Get Started Features Ecosystem Docs & Tutorials Trusted By GitHub
Apache
Apache Software Foundation Apache Incubator License Security Privacy Events Sponsorship Thanks
master
master
1.9.1
1.8.0
1.7.0
1.6.0
1.5.0
1.4.1
1.3.1
1.2.1
1.1.0
1.0.0
0.12.1
0.11.0
This project has retired. For details please refer to its Attic page.
Python APInavigate_next mxnet.npnavigate_next Routines
Quick search
edit
Edit on Github
Table Of Contents
  • Python Tutorials
    • Getting Started
      • Crash Course
        • Introduction
        • Step 1: Manipulate data with NP on MXNet
        • Step 2: Create a neural network
        • Step 3: Automatic differentiation with autograd
        • Step 4: Necessary components that are not in the network
        • Step 5: Datasets and DataLoader
        • Using own data with included Datasets
        • Using your own data with custom Datasets
        • New in MXNet 2.0: faster C++ backend dataloaders
        • Step 6: Train a Neural Network
        • Step 7: Load and Run a NN using GPU
      • Moving to MXNet from Other Frameworks
        • PyTorch vs Apache MXNet
      • Gluon: from experiment to deployment
      • Gluon2.0: Migration Guide
      • Logistic regression explained
      • MNIST
    • Packages
      • Automatic Differentiation
      • Gluon
        • Blocks
          • Custom Layers
          • Hybridize
          • Initialization
          • Parameter and Block Naming
          • Layers and Blocks
          • Parameter Management
          • Saving and Loading Gluon Models
          • Activation Blocks
        • Data Tutorials
          • Image Augmentation
          • Gluon Datasets and DataLoader
          • Using own data with included Datasets
          • Using own data with custom Datasets
          • Appendix: Upgrading from Module DataIter to Gluon DataLoader
        • Image Tutorials
          • Image similarity search with InfoGAN
          • Handwritten Digit Recognition
        • Losses
          • Custom Loss Blocks
          • Kullback-Leibler (KL) Divergence
          • Loss functions
        • Text Tutorials
          • Google Neural Machine Translation
          • Machine Translation with Transformer
        • Training
          • MXNet Gluon Fit API
          • Trainer
          • Learning Rates
            • Learning Rate Finder
            • Learning Rate Schedules
            • Advanced Learning Rate Schedules
          • Normalization Blocks
      • KVStore
        • Distributed Key-Value Store
      • Legacy
        • NDArray
          • An Intro: Manipulate Data the MXNet Way with NDArray
          • NDArray Operations
          • NDArray Contexts
          • Gotchas using NumPy in Apache MXNet
          • Tutorials
            • CSRNDArray - NDArray in Compressed Sparse Row Storage Format
            • RowSparseNDArray - NDArray for Sparse Gradient Updates
      • What is NP on MXNet
        • The NP on MXNet cheat sheet
        • Differences between NP on MXNet and NumPy
      • ONNX
        • Fine-tuning an ONNX model
        • Running inference on MXNet/Gluon from an ONNX model
        • Export ONNX Models
      • Optimizers
      • Visualization
        • Visualize networks
    • Performance
      • Compression
        • Deploy with int-8
        • Float16
        • Gradient Compression
        • GluonCV with Quantized Models
      • Accelerated Backend Tools
        • oneDNN
          • Install MXNet with oneDNN
          • oneDNN Quantization
          • Improving accuracy with Intel® Neural Compressor
        • Use TVM
        • Profiling MXNet Models
        • Using AMP: Automatic Mixed Precision
    • Deployment
      • Export
        • Exporting to ONNX format
        • Export Gluon CV Models
        • Save / Load Parameters
      • Inference
        • Deploy into C++
        • Image Classication using pretrained ResNet-50 model on Jetson module
