Source code for mxnet.gluon.model_zoo.vision.densenet

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# coding: utf-8
# pylint: disable= arguments-differ
"""DenseNet, implemented in Gluon."""
__all__ = ['DenseNet', 'densenet121', 'densenet161', 'densenet169', 'densenet201']

import os

from ....device import cpu
from ...block import HybridBlock
from ... import nn
from .... import base
from ....util import use_np, wrap_ctx_to_device_func

# Helpers
def _make_dense_block(num_layers, bn_size, growth_rate, dropout):
    out = nn.HybridSequential()
    for _ in range(num_layers):
        out.add(_make_dense_layer(growth_rate, bn_size, dropout))
    return out

def _make_dense_layer(growth_rate, bn_size, dropout):
    new_features = nn.HybridSequential()
    new_features.add(nn.BatchNorm())
    new_features.add(nn.Activation('relu'))
    new_features.add(nn.Conv2D(bn_size * growth_rate, kernel_size=1, use_bias=False))
    new_features.add(nn.BatchNorm())
    new_features.add(nn.Activation('relu'))
    new_features.add(nn.Conv2D(growth_rate, kernel_size=3, padding=1, use_bias=False))
    if dropout:
        new_features.add(nn.Dropout(dropout))

    out = nn.HybridConcatenate(axis=1)
    out.add(nn.Identity())
    out.add(new_features)

    return out

def _make_transition(num_output_features):
    out = nn.HybridSequential()
    out.add(nn.BatchNorm())
    out.add(nn.Activation('relu'))
    out.add(nn.Conv2D(num_output_features, kernel_size=1, use_bias=False))
    out.add(nn.AvgPool2D(pool_size=2, strides=2))
    return out

# Net
[docs]@use_np class DenseNet(HybridBlock): r"""Densenet-BC model from the `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ paper. Parameters ---------- num_init_features : int Number of filters to learn in the first convolution layer. growth_rate : int Number of filters to add each layer (`k` in the paper). block_config : list of int List of integers for numbers of layers in each pooling block. bn_size : int, default 4 Multiplicative factor for number of bottle neck layers. (i.e. bn_size * k features in the bottleneck layer) dropout : float, default 0 Rate of dropout after each dense layer. classes : int, default 1000 Number of classification classes. """ def __init__(self, num_init_features, growth_rate, block_config, bn_size=4, dropout=0, classes=1000, **kwargs): super(DenseNet, self).__init__(**kwargs) self.features = nn.HybridSequential() self.features.add(nn.Conv2D(num_init_features, kernel_size=7, strides=2, padding=3, use_bias=False)) self.features.add(nn.BatchNorm()) self.features.add(nn.Activation('relu')) self.features.add(nn.MaxPool2D(pool_size=3, strides=2, padding=1)) # Add dense blocks num_features = num_init_features for i, num_layers in enumerate(block_config): self.features.add(_make_dense_block(num_layers, bn_size, growth_rate, dropout)) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: self.features.add(_make_transition(num_features // 2)) num_features = num_features // 2 self.features.add(nn.BatchNorm()) self.features.add(nn.Activation('relu')) self.features.add(nn.AvgPool2D(pool_size=7)) self.features.add(nn.Flatten()) self.output = nn.Dense(classes)
[docs] def forward(self, x): x = self.features(x) x = self.output(x) return x
# Specification densenet_spec = {121: (64, 32, [6, 12, 24, 16]), 161: (96, 48, [6, 12, 36, 24]), 169: (64, 32, [6, 12, 32, 32]), 201: (64, 32, [6, 12, 48, 32])} # Constructor @wrap_ctx_to_device_func def get_densenet(num_layers, pretrained=False, device=cpu(), root=os.path.join(base.data_dir(), 'models'), **kwargs): r"""Densenet-BC model from the `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ paper. Parameters ---------- num_layers : int Number of layers for the variant of densenet. Options are 121, 161, 169, 201. pretrained : bool, default False Whether to load the pretrained weights for model. device : Device, default CPU The device in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. """ num_init_features, growth_rate, block_config = densenet_spec[num_layers] net = DenseNet(num_init_features, growth_rate, block_config, **kwargs) if pretrained: from ..model_store import get_model_file net.load_parameters(get_model_file(f'densenet{num_layers}', root=root), device=device) return net
[docs]def densenet121(**kwargs): r"""Densenet-BC 121-layer model from the `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. device : Device, default CPU The device in which to load the pretrained weights. root : str, default '$MXNET_HOME/models' Location for keeping the model parameters. """ return get_densenet(121, **kwargs)
[docs]def densenet161(**kwargs): r"""Densenet-BC 161-layer model from the `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. device : Device, default CPU The device in which to load the pretrained weights. root : str, default '$MXNET_HOME/models' Location for keeping the model parameters. """ return get_densenet(161, **kwargs)
[docs]def densenet169(**kwargs): r"""Densenet-BC 169-layer model from the `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. device : Device, default CPU The device in which to load the pretrained weights. root : str, default '$MXNET_HOME/models' Location for keeping the model parameters. """ return get_densenet(169, **kwargs)
[docs]def densenet201(**kwargs): r"""Densenet-BC 201-layer model from the `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ paper. Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. device : Device, default CPU The device in which to load the pretrained weights. root : str, default '$MXNET_HOME/models' Location for keeping the model parameters. """ return get_densenet(201, **kwargs)