Get Started
Features
Ecosystem
Docs & Tutorials
Trusted By
GitHub
Apache
Apache Software Foundation
Apache Incubator
License
Security
Privacy
Events
Sponsorship
Thanks
master
master
1.9.1
1.8.0
1.7.0
1.6.0
1.5.0
1.4.1
1.3.1
1.2.1
1.1.0
1.0.0
0.12.1
0.11.0
This project has retired. For details please refer to its
Attic page
.
Python Tutorials
navigate_next
Deployment
navigate_next
Inference
navigate_next
Deploy into C++
search
Quick search
edit
Edit on Github
Table Of Contents
Python Tutorials
Getting Started
Crash Course
Introduction
Step 1: Manipulate data with NP on MXNet
Step 2: Create a neural network
Step 3: Automatic differentiation with autograd
Step 4: Necessary components that are not in the network
Step 5:
Dataset
s and
DataLoader
Using own data with included
Dataset
s
Using your own data with custom
Dataset
s
New in MXNet 2.0: faster C++ backend dataloaders
Step 6: Train a Neural Network
Step 7: Load and Run a NN using GPU
Moving to MXNet from Other Frameworks
PyTorch vs Apache MXNet
Gluon: from experiment to deployment
Gluon2.0: Migration Guide
Logistic regression explained
MNIST
Packages
Automatic Differentiation
Gluon
Blocks
Custom Layers
Hybridize
Initialization
Parameter and Block Naming
Layers and Blocks
Parameter Management
Saving and Loading Gluon Models
Activation Blocks
Data Tutorials
Image Augmentation
Gluon
Dataset
s and
DataLoader
Using own data with included
Dataset
s
Using own data with custom
Dataset
s
Appendix: Upgrading from Module
DataIter
to Gluon
DataLoader
Image Tutorials
Image similarity search with InfoGAN
Handwritten Digit Recognition
Losses
Custom Loss Blocks
Kullback-Leibler (KL) Divergence
Loss functions
Text Tutorials
Google Neural Machine Translation
Machine Translation with Transformer
Training
MXNet Gluon Fit API
Trainer
Learning Rates
Learning Rate Finder
Learning Rate Schedules
Advanced Learning Rate Schedules
Normalization Blocks
KVStore
Distributed Key-Value Store
Legacy
NDArray
An Intro: Manipulate Data the MXNet Way with NDArray
NDArray Operations
NDArray Contexts
Gotchas using NumPy in Apache MXNet
Tutorials
CSRNDArray - NDArray in Compressed Sparse Row Storage Format
RowSparseNDArray - NDArray for Sparse Gradient Updates
What is NP on MXNet
The NP on MXNet cheat sheet
Differences between NP on MXNet and NumPy
ONNX
Fine-tuning an ONNX model
Running inference on MXNet/Gluon from an ONNX model
Export ONNX Models
Optimizers
Visualization
Visualize networks
Performance
Compression
Deploy with int-8
Float16
Gradient Compression
GluonCV with Quantized Models
Accelerated Backend Tools
oneDNN
Install MXNet with oneDNN
oneDNN Quantization
Improving accuracy with Intel® Neural Compressor
Use TVM
Profiling MXNet Models