      • Run on AWS
        • Run on an EC2 Instance
        • Run on Amazon SageMaker
        • MXNet on the Cloud
    • Extend
      • Custom Numpy Operators
      • New Operator Creation
      • New Operator in MXNet Backend
      • Using RTC for CUDA kernels
  • Python API
    • mxnet.np
      • Array objects
        • The N-dimensional array (ndarray)
        • Indexing
      • Routines
        • Array creation routines
          • mxnet.np.eye
          • mxnet.np.empty
          • mxnet.np.full
          • mxnet.np.identity
          • mxnet.np.ones
          • mxnet.np.ones_like
          • mxnet.np.zeros
          • mxnet.np.zeros_like
          • mxnet.np.array
          • mxnet.np.copy
          • mxnet.np.arange
          • mxnet.np.linspace
          • mxnet.np.logspace
          • mxnet.np.meshgrid
          • mxnet.np.tril
        • Array manipulation routines
          • mxnet.np.reshape
          • mxnet.np.ravel
          • mxnet.np.ndarray.flatten
          • mxnet.np.swapaxes
          • mxnet.np.ndarray.T
          • mxnet.np.transpose
          • mxnet.np.moveaxis
          • mxnet.np.rollaxis
          • mxnet.np.expand_dims
          • mxnet.np.squeeze
          • mxnet.np.broadcast_to
          • mxnet.np.broadcast_arrays
          • mxnet.np.atleast_1d
          • mxnet.np.atleast_2d
          • mxnet.np.atleast_3d
          • mxnet.np.concatenate
          • mxnet.np.stack
          • mxnet.np.dstack
          • mxnet.np.vstack
          • mxnet.np.column_stack
          • mxnet.np.hstack
          • mxnet.np.split
          • mxnet.np.hsplit
          • mxnet.np.vsplit
          • mxnet.np.array_split
          • mxnet.np.dsplit
          • mxnet.np.tile
          • mxnet.np.repeat
          • mxnet.np.unique
          • mxnet.np.delete
          • mxnet.np.insert
          • mxnet.np.append
          • mxnet.np.resize
          • mxnet.np.trim_zeros
          • mxnet.np.reshape
          • mxnet.np.flip
          • mxnet.np.roll
          • mxnet.np.rot90
          • mxnet.np.fliplr
          • mxnet.np.flipud
        • Input and output
          • mxnet.np.genfromtxt
          • mxnet.np.ndarray.tolist
          • mxnet.np.set_printoptions
        • Linear algebra (numpy.linalg)
          • mxnet.np.dot
          • mxnet.np.vdot
          • mxnet.np.inner
          • mxnet.np.outer
          • mxnet.np.tensordot
          • mxnet.np.einsum
          • mxnet.np.linalg.multi_dot
          • mxnet.np.matmul
          • mxnet.np.linalg.matrix_power
          • mxnet.np.kron
          • mxnet.np.linalg.svd
          • mxnet.np.linalg.cholesky
          • mxnet.np.linalg.qr
          • mxnet.np.linalg.eig
          • mxnet.np.linalg.eigh
          • mxnet.np.linalg.eigvals
          • mxnet.np.linalg.eigvalsh
          • mxnet.np.linalg.norm
          • mxnet.np.trace
          • mxnet.np.linalg.cond
          • mxnet.np.linalg.det
          • mxnet.np.linalg.matrix_rank
          • mxnet.np.linalg.slogdet
          • mxnet.np.linalg.solve
          • mxnet.np.linalg.tensorsolve
          • mxnet.np.linalg.lstsq
          • mxnet.np.linalg.inv
          • mxnet.np.linalg.pinv
          • mxnet.np.linalg.tensorinv
        • Mathematical functions
          • mxnet.np.sin
          • mxnet.np.cos
          • mxnet.np.tan
          • mxnet.np.arcsin
          • mxnet.np.arccos
          • mxnet.np.arctan
          • mxnet.np.degrees
          • mxnet.np.radians
          • mxnet.np.hypot
          • mxnet.np.arctan2
          • mxnet.np.deg2rad
          • mxnet.np.rad2deg
          • mxnet.np.unwrap
          • mxnet.np.sinh
          • mxnet.np.cosh
          • mxnet.np.tanh
          • mxnet.np.arcsinh
          • mxnet.np.arccosh
          • mxnet.np.arctanh
          • mxnet.np.rint
          • mxnet.np.fix
          • mxnet.np.floor
