base_lr
self.warmup_begin_lr = warmup_begin_lr
if self.warmup_begin_lr > self.warmup_final_lr:
raise ValueError("Base lr has to be higher than warmup_begin_lr")
if self.warmup_steps < 0:
raise ValueError("Warmup steps has to be positive or 0")
if warmup_mode not in ['linear', 'constant']:
raise ValueError("Supports only linear and constant modes of warmup")
self.warmup_mode = warmup_mode
def get_warmup_lr(self, num_update):
assert num_update < self.warmup_steps
if self.warmup_mode == 'linear':
increase = (self.warmup_final_lr - self.warmup_begin_lr) \
* float(num_update) / float(self.warmup_steps)
return self.warmup_begin_lr + increase
elif self.warmup_mode == 'constant':
return self.warmup_begin_lr
else:
raise ValueError("Invalid warmup mode %s"%self.warmup_mode)
def __call__(self, num_update):
"""Return a new learning rate.
The ``num_update`` is the upper bound of the number of updates applied to
every weight.
Assume the optimizer has updated *i*-th weight by *k_i* times, namely
``optimizer.update(i, weight_i)`` is called by *k_i* times. Then::
num_update = max([k_i for all i])
Parameters
----------
num_update: int
the maximal number of updates applied to a weight.
"""
raise NotImplementedError("must override this")
[docs]class FactorScheduler(LRScheduler):
"""Reduce the learning rate by a factor for every *n* steps.
It returns a new learning rate by::
base_lr * pow(factor, floor(num_update/step))
Parameters
----------
step : int
Changes the learning rate for every n updates.
factor : float, optional
The factor to change the learning rate.
stop_factor_lr : float, optional
Stop updating the learning rate if it is less than this value.
"""
def __init__(self, step, factor=1, stop_factor_lr=1e-8, base_lr=0.01,
warmup_steps=0, warmup_begin_lr=0, warmup_mode='linear'):
super(FactorScheduler, self).__init__(base_lr, warmup_steps, warmup_begin_lr, warmup_mode)
if step < 1:
raise ValueError("Schedule step must be greater or equal than 1 round")
if factor > 1.0:
raise ValueError("Factor must be no more than 1 to make lr reduce")
self.step = step
self.factor = factor
self.stop_factor_lr = stop_factor_lr
self.count = 0
def __call__(self, num_update):
if num_update < self.warmup_steps:
return self.get_warmup_lr(num_update)
# NOTE: use while rather than if (for continuing training via load_epoch)
while num_update > self.count + self.step:
self.count += self.step
self.base_lr *= self.factor
if self.base_lr < self.stop_factor_lr:
self.base_lr = self.stop_factor_lr
logging.info("Update[%d]: now learning rate arrived at %0.5e, will not "
"change in the future", num_update, self.base_lr)
else:
logging.info("Update[%d]: Change learning rate to %0.5e",
num_update, self.base_lr)
return self.base_lr
[docs]class MultiFactorScheduler(LRScheduler):
"""Reduce the learning rate by given a list of steps.
Assume there exists *k* such that::
step[k] <= num_update and num_update < step[k+1]
Then calculate the new learning rate by::
base_lr * pow(factor, k+1)
Parameters
----------
step: list of int
The list of steps to schedule a change
factor: float
The factor to change the learning rate.
warmup_steps: int
number of warmup steps used before this scheduler starts decay
warmup_begin_lr: float
if using warmup, the learning rate from which it starts warming up
warmup_mode: string
warmup can be done in two modes.
