Source code for mxnet.gluon.trainer
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# coding: utf-8
# pylint: disable=line-too-long
"""Parameter optimizer."""
__all__ = ['Trainer']
import warnings
from collections import OrderedDict
from .. import optimizer as opt
from ..model import _create_kvstore, _create_sparse_kvstore
from .parameter import Parameter
from ..kvstore import KVStore
[docs]class Trainer(object):
"""Applies an `Optimizer` on a set of Parameters. Trainer should
be used together with `autograd`.
.. note::
For the following cases, updates will always happen on kvstore,
i.e., you cannot set update_on_kvstore=False.
- dist kvstore with sparse weights or sparse gradients
- dist async kvstore
- `optimizer.lr_scheduler` is not None
Parameters
----------
params : Dict
The set of parameters to optimize.
optimizer : str or Optimizer
The optimizer to use. See
`help <https://mxnet.apache.org/api/python/docs/api/optimizer/index.html>`_
on Optimizer for a list of available optimizers.
optimizer_params : dict
Key-word arguments to be passed to optimizer constructor. For example,
`{'learning_rate': 0.1}`. All optimizers accept learning_rate, wd (weight decay),
clip_gradient, and lr_scheduler. See each optimizer's
constructor for a list of additional supported arguments.
kvstore : str or KVStore
kvstore type for multi-gpu and distributed training. See help on
:func:`mxnet.kvstore.create` for more information.
compression_params : dict
Specifies type of gradient compression and additional arguments depending
on the type of compression being used. For example, 2bit compression requires a threshold.
Arguments would then be {'type':'2bit', 'threshold':0.5}
See mxnet.KVStore.set_gradient_compression method for more details on gradient compression.
update_on_kvstore : bool, default None
Whether to perform parameter updates on kvstore. If None and optimizer.aggregate_num <= 1,
then trainer will choose the more suitable option depending on the type of kvstore.
If None and optimizer.aggregate_num > 1, `update_on_kvstore` is set to False.
If the `update_on_kvstore` argument is provided,
environment variable `MXNET_UPDATE_ON_KVSTORE` will be ignored.
Properties
----------
learning_rate : float
The current learning rate of the optimizer. Given an Optimizer object
optimizer, its learning rate can be accessed as optimizer.learning_rate.
"""
def __init__(self, params, optimizer, optimizer_params=None, kvstore='device',
compression_params=None, update_on_kvstore=None):
param_list = []
if isinstance(params, (dict, OrderedDict)):
for key in sorted(list(params.keys())):
param_list.append(params[key])
params = param_list
if not isinstance(params, (list, tuple)):
raise ValueError(
"First argument must be a list or dict of Parameters, " \
f"got {type(params)}.")
self._params = []
# parameters to initialize on the kvstore
self._contains_sparse_weight = False
self._contains_sparse_grad = False
self._param2idx = {}
for i, param in enumerate(params):
if not isinstance(param, Parameter):
raise ValueError(
"First argument must be a list or dict of Parameters, " \
f"got list of {type(param)}.")
if param._uuid in self._param2idx:
# Shared parameters have same uuid; only need to store one of the shared versions
continue
self._param2idx[param._uuid] = i
self._params.append(param)
param._set_trainer(self)
if param._stype != 'default':
self._contains_sparse_weight = True
if param._grad_stype != 'default':
self._contains_sparse_grad = True
self._compression_params = compression_params
self._devices = self._check_devices()
optimizer_params = optimizer_params if optimizer_params else {}
self._init_optimizer(optimizer, optimizer_params)
self._scale = self._optimizer.rescale_grad
if self._optimizer.aggregate_num > 1 and update_on_kvstore is not None:
if update_on_kvstore:
raise ValueError("Cannot set update_on_kvstore=True "
"when optimizer.aggregate_num > 1.")