          • mxnet.np.ceil
          • mxnet.np.trunc
          • mxnet.np.around
          • mxnet.np.round_
          • mxnet.np.sum
          • mxnet.np.prod
          • mxnet.np.cumsum
          • mxnet.np.nanprod
          • mxnet.np.nansum
          • mxnet.np.cumprod
          • mxnet.np.nancumprod
          • mxnet.np.nancumsum
          • mxnet.np.diff
          • mxnet.np.ediff1d
          • mxnet.np.cross
          • mxnet.np.trapz
          • mxnet.np.exp
          • mxnet.np.expm1
          • mxnet.np.log
          • mxnet.np.log10
          • mxnet.np.log2
          • mxnet.np.log1p
          • mxnet.np.logaddexp
          • mxnet.np.i0
          • mxnet.np.ldexp
          • mxnet.np.signbit
          • mxnet.np.copysign
          • mxnet.np.frexp
          • mxnet.np.spacing
          • mxnet.np.lcm
          • mxnet.np.gcd
          • mxnet.np.add
          • mxnet.np.reciprocal
          • mxnet.np.negative
          • mxnet.np.divide
          • mxnet.np.power
          • mxnet.np.subtract
          • mxnet.np.mod
          • mxnet.np.multiply
          • mxnet.np.true_divide
          • mxnet.np.remainder
          • mxnet.np.positive
          • mxnet.np.float_power
          • mxnet.np.fmod
          • mxnet.np.modf
          • mxnet.np.divmod
          • mxnet.np.floor_divide
          • mxnet.np.clip
          • mxnet.np.sqrt
          • mxnet.np.cbrt
          • mxnet.np.square
          • mxnet.np.absolute
          • mxnet.np.sign
          • mxnet.np.maximum
          • mxnet.np.minimum
          • mxnet.np.fabs
          • mxnet.np.heaviside
          • mxnet.np.fmax
          • mxnet.np.fmin
          • mxnet.np.nan_to_num
          • mxnet.np.interp
        • np.random
          • mxnet.np.random.choice
          • mxnet.np.random.shuffle
          • mxnet.np.random.normal
          • mxnet.np.random.uniform
          • mxnet.np.random.rand
          • mxnet.np.random.randint
          • mxnet.np.random.beta
          • mxnet.np.random.chisquare
          • mxnet.np.random.exponential
          • mxnet.np.random.f
          • mxnet.np.random.gamma
          • mxnet.np.random.gumbel
          • mxnet.np.random.laplace
          • mxnet.np.random.logistic
          • mxnet.np.random.lognormal
          • mxnet.np.random.multinomial
          • mxnet.np.random.multivariate_normal
          • mxnet.np.random.pareto
          • mxnet.np.random.power
          • mxnet.np.random.rayleigh
          • mxnet.np.random.weibull
        • Sorting, searching, and counting
          • mxnet.np.ndarray.sort
          • mxnet.np.sort
          • mxnet.np.lexsort
          • mxnet.np.argsort
          • mxnet.np.msort
          • mxnet.np.partition
          • mxnet.np.argpartition
          • mxnet.np.argmax
          • mxnet.np.argmin
          • mxnet.np.nanargmax
          • mxnet.np.nanargmin
          • mxnet.np.argwhere
          • mxnet.np.nonzero
          • mxnet.np.flatnonzero
          • mxnet.np.where
          • mxnet.np.searchsorted
          • mxnet.np.extract
          • mxnet.np.count_nonzero
        • Statistics
          • mxnet.np.min
          • mxnet.np.max
          • mxnet.np.amin
          • mxnet.np.amax
          • mxnet.np.nanmin
          • mxnet.np.nanmax
          • mxnet.np.ptp
          • mxnet.np.percentile
          • mxnet.np.nanpercentile
          • mxnet.np.quantile
          • mxnet.np.nanquantile
          • mxnet.np.mean
          • mxnet.np.std
          • mxnet.np.var
          • mxnet.np.median
          • mxnet.np.average
          • mxnet.np.nanmedian
          • mxnet.np.nanstd
          • mxnet.np.nanvar
          • mxnet.np.corrcoef
          • mxnet.np.correlate
          • mxnet.np.cov
          • mxnet.np.histogram
          • mxnet.np.histogram2d
          • mxnet.np.histogramdd
          • mxnet.np.bincount
          • mxnet.np.histogram_bin_edges
