mx.symbol.LogisticRegressionOutput
¶
Description¶
Applies a logistic function to the input.
The logistic function, also known as the sigmoid function, is computed as \(\frac{1}{1+exp(-\textbf{x})}\).
Commonly, the sigmoid is used to squash the real-valued output of a linear model \(wTx+b\) into the [0,1] range so that it can be interpreted as a probability. It is suitable for binary classification or probability prediction tasks.
Note
Use the LogisticRegressionOutput as the final output layer of a net.
The storage type of label
can be default
or csr
LogisticRegressionOutput(default, default) = default
LogisticRegressionOutput(default, csr) = default
The loss function used is the Binary Cross Entropy Loss:
\(-{(y\log(p) + (1 - y)\log(1 - p))}\)
Where y is the ground truth probability of positive outcome for a given example, and p the probability predicted by the model. By default, gradients of this loss function are scaled by factor 1/m, where m is the number of regression outputs of a training example. The parameter grad_scale can be used to change this scale to grad_scale/m.
Usage¶
mx.symbol.LogisticRegressionOutput(...)
Arguments¶
Argument |
Description |
---|---|
|
NDArray-or-Symbol. Input data to the function. |
|
NDArray-or-Symbol. Input label to the function. |
|
float, optional, default=1. Scale the gradient by a float factor |
|
string, optional. Name of the resulting symbol. |
Value¶
out
The result mx.symbol
Link to Source Code: http://github.com/apache/incubator-mxnet/blob/1.6.0/src/operator/regression_output.cc#L152