if update_on_kvstore is None and self._optimizer.aggregate_num > 1:
update_on_kvstore = False
self._kvstore_params = {'kvstore': kvstore, 'update_on_kvstore': update_on_kvstore}
self._kv_initialized = False
self._kvstore = None
self._update_on_kvstore = None
self._distributed = None
self._params_to_init = []
self._reset_kvstore()
def _check_contexts(self):
"""This function has been deprecated. Please refer to ``Trainer._check_devices``."""
warnings.warn('Trainer._check_contexts has been renamed to'
' Trainer._check_devices', DeprecationWarning)
return self._check_devices()
def _check_devices(self):
devices = None
for param in self._params:
device = param.list_device()
assert devices is None or devices == device, \
"All Parameters must be initialized on the same set of devices, " \
f"but Parameter {param.name} is initialized on {str(device)} while previous Parameters " \
f"are initialized on {str(devices)}."
devices = device
return devices
def _init_optimizer(self, optimizer, optimizer_params):
param_dict = {i: param for i, param in enumerate(self._params)}
if isinstance(optimizer, opt.Optimizer):
assert not optimizer_params, \
"optimizer_params must be None if optimizer is an instance of " \
"Optimizer instead of str"
self._optimizer = optimizer
# param_dict must not be deep copied, so that if user mutate the lr_mult
# or wd_mult of some parameters, it takes effect.
self._optimizer.param_dict = param_dict
else:
self._optimizer = opt.create(optimizer, param_dict=param_dict,
**optimizer_params)
self._updaters = [opt.get_updater(self._optimizer) \
for _ in self._devices]
def _init_params(self):
"""Initialize parameters in the KVStore.
Parameters with incomplete initialization are ignored.
"""
assert self._kv_initialized, "Cannot initialize parameters in KVStore " \
"when KVStore is not initialized."
params_to_init = []
if self._kvstore:
for param in self._params_to_init:
if param._deferred_init:
params_to_init.append(param)
else:
param_arrays = param._check_and_get(param._data, list)
idx = self._param2idx[param._uuid]
if param._stype != 'default':
self._kvstore.init(idx, param_arrays[0])
else:
self._kvstore.broadcast(idx, param_arrays[0], param_arrays)
self._params_to_init = params_to_init
def _reset_kvstore(self):
"""Reset kvstore."""
if self._kvstore and 'dist' in self._kvstore.type:
raise RuntimeError("Cannot reset distributed KVStore.")
self._kv_initialized = False
self._kvstore = None
self._distributed = None
self._update_on_kvstore = None
self._params_to_init = [param for param in self._params]
def _init_kvstore(self):
"""Create kvstore."""
config = self._kvstore_params
# configure kvstore, update_on_kvstore and self._distributed on three cases:
if self._contains_sparse_weight:
# If weight is sparse, kvstore must be present and the weight must be updated on kvstore.
# The training loop is the following:
# - row_sparse_pull(sparse_weight)
# - forward()
# - backward()
# - push_and_update(grad)
# - pull(weight)
kvstore, update_on_kvstore = _create_sparse_kvstore(config['kvstore'])
self._distributed = 'dist' in kvstore.type
# raise err if user provides unsupported configs
if config['update_on_kvstore'] is False:
raise ValueError("Cannot set update_on_kvstore=False when sparse weights "
"are present.")
elif self._contains_sparse_grad:
# For single node training with dense weight and sparse grad,
# we prefer update_on_kvstore=False because this is usually faster.
# This means we push and pull sparse gradients, and we do not store weight in kvstore.
# The training loop is the following:
# - forward()
# - backward()
# - push(grad)
# - pull(grad)
# - update(grad, weight)
#
# For multi-node training with dense weight and sparse grad,
# only update_on_kvstore=True is supported, due to the fact that
# kv.row_sparse_pull(grad) is not implemented.
# Therefore, we push sparse gradients and pull dense weights.
# The training loop contains:
# - forward()
# - backward()
# - push_and_update(grad)
# - pull(weight)
arg_arrays = {param._uuid: param.data(self._devices[0]) for param in self._params}
kvstore, _ = _create_kvstore(config['kvstore'], len(self._devices), arg_arrays)
self._distributed = 'dist' in kvstore.type if kvstore else False
update_on_kvstore = self._distributed
# raise err if user provides unsupported configs
if config['update_on_kvstore'] is not None:
if config['update_on_kvstore'] is False and self._distributed:
raise ValueError("Cannot set update_on_kvstore=False on dist kvstore "
"when sparse gradients are present.")