          • mxnet.np.digitize
    • NPX: NumPy Neural Network Extension
      • mxnet.npx.set_np
      • mxnet.npx.reset_np
      • mxnet.npx.cpu
      • mxnet.npx.cpu_pinned
      • mxnet.npx.gpu
      • mxnet.npx.gpu_memory_info
      • mxnet.npx.current_device
      • mxnet.npx.num_gpus
      • mxnet.npx.activation
      • mxnet.npx.batch_norm
      • mxnet.npx.convolution
      • mxnet.npx.dropout
      • mxnet.npx.embedding
      • mxnet.npx.fully_connected
      • mxnet.npx.layer_norm
      • mxnet.npx.pooling
      • mxnet.npx.rnn
      • mxnet.npx.leaky_relu
      • mxnet.npx.multibox_detection
      • mxnet.npx.multibox_prior
      • mxnet.npx.multibox_target
      • mxnet.npx.roi_pooling
      • mxnet.npx.sigmoid
      • mxnet.npx.relu
      • mxnet.npx.smooth_l1
      • mxnet.npx.softmax
      • mxnet.npx.log_softmax
      • mxnet.npx.topk
      • mxnet.npx.waitall
      • mxnet.npx.load
      • mxnet.npx.save
      • mxnet.npx.one_hot
      • mxnet.npx.pick
      • mxnet.npx.reshape_like
      • mxnet.npx.batch_flatten
      • mxnet.npx.batch_dot
      • mxnet.npx.gamma
      • mxnet.npx.sequence_mask
    • mxnet.gluon
      • gluon.Block
      • gluon.HybridBlock
      • gluon.SymbolBlock
      • gluon.Constant
      • gluon.Parameter
      • gluon.Trainer
      • gluon.contrib
      • gluon.data
        • data.vision
          • vision.datasets
          • vision.transforms
      • gluon.loss
      • gluon.metric
      • gluon.model_zoo.vision
      • gluon.nn
      • gluon.rnn
      • gluon.utils
    • mxnet.autograd
    • mxnet.initializer
    • mxnet.optimizer
    • mxnet.lr_scheduler
    • KVStore: Communication for Distributed Training
    • Horovod
      • mxnet.kvstore.Horovod
    • BytePS
      • mxnet.kvstore.BytePS
    • KVStore Interface
      • mxnet.kvstore.KVStore
      • mxnet.kvstore.KVStoreBase
      • mxnet.kvstore.KVStoreServer
    • mxnet.contrib
      • contrib.io
      • contrib.ndarray
      • contrib.onnx
      • contrib.quantization
      • contrib.symbol
      • contrib.tensorboard
      • contrib.tensorrt
      • contrib.text
    • Legacy
      • mxnet.callback
      • mxnet.image
      • mxnet.io
      • mxnet.ndarray
        • ndarray
        • ndarray.contrib
        • ndarray.image
        • ndarray.linalg
        • ndarray.op
        • ndarray.random
        • ndarray.register
        • ndarray.sparse
        • ndarray.utils
      • mxnet.recordio
      • mxnet.symbol
        • symbol
        • symbol.contrib
        • symbol.image
        • symbol.linalg
        • symbol.op
        • symbol.random
        • symbol.register
        • symbol.sparse
      • mxnet.visualization
    • mxnet.device
    • mxnet.engine
    • mxnet.executor
    • mxnet.kvstore_server
    • mxnet.profiler
    • mxnet.rtc
    • mxnet.runtime
      • mxnet.runtime.Feature
      • mxnet.runtime.Features
      • mxnet.runtime.feature_list
    • mxnet.test_utils
    • mxnet.util
Table Of Contents
  • Python Tutorials
    • Getting Started
      • Crash Course
        • Introduction
        • Step 1: Manipulate data with NP on MXNet
        • Step 2: Create a neural network
        • Step 3: Automatic differentiation with autograd
        • Step 4: Necessary components that are not in the network
        • Step 5: Datasets and DataLoader
        • Using own data with included Datasets
        • Using your own data with custom Datasets
        • New in MXNet 2.0: faster C++ backend dataloaders
        • Step 6: Train a Neural Network
        • Step 7: Load and Run a NN using GPU
      • Moving to MXNet from Other Frameworks
        • PyTorch vs Apache MXNet
      • Gluon: from experiment to deployment
      • Gluon2.0: Migration Guide
      • Logistic regression explained
      • MNIST
    • Packages
      • Automatic Differentiation
      • Gluon
        • Blocks