Using AMP: Automatic Mixed Precision
Deployment
Export
Exporting to ONNX format
Export Gluon CV Models
Save / Load Parameters
Inference
Deploy into C++
Image Classication using pretrained ResNet-50 model on Jetson module
Run on AWS
Run on an EC2 Instance
Run on Amazon SageMaker
MXNet on the Cloud
Extend
Custom Numpy Operators
New Operator Creation
New Operator in MXNet Backend
Using RTC for CUDA kernels
Python API
mxnet.np
Array objects
The N-dimensional array (
ndarray
)
Indexing
Routines
Array creation routines
mxnet.np.eye
mxnet.np.empty
mxnet.np.full
mxnet.np.identity
mxnet.np.ones
mxnet.np.ones_like
mxnet.np.zeros
mxnet.np.zeros_like
mxnet.np.array
mxnet.np.copy
mxnet.np.arange
mxnet.np.linspace
mxnet.np.logspace
mxnet.np.meshgrid
mxnet.np.tril
Array manipulation routines
mxnet.np.reshape
mxnet.np.ravel
mxnet.np.ndarray.flatten
mxnet.np.swapaxes
mxnet.np.ndarray.T
mxnet.np.transpose
mxnet.np.moveaxis
mxnet.np.rollaxis
mxnet.np.expand_dims
mxnet.np.squeeze
mxnet.np.broadcast_to
mxnet.np.broadcast_arrays
mxnet.np.atleast_1d
mxnet.np.atleast_2d
mxnet.np.atleast_3d
mxnet.np.concatenate
mxnet.np.stack
mxnet.np.dstack
mxnet.np.vstack
mxnet.np.column_stack
mxnet.np.hstack
mxnet.np.split
mxnet.np.hsplit
mxnet.np.vsplit
mxnet.np.array_split
mxnet.np.dsplit
mxnet.np.tile
mxnet.np.repeat
mxnet.np.unique
mxnet.np.delete
mxnet.np.insert
mxnet.np.append
mxnet.np.resize
mxnet.np.trim_zeros
mxnet.np.reshape
mxnet.np.flip
mxnet.np.roll
mxnet.np.rot90
mxnet.np.fliplr
mxnet.np.flipud
Input and output
mxnet.np.genfromtxt
mxnet.np.ndarray.tolist
mxnet.np.set_printoptions
Linear algebra (
numpy.linalg
)
mxnet.np.dot
mxnet.np.vdot
mxnet.np.inner
mxnet.np.outer
mxnet.np.tensordot
mxnet.np.einsum
mxnet.np.linalg.multi_dot
mxnet.np.matmul
mxnet.np.linalg.matrix_power
mxnet.np.kron
mxnet.np.linalg.svd
mxnet.np.linalg.cholesky
mxnet.np.linalg.qr
mxnet.np.linalg.eig
mxnet.np.linalg.eigh
mxnet.np.linalg.eigvals
mxnet.np.linalg.eigvalsh
mxnet.np.linalg.norm
mxnet.np.trace
mxnet.np.linalg.cond
mxnet.np.linalg.det
mxnet.np.linalg.matrix_rank
mxnet.np.linalg.slogdet
mxnet.np.linalg.solve
mxnet.np.linalg.tensorsolve
mxnet.np.linalg.lstsq
mxnet.np.linalg.inv
mxnet.np.linalg.pinv
mxnet.np.linalg.tensorinv
Mathematical functions
mxnet.np.sin
mxnet.np.cos
mxnet.np.tan
mxnet.np.arcsin
mxnet.np.arccos
mxnet.np.arctan
mxnet.np.degrees
mxnet.np.radians
mxnet.np.hypot
mxnet.np.arctan2
mxnet.np.deg2rad
mxnet.np.rad2deg
mxnet.np.unwrap
mxnet.np.sinh
mxnet.np.cosh
mxnet.np.tanh
mxnet.np.arcsinh
mxnet.np.arccosh
mxnet.np.arctanh
mxnet.np.rint
mxnet.np.fix
mxnet.np.floor
mxnet.np.ceil
mxnet.np.trunc
mxnet.np.around
mxnet.np.round_
mxnet.np.sum
mxnet.np.prod
mxnet.np.cumsum
mxnet.np.nanprod
mxnet.np.nansum