'linear' mode gradually increases lr with each step in equal increments
'constant' mode keeps lr at warmup_begin_lr for warmup_steps
"""
def __init__(self, step, factor=1, base_lr=0.01, warmup_steps=0, warmup_begin_lr=0,
warmup_mode='linear'):
super(MultiFactorScheduler, self).__init__(base_lr, warmup_steps,
warmup_begin_lr, warmup_mode)
assert isinstance(step, list) and len(step) >= 1
for i, _step in enumerate(step):
if i != 0 and step[i] <= step[i-1]:
raise ValueError("Schedule step must be an increasing integer list")
if _step < 1:
raise ValueError("Schedule step must be greater or equal than 1 round")
if factor > 1.0:
raise ValueError("Factor must be no more than 1 to make lr reduce")
self.step = step
self.cur_step_ind = 0
self.factor = factor
self.count = 0
def __call__(self, num_update):
if num_update < self.warmup_steps:
return self.get_warmup_lr(num_update)
# NOTE: use while rather than if (for continuing training via load_epoch)
while self.cur_step_ind <= len(self.step)-1:
if num_update > self.step[self.cur_step_ind]:
self.count = self.step[self.cur_step_ind]
self.cur_step_ind += 1
self.base_lr *= self.factor
logging.info("Update[%d]: Change learning rate to %0.5e",
num_update, self.base_lr)
else:
return self.base_lr
return self.base_lr
[docs]class PolyScheduler(LRScheduler):
""" Reduce the learning rate according to a polynomial of given power.
Calculate the new learning rate, after warmup if any, by::
final_lr + (start_lr - final_lr) * (1-nup/max_nup)^pwr
if nup < max_nup, 0 otherwise.
Parameters
----------
max_update: int
maximum number of updates before the decay reaches final learning rate.
base_lr: float
base learning rate to start from
pwr: int
power of the decay term as a function of the current number of updates.
final_lr: float
final learning rate after all steps
warmup_steps: int
number of warmup steps used before this scheduler starts decay
warmup_begin_lr: float
if using warmup, the learning rate from which it starts warming up
warmup_mode: string
warmup can be done in two modes.
'linear' mode gradually increases lr with each step in equal increments
'constant' mode keeps lr at warmup_begin_lr for warmup_steps
"""
def __init__(self, max_update, base_lr=0.01, pwr=2, final_lr=0,
warmup_steps=0, warmup_begin_lr=0, warmup_mode='linear'):
super(PolyScheduler, self).__init__(base_lr, warmup_steps, warmup_begin_lr, warmup_mode)
assert isinstance(max_update, int)
if max_update < 1:
raise ValueError("maximum number of updates must be strictly positive")
self.power = pwr
self.base_lr_orig = self.base_lr
self.max_update = max_update
self.final_lr = final_lr
self.max_steps = self.max_update - self.warmup_steps
def __call__(self, num_update):
if num_update < self.warmup_steps:
return self.get_warmup_lr(num_update)
if num_update <= self.max_update:
self.base_lr = self.final_lr + (self.base_lr_orig - self.final_lr) * \
pow(1 - float(num_update - self.warmup_steps) / float(self.max_steps), self.power)
return self.base_lr
[docs]class CosineScheduler(LRScheduler):
""" Reduce the learning rate according to a cosine function
Calculate the new learning rate by::
final_lr + (start_lr - final_lr) * (1+cos(pi * nup/max_nup))/2
if nup < max_nup, 0 otherwise.
Parameters
----------
max_update: int
maximum number of updates before the decay reaches 0
base_lr: float
base learning rate
final_lr: float
final learning rate after all steps
warmup_steps: int
number of warmup steps used before this scheduler starts decay
warmup_begin_lr: float
if using warmup, the learning rate from which it starts warming up
warmup_mode: string
warmup can be done in two modes.
'linear' mode gradually increases lr with each step in equal increments
'constant' mode keeps lr at warmup_begin_lr for warmup_steps
"""
def __init__(self, max_update, base_lr=0.01, final_lr=0,
warmup_steps=0, warmup_begin_lr=0, warmup_mode='linear'):
super(CosineScheduler, self).__init__(base_lr, warmup_steps, warmup_begin_lr, warmup_mode)
assert isinstance(max_update, int)
if max_update < 1:
raise ValueError("maximum number of updates must be strictly positive")
self.base_lr_orig = base_lr
self.max_update = max_update
self.final_lr = final_lr
self.max_steps = self.max_update - self.warmup_steps
def __call__(self, num_update):
if num_update < self.warmup_steps:
return self.get_warmup_lr(num_update)
if num_update <= self.max_update:
self.base_lr = self.final_lr + (self.base_lr_orig - self.final_lr) * \
(1 + cos(pi * (num_update - self.warmup_steps) / self.max_steps)) / 2
return self.base_lr