          • Custom Layers
          • Hybridize
          • Initialization
          • Parameter and Block Naming
          • Layers and Blocks
          • Parameter Management
          • Saving and Loading Gluon Models
          • Activation Blocks
        • Data Tutorials
          • Image Augmentation
          • Gluon Datasets and DataLoader
          • Using own data with included Datasets
          • Using own data with custom Datasets
          • Appendix: Upgrading from Module DataIter to Gluon DataLoader
        • Image Tutorials
          • Image similarity search with InfoGAN
          • Handwritten Digit Recognition
        • Losses
          • Custom Loss Blocks
          • Kullback-Leibler (KL) Divergence
          • Loss functions
        • Text Tutorials
          • Google Neural Machine Translation
          • Machine Translation with Transformer
        • Training
          • MXNet Gluon Fit API
          • Trainer
          • Learning Rates
            • Learning Rate Finder
            • Learning Rate Schedules
            • Advanced Learning Rate Schedules
          • Normalization Blocks
      • KVStore
        • Distributed Key-Value Store
      • Legacy
        • NDArray
          • An Intro: Manipulate Data the MXNet Way with NDArray
          • NDArray Operations
          • NDArray Contexts
          • Gotchas using NumPy in Apache MXNet
          • Tutorials
            • CSRNDArray - NDArray in Compressed Sparse Row Storage Format
            • RowSparseNDArray - NDArray for Sparse Gradient Updates
      • What is NP on MXNet
        • The NP on MXNet cheat sheet
        • Differences between NP on MXNet and NumPy
      • ONNX
        • Fine-tuning an ONNX model
        • Running inference on MXNet/Gluon from an ONNX model
        • Export ONNX Models
      • Optimizers
      • Visualization
        • Visualize networks
    • Performance
      • Compression
        • Deploy with int-8
        • Float16
        • Gradient Compression
        • GluonCV with Quantized Models
      • Accelerated Backend Tools
        • oneDNN
          • Install MXNet with oneDNN
          • oneDNN Quantization
          • Improving accuracy with Intel® Neural Compressor
        • Use TVM
        • Profiling MXNet Models
        • Using AMP: Automatic Mixed Precision
    • Deployment
      • Export
        • Exporting to ONNX format
        • Export Gluon CV Models
        • Save / Load Parameters
      • Inference
        • Deploy into C++
        • Image Classication using pretrained ResNet-50 model on Jetson module
      • Run on AWS
        • Run on an EC2 Instance
        • Run on Amazon SageMaker
        • MXNet on the Cloud
    • Extend
      • Custom Numpy Operators
      • New Operator Creation
      • New Operator in MXNet Backend
      • Using RTC for CUDA kernels
  • Python API
    • mxnet.np
      • Array objects
        • The N-dimensional array (ndarray)
        • Indexing
      • Routines
        • Array creation routines
          • mxnet.np.eye
          • mxnet.np.empty
          • mxnet.np.full
          • mxnet.np.identity
          • mxnet.np.ones
          • mxnet.np.ones_like
          • mxnet.np.zeros
          • mxnet.np.zeros_like
          • mxnet.np.array
          • mxnet.np.copy
          • mxnet.np.arange
          • mxnet.np.linspace
          • mxnet.np.logspace
          • mxnet.np.meshgrid
          • mxnet.np.tril
        • Array manipulation routines
          • mxnet.np.reshape
          • mxnet.np.ravel
          • mxnet.np.ndarray.flatten
          • mxnet.np.swapaxes
          • mxnet.np.ndarray.T
          • mxnet.np.transpose
          • mxnet.np.moveaxis
          • mxnet.np.rollaxis
          • mxnet.np.expand_dims
          • mxnet.np.squeeze
          • mxnet.np.broadcast_to
          • mxnet.np.broadcast_arrays
          • mxnet.np.atleast_1d