mxnet.np.cumprod
mxnet.np.nancumprod
mxnet.np.nancumsum
mxnet.np.diff
mxnet.np.ediff1d
mxnet.np.cross
mxnet.np.trapz
mxnet.np.exp
mxnet.np.expm1
mxnet.np.log
mxnet.np.log10
mxnet.np.log2
mxnet.np.log1p
mxnet.np.logaddexp
mxnet.np.i0
mxnet.np.ldexp
mxnet.np.signbit
mxnet.np.copysign
mxnet.np.frexp
mxnet.np.spacing
mxnet.np.lcm
mxnet.np.gcd
mxnet.np.add
mxnet.np.reciprocal
mxnet.np.negative
mxnet.np.divide
mxnet.np.power
mxnet.np.subtract
mxnet.np.mod
mxnet.np.multiply
mxnet.np.true_divide
mxnet.np.remainder
mxnet.np.positive
mxnet.np.float_power
mxnet.np.fmod
mxnet.np.modf
mxnet.np.divmod
mxnet.np.floor_divide
mxnet.np.clip
mxnet.np.sqrt
mxnet.np.cbrt
mxnet.np.square
mxnet.np.absolute
mxnet.np.sign
mxnet.np.maximum
mxnet.np.minimum
mxnet.np.fabs
mxnet.np.heaviside
mxnet.np.fmax
mxnet.np.fmin
mxnet.np.nan_to_num
mxnet.np.interp
np.random
mxnet.np.random.choice
mxnet.np.random.shuffle
mxnet.np.random.normal
mxnet.np.random.uniform
mxnet.np.random.rand
mxnet.np.random.randint
mxnet.np.random.beta
mxnet.np.random.chisquare
mxnet.np.random.exponential
mxnet.np.random.f
mxnet.np.random.gamma
mxnet.np.random.gumbel
mxnet.np.random.laplace
mxnet.np.random.logistic
mxnet.np.random.lognormal
mxnet.np.random.multinomial
mxnet.np.random.multivariate_normal
mxnet.np.random.pareto
mxnet.np.random.power
mxnet.np.random.rayleigh
mxnet.np.random.weibull
Sorting, searching, and counting
mxnet.np.ndarray.sort
mxnet.np.sort
mxnet.np.lexsort
mxnet.np.argsort
mxnet.np.msort
mxnet.np.partition
mxnet.np.argpartition
mxnet.np.argmax
mxnet.np.argmin
mxnet.np.nanargmax
mxnet.np.nanargmin
mxnet.np.argwhere
mxnet.np.nonzero
mxnet.np.flatnonzero
mxnet.np.where
mxnet.np.searchsorted
mxnet.np.extract
mxnet.np.count_nonzero
Statistics
mxnet.np.min
mxnet.np.max
mxnet.np.amin
mxnet.np.amax
mxnet.np.nanmin
mxnet.np.nanmax
mxnet.np.ptp
mxnet.np.percentile
mxnet.np.nanpercentile
mxnet.np.quantile
mxnet.np.nanquantile
mxnet.np.mean
mxnet.np.std
mxnet.np.var
mxnet.np.median
mxnet.np.average
mxnet.np.nanmedian
mxnet.np.nanstd
mxnet.np.nanvar
mxnet.np.corrcoef
mxnet.np.correlate
mxnet.np.cov
mxnet.np.histogram
mxnet.np.histogram2d
mxnet.np.histogramdd
mxnet.np.bincount
mxnet.np.histogram_bin_edges
mxnet.np.digitize
NPX: NumPy Neural Network Extension
mxnet.npx.set_np
mxnet.npx.reset_np
mxnet.npx.cpu
mxnet.npx.cpu_pinned
mxnet.npx.gpu
mxnet.npx.gpu_memory_info
mxnet.npx.current_device
mxnet.npx.num_gpus
mxnet.npx.activation
mxnet.npx.batch_norm
mxnet.npx.convolution
mxnet.npx.dropout
mxnet.npx.embedding
mxnet.npx.fully_connected
mxnet.npx.layer_norm
mxnet.npx.pooling
mxnet.npx.rnn
mxnet.npx.leaky_relu
mxnet.npx.multibox_detection
mxnet.npx.multibox_prior
mxnet.npx.multibox_target
mxnet.npx.roi_pooling
