mx.symbol.multi_sgd_mom_update
¶
Description¶
Momentum update function for Stochastic Gradient Descent (SGD) optimizer.
Momentum update has better convergence rates on neural networks. Mathematically it looks like below:
It updates the weights using:
v = momentum * v - learning_rate * gradient
weight += v
Where the parameter ``momentum`` is the decay rate of momentum estimates at each epoch.
Usage¶
mx.symbol.multi_sgd_mom_update(...)
Arguments¶
Argument |
Description |
---|---|
|
NDArray-or-Symbol[]. Weights, gradients and momentum |
|
tuple of <float>, required. Learning rates. |
|
tuple of <float>, required. Weight decay augments the objective function with a regularization term that penalizes large weights. The penalty scales with the square of the magnitude of each weight. |
|
float, optional, default=0. The decay rate of momentum estimates at each epoch. |
|
float, optional, default=1. Rescale gradient to grad = rescale_grad*grad. |
|
float, optional, default=-1. Clip gradient to the range of [-clip_gradient, clip_gradient] If clip_gradient <= 0, gradient clipping is turned off. grad = max(min(grad, clip_gradient), -clip_gradient). |
|
int, optional, default=’1’. Number of updated weights. |
|
string, optional. Name of the resulting symbol. |
Value¶
out
The result mx.symbol
Link to Source Code: http://github.com/apache/incubator-mxnet/blob/1.6.0/src/operator/optimizer_op.cc#L374