          • mxnet.np.atleast_2d
          • mxnet.np.atleast_3d
          • mxnet.np.concatenate
          • mxnet.np.stack
          • mxnet.np.dstack
          • mxnet.np.vstack
          • mxnet.np.column_stack
          • mxnet.np.hstack
          • mxnet.np.split
          • mxnet.np.hsplit
          • mxnet.np.vsplit
          • mxnet.np.array_split
          • mxnet.np.dsplit
          • mxnet.np.tile
          • mxnet.np.repeat
          • mxnet.np.unique
          • mxnet.np.delete
          • mxnet.np.insert
          • mxnet.np.append
          • mxnet.np.resize
          • mxnet.np.trim_zeros
          • mxnet.np.reshape
          • mxnet.np.flip
          • mxnet.np.roll
          • mxnet.np.rot90
          • mxnet.np.fliplr
          • mxnet.np.flipud
        • Input and output
          • mxnet.np.genfromtxt
          • mxnet.np.ndarray.tolist
          • mxnet.np.set_printoptions
        • Linear algebra (numpy.linalg)
          • mxnet.np.dot
          • mxnet.np.vdot
          • mxnet.np.inner
          • mxnet.np.outer
          • mxnet.np.tensordot
          • mxnet.np.einsum
          • mxnet.np.linalg.multi_dot
          • mxnet.np.matmul
          • mxnet.np.linalg.matrix_power
          • mxnet.np.kron
          • mxnet.np.linalg.svd
          • mxnet.np.linalg.cholesky
          • mxnet.np.linalg.qr
          • mxnet.np.linalg.eig
          • mxnet.np.linalg.eigh
          • mxnet.np.linalg.eigvals
          • mxnet.np.linalg.eigvalsh
          • mxnet.np.linalg.norm
          • mxnet.np.trace
          • mxnet.np.linalg.cond
          • mxnet.np.linalg.det
          • mxnet.np.linalg.matrix_rank
          • mxnet.np.linalg.slogdet
          • mxnet.np.linalg.solve
          • mxnet.np.linalg.tensorsolve
          • mxnet.np.linalg.lstsq
          • mxnet.np.linalg.inv
          • mxnet.np.linalg.pinv
          • mxnet.np.linalg.tensorinv
        • Mathematical functions
          • mxnet.np.sin
          • mxnet.np.cos
          • mxnet.np.tan
          • mxnet.np.arcsin
          • mxnet.np.arccos
          • mxnet.np.arctan
          • mxnet.np.degrees
          • mxnet.np.radians
          • mxnet.np.hypot
          • mxnet.np.arctan2
          • mxnet.np.deg2rad
          • mxnet.np.rad2deg
          • mxnet.np.unwrap
          • mxnet.np.sinh
          • mxnet.np.cosh
          • mxnet.np.tanh
          • mxnet.np.arcsinh
          • mxnet.np.arccosh
          • mxnet.np.arctanh
          • mxnet.np.rint
          • mxnet.np.fix
          • mxnet.np.floor
          • mxnet.np.ceil
          • mxnet.np.trunc
          • mxnet.np.around
          • mxnet.np.round_
          • mxnet.np.sum
          • mxnet.np.prod
          • mxnet.np.cumsum
          • mxnet.np.nanprod
          • mxnet.np.nansum
          • mxnet.np.cumprod
          • mxnet.np.nancumprod
          • mxnet.np.nancumsum
          • mxnet.np.diff
          • mxnet.np.ediff1d
          • mxnet.np.cross
          • mxnet.np.trapz
          • mxnet.np.exp
          • mxnet.np.expm1
          • mxnet.np.log
          • mxnet.np.log10
          • mxnet.np.log2
          • mxnet.np.log1p
          • mxnet.np.logaddexp
          • mxnet.np.i0
          • mxnet.np.ldexp
          • mxnet.np.signbit
          • mxnet.np.copysign
          • mxnet.np.frexp
          • mxnet.np.spacing
          • mxnet.np.lcm
          • mxnet.np.gcd
          • mxnet.np.add
          • mxnet.np.reciprocal
          • mxnet.np.negative
          • mxnet.np.divide
          • mxnet.np.power
          • mxnet.np.subtract
          • mxnet.np.mod
          • mxnet.np.multiply
          • mxnet.np.true_divide
          • mxnet.np.remainder
          • mxnet.np.positive
          • mxnet.np.float_power
          • mxnet.np.fmod
          • mxnet.np.modf
          • mxnet.np.divmod
          • mxnet.np.floor_divide
