mx.nd.khatri.rao
¶
Description¶
Computes the Khatri-Rao product of the input matrices.
Given a collection of \(n\) input matrices,
\[A_1 \in \mathbb{R}^{M_1 \times M}, \ldots, A_n \in \mathbb{R}^{M_n \times N},\]
the (column-wise) Khatri-Rao product is defined as the matrix,
\[X = A_1 \otimes \cdots \otimes A_n \in \mathbb{R}^{(M_1 \cdots M_n) \times N},\]
where the \(k\) th column is equal to the column-wise outer product \({A_1}_k \otimes \cdots \otimes {A_n}_k\) where \({A_i}_k\) is the kth column of the ith matrix.
Example:
>>> A = mx.nd.array([[1, -1],
>>> [2, -3]])
>>> B = mx.nd.array([[1, 4],
>>> [2, 5],
>>> [3, 6]])
>>> C = mx.nd.khatri_rao(A, B)
>>> print(C.asnumpy())
[[ 1. -4.]
[ 2. -5.]
[ 3. -6.]
[ 2. -12.]
[ 4. -15.]
[ 6. -18.]]
Arguments¶
Argument |
Description |
---|---|
|
NDArray-or-Symbol[]. Positional input matrices |
Value¶
out
The result mx.ndarray
Link to Source Code: http://github.com/apache/incubator-mxnet/blob/1.6.0/src/operator/contrib/krprod.cc#L108