mxnet.npx.sigmoid
mxnet.npx.relu
mxnet.npx.smooth_l1
mxnet.npx.softmax
mxnet.npx.log_softmax
mxnet.npx.topk
mxnet.npx.waitall
mxnet.npx.load
mxnet.npx.save
mxnet.npx.one_hot
mxnet.npx.pick
mxnet.npx.reshape_like
mxnet.npx.batch_flatten
mxnet.npx.batch_dot
mxnet.npx.gamma
mxnet.npx.sequence_mask
mxnet.gluon
gluon.Block
gluon.HybridBlock
gluon.SymbolBlock
gluon.Constant
gluon.Parameter
gluon.Trainer
gluon.contrib
gluon.data
data.vision
vision.datasets
vision.transforms
gluon.loss
gluon.metric
gluon.model_zoo.vision
gluon.nn
gluon.rnn
gluon.utils
mxnet.autograd
mxnet.initializer
mxnet.optimizer
mxnet.lr_scheduler
KVStore: Communication for Distributed Training
Horovod
mxnet.kvstore.Horovod
BytePS
mxnet.kvstore.BytePS
KVStore Interface
mxnet.kvstore.KVStore
mxnet.kvstore.KVStoreBase
mxnet.kvstore.KVStoreServer
mxnet.contrib
contrib.io
contrib.ndarray
contrib.onnx
contrib.quantization
contrib.symbol
contrib.tensorboard
contrib.tensorrt
contrib.text
Legacy
mxnet.callback
mxnet.image
mxnet.io
mxnet.ndarray
ndarray
ndarray.contrib
ndarray.image
ndarray.linalg
ndarray.op
ndarray.random
ndarray.register
ndarray.sparse
ndarray.utils
mxnet.recordio
mxnet.symbol
symbol
symbol.contrib
symbol.image
symbol.linalg
symbol.op
symbol.random
symbol.register
symbol.sparse
mxnet.visualization
mxnet.device
mxnet.engine
mxnet.executor
mxnet.kvstore_server
mxnet.profiler
mxnet.rtc
mxnet.runtime
mxnet.runtime.Feature
mxnet.runtime.Features
mxnet.runtime.feature_list
mxnet.test_utils
mxnet.util
Table Of Contents
Python Tutorials
Getting Started
Crash Course
Introduction
Step 1: Manipulate data with NP on MXNet
Step 2: Create a neural network
Step 3: Automatic differentiation with autograd
Step 4: Necessary components that are not in the network
Step 5:
Dataset
s and
DataLoader
Using own data with included
Dataset
s
Using your own data with custom
Dataset
s
New in MXNet 2.0: faster C++ backend dataloaders
Step 6: Train a Neural Network
Step 7: Load and Run a NN using GPU
Moving to MXNet from Other Frameworks
PyTorch vs Apache MXNet
Gluon: from experiment to deployment
Gluon2.0: Migration Guide
Logistic regression explained
MNIST
Packages
Automatic Differentiation
Gluon
Blocks
Custom Layers
Hybridize
Initialization
Parameter and Block Naming
Layers and Blocks
Parameter Management
Saving and Loading Gluon Models
Activation Blocks
Data Tutorials
Image Augmentation
Gluon
Dataset
s and
DataLoader
Using own data with included
Dataset
s
Using own data with custom
Dataset
s
Appendix: Upgrading from Module
DataIter
to Gluon
DataLoader
Image Tutorials
Image similarity search with InfoGAN
Handwritten Digit Recognition
Losses
Custom Loss Blocks
Kullback-Leibler (KL) Divergence
Loss functions
Text Tutorials