          • mxnet.np.clip
          • mxnet.np.sqrt
          • mxnet.np.cbrt
          • mxnet.np.square
          • mxnet.np.absolute
          • mxnet.np.sign
          • mxnet.np.maximum
          • mxnet.np.minimum
          • mxnet.np.fabs
          • mxnet.np.heaviside
          • mxnet.np.fmax
          • mxnet.np.fmin
          • mxnet.np.nan_to_num
          • mxnet.np.interp
        • np.random
          • mxnet.np.random.choice
          • mxnet.np.random.shuffle
          • mxnet.np.random.normal
          • mxnet.np.random.uniform
          • mxnet.np.random.rand
          • mxnet.np.random.randint
          • mxnet.np.random.beta
          • mxnet.np.random.chisquare
          • mxnet.np.random.exponential
          • mxnet.np.random.f
          • mxnet.np.random.gamma
          • mxnet.np.random.gumbel
          • mxnet.np.random.laplace
          • mxnet.np.random.logistic
          • mxnet.np.random.lognormal
          • mxnet.np.random.multinomial
          • mxnet.np.random.multivariate_normal
          • mxnet.np.random.pareto
          • mxnet.np.random.power
          • mxnet.np.random.rayleigh
          • mxnet.np.random.weibull
        • Sorting, searching, and counting
          • mxnet.np.ndarray.sort
          • mxnet.np.sort
          • mxnet.np.lexsort
          • mxnet.np.argsort
          • mxnet.np.msort
          • mxnet.np.partition
          • mxnet.np.argpartition
          • mxnet.np.argmax
          • mxnet.np.argmin
          • mxnet.np.nanargmax
          • mxnet.np.nanargmin
          • mxnet.np.argwhere
          • mxnet.np.nonzero
          • mxnet.np.flatnonzero
          • mxnet.np.where
          • mxnet.np.searchsorted
          • mxnet.np.extract
          • mxnet.np.count_nonzero
        • Statistics
          • mxnet.np.min
          • mxnet.np.max
          • mxnet.np.amin
          • mxnet.np.amax
          • mxnet.np.nanmin
          • mxnet.np.nanmax
          • mxnet.np.ptp
          • mxnet.np.percentile
          • mxnet.np.nanpercentile
          • mxnet.np.quantile
          • mxnet.np.nanquantile
          • mxnet.np.mean
          • mxnet.np.std
          • mxnet.np.var
          • mxnet.np.median
          • mxnet.np.average
          • mxnet.np.nanmedian
          • mxnet.np.nanstd
          • mxnet.np.nanvar
          • mxnet.np.corrcoef
          • mxnet.np.correlate
          • mxnet.np.cov
          • mxnet.np.histogram
          • mxnet.np.histogram2d
          • mxnet.np.histogramdd
          • mxnet.np.bincount
          • mxnet.np.histogram_bin_edges
          • mxnet.np.digitize
    • NPX: NumPy Neural Network Extension
      • mxnet.npx.set_np
      • mxnet.npx.reset_np
      • mxnet.npx.cpu
      • mxnet.npx.cpu_pinned
      • mxnet.npx.gpu
      • mxnet.npx.gpu_memory_info
      • mxnet.npx.current_device
      • mxnet.npx.num_gpus
      • mxnet.npx.activation
      • mxnet.npx.batch_norm
      • mxnet.npx.convolution
      • mxnet.npx.dropout
      • mxnet.npx.embedding
      • mxnet.npx.fully_connected
      • mxnet.npx.layer_norm
      • mxnet.npx.pooling
      • mxnet.npx.rnn
      • mxnet.npx.leaky_relu
      • mxnet.npx.multibox_detection
      • mxnet.npx.multibox_prior
      • mxnet.npx.multibox_target
      • mxnet.npx.roi_pooling
      • mxnet.npx.sigmoid
      • mxnet.npx.relu
      • mxnet.npx.smooth_l1
      • mxnet.npx.softmax
      • mxnet.npx.log_softmax
      • mxnet.npx.topk
      • mxnet.npx.waitall
      • mxnet.npx.load
      • mxnet.npx.save
      • mxnet.npx.one_hot
      • mxnet.npx.pick
      • mxnet.npx.reshape_like
      • mxnet.npx.batch_flatten
      • mxnet.npx.batch_dot
      • mxnet.npx.gamma
      • mxnet.npx.sequence_mask
    • mxnet.gluon
      • gluon.Block
      • gluon.HybridBlock
      • gluon.SymbolBlock
      • gluon.Constant
      • gluon.Parameter
      • gluon.Trainer
