Source code for mxnet.monitor

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable=protected-access, logging-format-interpolation, invalid-name, no-member, too-many-branches
"""Monitor outputs, weights, and gradients for debugging."""
from __future__ import absolute_import

import re
import ctypes
import logging
from math import sqrt

from .ndarray import NDArray
from .base import NDArrayHandle, py_str
from . import ndarray


[docs]class Monitor(object): """Monitor inputs, outputs, weights, and gradients for debugging. Parameters ---------- interval : int Number of batches between printing. stat_func : function A function that computes statistics of tensors. Takes an `NDArray` and returns an `NDArray`. Defaults to mean absolute value abs(x)/size(x). pattern : str A regular expression specifying which tensors to monitor. Only tensors with names that match `name_pattern` will be included. For example, '.*weight|.*output' will print all weights and outputs and '.*backward.*' will print all gradients. monitor_all : bool, default False If true, monitor both input and output, otherwise monitor output only. """ def __init__(self, interval, stat_func=None, pattern='.*', sort=False, monitor_all=False): if stat_func is None: def asum_stat(x): """returns |x|/size(x), async execution.""" return ndarray.norm(x)/sqrt(x.size) stat_func = asum_stat self.stat_func = stat_func self.interval = interval self.activated = False self.queue = [] self.step = 0 self.exes = [] self.re_prog = re.compile(pattern) self.sort = sort self.monitor_all = monitor_all def stat_helper(name, array): """wrapper for executor callback""" array = ctypes.cast(array, NDArrayHandle) array = NDArray(array, writable=False) if not self.activated or not self.re_prog.match(py_str(name)): return self.queue.append((self.step, py_str(name), self.stat_func(array))) self.stat_helper = stat_helper
[docs] def install(self, exe): """install callback to executor. Supports installing to multiple exes. Parameters ---------- exe : mx.executor.Executor The Executor (returned by symbol.bind) to install to. """ exe.set_monitor_callback(self.stat_helper, self.monitor_all) self.exes.append(exe)
[docs] def tic(self): """Start collecting stats for current batch. Call before calling forward.""" if self.step % self.interval == 0: for exe in self.exes: for array in exe.arg_arrays: array.wait_to_read() for array in exe.aux_arrays: array.wait_to_read() self.queue = [] self.activated = True self.step += 1
[docs] def toc(self): """End collecting for current batch and return results. Call after computation of current batch. Returns ------- res : list of """ if not self.activated: return [] for exe in self.exes: for array in exe.arg_arrays: array.wait_to_read() for array in exe.aux_arrays: array.wait_to_read() for exe in self.exes: for name, array in zip(exe._symbol.list_arguments(), exe.arg_arrays): if self.re_prog.match(name): self.queue.append((self.step, name, self.stat_func(array))) for name, array in zip(exe._symbol.list_auxiliary_states(), exe.aux_arrays): if self.re_prog.match(name): self.queue.append((self.step, name, self.stat_func(array))) self.activated = False res = [] if self.sort: self.queue.sort(key=lambda x: x[1]) for n, k, v_list in self.queue: if isinstance(v_list, NDArray): v_list = [v_list] assert isinstance(v_list, list) s = '' for v in v_list: assert isinstance(v, NDArray) if v.shape == (1,): s += str(v.asscalar()) + '\t' else: s += str(v.asnumpy()) + '\t' res.append((n, k, s)) self.queue = [] return res
[docs] def toc_print(self): """End collecting and print results.""" res = self.toc() for n, k, v in res: logging.info('Batch: {:7d} {:30s} {:s}'.format(n, k, v))