Google Neural Machine Translation
Machine Translation with Transformer
Training
MXNet Gluon Fit API
Trainer
Learning Rates
Learning Rate Finder
Learning Rate Schedules
Advanced Learning Rate Schedules
Normalization Blocks
KVStore
Distributed Key-Value Store
Legacy
NDArray
An Intro: Manipulate Data the MXNet Way with NDArray
NDArray Operations
NDArray Contexts
Gotchas using NumPy in Apache MXNet
Tutorials
CSRNDArray - NDArray in Compressed Sparse Row Storage Format
RowSparseNDArray - NDArray for Sparse Gradient Updates
What is NP on MXNet
The NP on MXNet cheat sheet
Differences between NP on MXNet and NumPy
ONNX
Fine-tuning an ONNX model
Running inference on MXNet/Gluon from an ONNX model
Export ONNX Models
Optimizers
Visualization
Visualize networks
Performance
Compression
Deploy with int-8
Float16
Gradient Compression
GluonCV with Quantized Models
Accelerated Backend Tools
oneDNN
Install MXNet with oneDNN
oneDNN Quantization
Improving accuracy with Intel® Neural Compressor
Use TVM
Profiling MXNet Models
Using AMP: Automatic Mixed Precision
Deployment
Export
Exporting to ONNX format
Export Gluon CV Models
Save / Load Parameters
Inference
Deploy into C++
Image Classication using pretrained ResNet-50 model on Jetson module
Run on AWS
Run on an EC2 Instance
Run on Amazon SageMaker
MXNet on the Cloud
Extend
Custom Numpy Operators
New Operator Creation
New Operator in MXNet Backend
Using RTC for CUDA kernels
Python API
mxnet.np
Array objects
The N-dimensional array (
ndarray
)
Indexing
Routines
Array creation routines
mxnet.np.eye
mxnet.np.empty
mxnet.np.full
mxnet.np.identity
mxnet.np.ones
mxnet.np.ones_like
mxnet.np.zeros
mxnet.np.zeros_like
mxnet.np.array
mxnet.np.copy
mxnet.np.arange
mxnet.np.linspace
mxnet.np.logspace
mxnet.np.meshgrid
mxnet.np.tril
Array manipulation routines
mxnet.np.reshape
mxnet.np.ravel
mxnet.np.ndarray.flatten
mxnet.np.swapaxes
mxnet.np.ndarray.T
mxnet.np.transpose
mxnet.np.moveaxis
mxnet.np.rollaxis
mxnet.np.expand_dims
mxnet.np.squeeze
mxnet.np.broadcast_to
mxnet.np.broadcast_arrays
mxnet.np.atleast_1d
mxnet.np.atleast_2d
mxnet.np.atleast_3d
mxnet.np.concatenate
mxnet.np.stack
mxnet.np.dstack
mxnet.np.vstack
mxnet.np.column_stack
mxnet.np.hstack
mxnet.np.split
mxnet.np.hsplit
mxnet.np.vsplit
mxnet.np.array_split
mxnet.np.dsplit
mxnet.np.tile
mxnet.np.repeat
mxnet.np.unique
mxnet.np.delete
mxnet.np.insert
mxnet.np.append
mxnet.np.resize
mxnet.np.trim_zeros
mxnet.np.reshape
mxnet.np.flip
mxnet.np.roll
mxnet.np.rot90
mxnet.np.fliplr
mxnet.np.flipud
Input and output
mxnet.np.genfromtxt
mxnet.np.ndarray.tolist
mxnet.np.set_printoptions
Linear algebra (
numpy.linalg
)
mxnet.np.dot
mxnet.np.vdot
mxnet.np.inner
mxnet.np.outer
mxnet.np.tensordot
