# mx.nd.linalg.gemm2¶

## Description¶

Performs general matrix multiplication. Input are tensors A, B, each of dimension n >= 2 and having the same shape on the leading n-2 dimensions.

If n=2, the BLAS3 function gemm is performed:

out = alpha * op(A) * op(B)

Here alpha is a scalar parameter and op() is either the identity or the matrix transposition (depending on transpose_a, transpose_b).

If n>2, gemm is performed separately for a batch of matrices. The column indices of the matrices are given by the last dimensions of the tensors, the row indices by the axis specified with the axis parameter. By default, the trailing two dimensions will be used for matrix encoding.

For a non-default axis parameter, the operation performed is equivalent to a series of swapaxes/gemm/swapaxes calls. For example let A, B be 5 dimensional tensors. Then gemm(A, B, axis=1) is equivalent to the following without the overhead of the additional swapaxis operations:

A1 = swapaxes(A, dim1=1, dim2=3)
B1 = swapaxes(B, dim1=1, dim2=3)
C = gemm2(A1, B1)
C = swapaxis(C, dim1=1, dim2=3)

When the input data is of type float32 and the environment variables MXNET_CUDA_ALLOW_TENSOR_CORE
and MXNET_CUDA_TENSOR_OP_MATH_ALLOW_CONVERSION are set to 1, this operator will try to use
pseudo-float16 precision (float32 math with float16 I/O) precision in order to use
Tensor Cores on suitable NVIDIA GPUs. This can sometimes give significant speedups.


Note

The operator supports float32 and float64 data types only.

Example:

Single matrix multiply
A = [[1.0, 1.0], [1.0, 1.0]]
B = [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]]
gemm2(A, B, transpose_b=True, alpha=2.0)
= [[4.0, 4.0, 4.0], [4.0, 4.0, 4.0]]

Batch matrix multiply
A = [[[1.0, 1.0]], [[0.1, 0.1]]]
B = [[[1.0, 1.0]], [[0.1, 0.1]]]
gemm2(A, B, transpose_b=True, alpha=2.0)
= [[[4.0]], [[0.04 ]]]


## Arguments¶

Argument

Description

A

NDArray-or-Symbol.

Tensor of input matrices

B

NDArray-or-Symbol.

Tensor of input matrices

transpose.a

boolean, optional, default=0.

Multiply with transposed of first input (A).

transpose.b

boolean, optional, default=0.

Multiply with transposed of second input (B).

alpha

double, optional, default=1.

Scalar factor multiplied with A*B.

axis

int, optional, default=’-2’.

Axis corresponding to the matrix row indices.

## Value¶

out The result mx.ndarray