      • gluon.contrib
      • gluon.data
        • data.vision
          • vision.datasets
          • vision.transforms
      • gluon.loss
      • gluon.metric
      • gluon.model_zoo.vision
      • gluon.nn
      • gluon.rnn
      • gluon.utils
    • mxnet.autograd
    • mxnet.initializer
    • mxnet.optimizer
    • mxnet.lr_scheduler
    • KVStore: Communication for Distributed Training
    • Horovod
      • mxnet.kvstore.Horovod
    • BytePS
      • mxnet.kvstore.BytePS
    • KVStore Interface
      • mxnet.kvstore.KVStore
      • mxnet.kvstore.KVStoreBase
      • mxnet.kvstore.KVStoreServer
    • mxnet.contrib
      • contrib.io
      • contrib.ndarray
      • contrib.onnx
      • contrib.quantization
      • contrib.symbol
      • contrib.tensorboard
      • contrib.tensorrt
      • contrib.text
    • Legacy
      • mxnet.callback
      • mxnet.image
      • mxnet.io
      • mxnet.ndarray
        • ndarray
        • ndarray.contrib
        • ndarray.image
        • ndarray.linalg
        • ndarray.op
        • ndarray.random
        • ndarray.register
        • ndarray.sparse
        • ndarray.utils
      • mxnet.recordio
      • mxnet.symbol
        • symbol
        • symbol.contrib
        • symbol.image
        • symbol.linalg
        • symbol.op
        • symbol.random
        • symbol.register
        • symbol.sparse
      • mxnet.visualization
    • mxnet.device
    • mxnet.engine
    • mxnet.executor
    • mxnet.kvstore_server
    • mxnet.profiler
    • mxnet.rtc
    • mxnet.runtime
      • mxnet.runtime.Feature
      • mxnet.runtime.Features
      • mxnet.runtime.feature_list
    • mxnet.test_utils
    • mxnet.util

Routines¶

In this chapter routine docstrings are presented, grouped by functionality. Many docstrings contain example code, which demonstrates basic usage of the routine. The examples assume that the np module is imported with:

>>> from mxnet import np, npx
>>> npx.set_np()

A convenient way to execute examples is the %doctest_mode mode of IPython, which allows for pasting of multi-line examples and preserves indentation.

  • Array creation routines
    • Ones and zeros
    • From existing data
    • Creating record arrays (np.rec)
    • Creating character arrays (np.char)
    • Numerical ranges
    • Building matrices
  • Array manipulation routines
    • Changing array shape
    • Transpose-like operations
    • Changing number of dimensions
    • Joining arrays
    • Splitting arrays
    • Tiling arrays
    • Adding and removing elements
    • Rearranging elements
  • Input and output
    • Text files
    • Text formatting options
  • Linear algebra (numpy.linalg)
    • Matrix and vector products
    • Decompositions
    • Matrix eigenvalues
    • Norms and other numbers
    • Solving equations and inverting matrices
  • Mathematical functions
    • Trigonometric functions
    • Hyperbolic functions
    • Rounding
    • Sums, products, differences
    • Exponents and logarithms
    • Other special functions
    • Floating point routines
    • Rational routines
    • Arithmetic operations
    • Miscellaneous
  • np.random
    • Simple random data
    • Permutations
    • Distributions
  • Sorting, searching, and counting
    • Sorting
    • Searching
    • Counting
  • Statistics
    • Order statistics
    • Averages and variances
    • Correlating
    • Histograms

Did this page help you?
Yes
No
Thanks for your feedback!

Previous
Indexing
Next
Array creation routines

Resources

  • Mailing list (subscribe)
  • MXNet Discuss forum
  • Github Issues
  • Projects
  • Developer Wiki
  • Contribute To MXNet
  • apache/mxnet
  • apachemxnet
  • apachemxnet

A flexible and efficient library for deep learning.

Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.

"Copyright © 2017-2018, The Apache Software Foundation Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."