mxnet.np.einsum
mxnet.np.linalg.multi_dot
mxnet.np.matmul
mxnet.np.linalg.matrix_power
mxnet.np.kron
mxnet.np.linalg.svd
mxnet.np.linalg.cholesky
mxnet.np.linalg.qr
mxnet.np.linalg.eig
mxnet.np.linalg.eigh
mxnet.np.linalg.eigvals
mxnet.np.linalg.eigvalsh
mxnet.np.linalg.norm
mxnet.np.trace
mxnet.np.linalg.cond
mxnet.np.linalg.det
mxnet.np.linalg.matrix_rank
mxnet.np.linalg.slogdet
mxnet.np.linalg.solve
mxnet.np.linalg.tensorsolve
mxnet.np.linalg.lstsq
mxnet.np.linalg.inv
mxnet.np.linalg.pinv
mxnet.np.linalg.tensorinv
Mathematical functions
mxnet.np.sin
mxnet.np.cos
mxnet.np.tan
mxnet.np.arcsin
mxnet.np.arccos
mxnet.np.arctan
mxnet.np.degrees
mxnet.np.radians
mxnet.np.hypot
mxnet.np.arctan2
mxnet.np.deg2rad
mxnet.np.rad2deg
mxnet.np.unwrap
mxnet.np.sinh
mxnet.np.cosh
mxnet.np.tanh
mxnet.np.arcsinh
mxnet.np.arccosh
mxnet.np.arctanh
mxnet.np.rint
mxnet.np.fix
mxnet.np.floor
mxnet.np.ceil
mxnet.np.trunc
mxnet.np.around
mxnet.np.round_
mxnet.np.sum
mxnet.np.prod
mxnet.np.cumsum
mxnet.np.nanprod
mxnet.np.nansum
mxnet.np.cumprod
mxnet.np.nancumprod
mxnet.np.nancumsum
mxnet.np.diff
mxnet.np.ediff1d
mxnet.np.cross
mxnet.np.trapz
mxnet.np.exp
mxnet.np.expm1
mxnet.np.log
mxnet.np.log10
mxnet.np.log2
mxnet.np.log1p
mxnet.np.logaddexp
mxnet.np.i0
mxnet.np.ldexp
mxnet.np.signbit
mxnet.np.copysign
mxnet.np.frexp
mxnet.np.spacing
mxnet.np.lcm
mxnet.np.gcd
mxnet.np.add
mxnet.np.reciprocal
mxnet.np.negative
mxnet.np.divide
mxnet.np.power
mxnet.np.subtract
mxnet.np.mod
mxnet.np.multiply
mxnet.np.true_divide
mxnet.np.remainder
mxnet.np.positive
mxnet.np.float_power
mxnet.np.fmod
mxnet.np.modf
mxnet.np.divmod
mxnet.np.floor_divide
mxnet.np.clip
mxnet.np.sqrt
mxnet.np.cbrt
mxnet.np.square
mxnet.np.absolute
mxnet.np.sign
mxnet.np.maximum
mxnet.np.minimum
mxnet.np.fabs
mxnet.np.heaviside
mxnet.np.fmax
mxnet.np.fmin
mxnet.np.nan_to_num
mxnet.np.interp
np.random
mxnet.np.random.choice
mxnet.np.random.shuffle
mxnet.np.random.normal
mxnet.np.random.uniform
mxnet.np.random.rand
mxnet.np.random.randint
mxnet.np.random.beta
mxnet.np.random.chisquare
mxnet.np.random.exponential
mxnet.np.random.f
mxnet.np.random.gamma
mxnet.np.random.gumbel
mxnet.np.random.laplace
mxnet.np.random.logistic
mxnet.np.random.lognormal
mxnet.np.random.multinomial
mxnet.np.random.multivariate_normal
mxnet.np.random.pareto
mxnet.np.random.power
mxnet.np.random.rayleigh
mxnet.np.random.weibull
Sorting, searching, and counting
mxnet.np.ndarray.sort
mxnet.np.sort
mxnet.np.lexsort
mxnet.np.argsort
mxnet.np.msort
mxnet.np.partition
mxnet.np.argpartition
mxnet.np.argmax
mxnet.np.argmin
mxnet.np.nanargmax
mxnet.np.nanargmin
mxnet.np.argwhere
mxnet.np.nonzero
mxnet.np.flatnonzero
mxnet.np.where
mxnet.np.searchsorted