update_on_kvstore = config['update_on_kvstore']
# raise err if a custom kvstore is used for sparse training
if kvstore is not None and not isinstance(kvstore, KVStore):
raise ValueError("Cannot use {} for multi-device training with sparse gradients"
.format(type(kvstore)))
else:
# Training with dense weight and dense gradients.
# The only unsupported mode is async with update_on_kvstore=False
arg_arrays = {param._uuid: param.data(self._devices[0]) for param in self._params}
kvstore, update_on_kvstore = _create_kvstore(config['kvstore'], len(self._devices),
arg_arrays)
self._distributed = 'dist' in kvstore.type if kvstore else False
if self._distributed and 'async' in kvstore.type:
update_on_kvstore = True
# raise err if user provides unsupported configs
if config['update_on_kvstore'] is False:
raise ValueError("Please set update_on_kvstore=True "
"when training in async mode.")
if config['update_on_kvstore'] is not None:
update_on_kvstore = config['update_on_kvstore']
# raise err if update_on_kvstore is set to True with kvstores that do not support optimizers
if update_on_kvstore and not kvstore.is_capable('optimizer'):
if config['update_on_kvstore']:
raise ValueError("Please set update_on_kvstore=False "
"when training with {}".format(type(kvstore)))
update_on_kvstore = False
# set grad compression and optimizers
if kvstore:
if self._compression_params:
kvstore.set_gradient_compression(self._compression_params)
if update_on_kvstore:
# optimizer preferably needs to be set before init for multiprecision
kvstore.set_optimizer(self._optimizer)
self._kvstore = kvstore
self._update_on_kvstore = update_on_kvstore
else:
self._kvstore = None
self._update_on_kvstore = None
self._kv_initialized = True
@property
def learning_rate(self):
if not isinstance(self._optimizer, opt.Optimizer):
raise UserWarning("Optimizer has to be defined before its learning "
"rate can be accessed.")
return self._optimizer.learning_rate
@property
def optimizer(self):
if isinstance(self._optimizer, opt.Optimizer):
return self._optimizer
else:
raise UserWarning("Optimizer has not been initialized yet")
[docs] def set_learning_rate(self, lr):
"""Sets a new learning rate of the optimizer.
Parameters
----------
lr : float
The new learning rate of the optimizer.
"""
if not isinstance(self._optimizer, opt.Optimizer):
raise UserWarning("Optimizer has to be defined before its learning "
"rate is mutated.")
self._optimizer.set_learning_rate(lr)
def _row_sparse_pull(self, parameter, out, row_id, full_idx=False):
"""Internal method to invoke pull operations on KVStore. If `full_idx` is set to True,
`kv.pull` is preferred instead of `kv.row_sparse_pull`.
"""
# initialize kv and params if not already
if not self._kv_initialized:
self._init_kvstore()
if self._params_to_init:
self._init_params()
idx = self._param2idx[parameter._uuid]
if full_idx and 'dist' not in self._kvstore.type:
assert row_id.size == out.shape[0]
self._kvstore.pull(idx, out=out, priority=-idx, ignore_sparse=False)
else:
self._kvstore.row_sparse_pull(idx, out=out, row_ids=row_id, priority=-idx)
def _check_and_rescale_grad(self, scale):
if self._update_on_kvstore and self._distributed and self._kv_initialized:
if self._optimizer.rescale_grad != scale:
raise UserWarning('Possible change in the `batch_size` from previous '
'`step` detected. Optimizer gradient normalizing '
'factor will not change w.r.t new batch_size when '
'update_on_kvstore=True and when distributed kvstore '
'is used.')
self._optimizer.rescale_grad = scale
[docs] def step(self, batch_size, ignore_stale_grad=False):
"""Makes one step of parameter update. Should be called after
`autograd.backward()` and outside of `record()` scope.