mxnet.np.extract
mxnet.np.count_nonzero
Statistics
mxnet.np.min
mxnet.np.max
mxnet.np.amin
mxnet.np.amax
mxnet.np.nanmin
mxnet.np.nanmax
mxnet.np.ptp
mxnet.np.percentile
mxnet.np.nanpercentile
mxnet.np.quantile
mxnet.np.nanquantile
mxnet.np.mean
mxnet.np.std
mxnet.np.var
mxnet.np.median
mxnet.np.average
mxnet.np.nanmedian
mxnet.np.nanstd
mxnet.np.nanvar
mxnet.np.corrcoef
mxnet.np.correlate
mxnet.np.cov
mxnet.np.histogram
mxnet.np.histogram2d
mxnet.np.histogramdd
mxnet.np.bincount
mxnet.np.histogram_bin_edges
mxnet.np.digitize
NPX: NumPy Neural Network Extension
mxnet.npx.set_np
mxnet.npx.reset_np
mxnet.npx.cpu
mxnet.npx.cpu_pinned
mxnet.npx.gpu
mxnet.npx.gpu_memory_info
mxnet.npx.current_device
mxnet.npx.num_gpus
mxnet.npx.activation
mxnet.npx.batch_norm
mxnet.npx.convolution
mxnet.npx.dropout
mxnet.npx.embedding
mxnet.npx.fully_connected
mxnet.npx.layer_norm
mxnet.npx.pooling
mxnet.npx.rnn
mxnet.npx.leaky_relu
mxnet.npx.multibox_detection
mxnet.npx.multibox_prior
mxnet.npx.multibox_target
mxnet.npx.roi_pooling
mxnet.npx.sigmoid
mxnet.npx.relu
mxnet.npx.smooth_l1
mxnet.npx.softmax
mxnet.npx.log_softmax
mxnet.npx.topk
mxnet.npx.waitall
mxnet.npx.load
mxnet.npx.save
mxnet.npx.one_hot
mxnet.npx.pick
mxnet.npx.reshape_like
mxnet.npx.batch_flatten
mxnet.npx.batch_dot
mxnet.npx.gamma
mxnet.npx.sequence_mask
mxnet.gluon
gluon.Block
gluon.HybridBlock
gluon.SymbolBlock
gluon.Constant
gluon.Parameter
gluon.Trainer
gluon.contrib
gluon.data
data.vision
vision.datasets
vision.transforms
gluon.loss
gluon.metric
gluon.model_zoo.vision
gluon.nn
gluon.rnn
gluon.utils
mxnet.autograd
mxnet.initializer
mxnet.optimizer
mxnet.lr_scheduler
KVStore: Communication for Distributed Training
Horovod
mxnet.kvstore.Horovod
BytePS
mxnet.kvstore.BytePS
KVStore Interface
mxnet.kvstore.KVStore
mxnet.kvstore.KVStoreBase
mxnet.kvstore.KVStoreServer
mxnet.contrib
contrib.io
contrib.ndarray
contrib.onnx
contrib.quantization
contrib.symbol
contrib.tensorboard
contrib.tensorrt
contrib.text
Legacy
mxnet.callback
mxnet.image
mxnet.io
mxnet.ndarray
ndarray
ndarray.contrib
ndarray.image
ndarray.linalg
ndarray.op
ndarray.random
ndarray.register
ndarray.sparse
ndarray.utils
mxnet.recordio
mxnet.symbol
symbol
symbol.contrib
symbol.image
symbol.linalg
symbol.op
symbol.random
symbol.register
symbol.sparse
mxnet.visualization
mxnet.device
mxnet.engine
mxnet.executor
mxnet.kvstore_server
mxnet.profiler
mxnet.rtc
mxnet.runtime
mxnet.runtime.Feature
mxnet.runtime.Features
mxnet.runtime.feature_list
mxnet.test_utils
mxnet.util
Deploy into C++
¶
Contributions welcome!
Did this page help you?
Yes
No
Thanks for your feedback!
Previous
Inference
Next
Image Classication using pretrained ResNet-50 model on Jetson module