For normal parameter updates, `step()` should be used, which internally calls
`allreduce_grads()` and then `update()`. However, if you need to get the reduced
gradients to perform certain transformation, such as in gradient clipping, then
you may want to manually call `allreduce_grads()` and `update()` separately.
Parameters
----------
batch_size : int
Batch size of data processed. Gradient will be normalized by `1/batch_size`.
Set this to 1 if you normalized loss manually with `loss = mean(loss)`.
ignore_stale_grad : bool, optional, default=False
If true, ignores Parameters with stale gradient (gradient that has not
been updated by `backward` after last step) and skip update.
"""
rescale_grad = self._scale / batch_size
self._check_and_rescale_grad(rescale_grad)
if not self._kv_initialized:
self._init_kvstore()
if self._params_to_init:
self._init_params()
self._allreduce_grads()
self._update(ignore_stale_grad)
[docs] def allreduce_grads(self):
"""For each parameter, reduce the gradients from different devices.
Should be called after `autograd.backward()`, outside of `record()` scope,
and before `trainer.update()`.
For normal parameter updates, `step()` should be used, which internally calls
`allreduce_grads()` and then `update()`. However, if you need to get the reduced
gradients to perform certain transformation, such as in gradient clipping, then
you may want to manually call `allreduce_grads()` and `update()` separately.
"""
if not self._kv_initialized:
self._init_kvstore()
if self._params_to_init:
self._init_params()
assert not (self._kvstore and self._update_on_kvstore), \
'allreduce_grads() when parameters are updated on kvstore ' \
'is not supported. Try setting `update_on_kvstore` ' \
'to False when creating trainer.'
self._allreduce_grads()
def _allreduce_grads(self):
# nothing to reduce
if not self._kvstore:
return
for i, param in enumerate(self._params):
if param.grad_req != 'null':
idx = self._param2idx[param._uuid]
grad_list = param.list_grad()
# sparse gradients, call push and pull separately
if grad_list[0].stype != 'default':
self._kvstore.push(idx, grad_list, priority=-i)
if param._stype == 'default':
if self._update_on_kvstore:
pull_list = param.list_data()
else:
pull_list = param.list_grad()
self._kvstore.pull(idx, pull_list, priority=-i,
ignore_sparse=self._distributed)
else:
# allreduce dense gradients if not update_on_kvstore,
# otherwise push dense gradients, pull dense weights
if self._update_on_kvstore:
self._kvstore.pushpull(idx, grad_list, out=param.list_data(), priority=-i)
else:
self._kvstore.pushpull(idx, grad_list, priority=-i)
[docs] def update(self, batch_size, ignore_stale_grad=False):
"""Makes one step of parameter update.
Should be called after `autograd.backward()` and outside of `record()` scope,
and after `trainer.update()`.
For normal parameter updates, `step()` should be used, which internally calls
`allreduce_grads()` and then `update()`. However, if you need to get the reduced
gradients to perform certain transformation, such as in gradient clipping, then
you may want to manually call `allreduce_grads()` and `update()` separately.
Parameters
----------
batch_size : int
Batch size of data processed. Gradient will be normalized by `1/batch_size`.
Set this to 1 if you normalized loss manually with `loss = mean(loss)`.
ignore_stale_grad : bool, optional, default=False
If true, ignores Parameters with stale gradient (gradient that has not
been updated by `backward` after last step) and skip update.
"""
if not self._kv_initialized:
self._init_kvstore()
if self._params_to_init:
self._init_params()
assert not (self._kvstore and self._update_on_kvstore), \
'update() when parameters are updated on kvstore ' \
'is not supported. Try setting `update_on_kvstore` ' \
'to False when creating trainer.'
self._check_and_rescale_grad(self._scale / batch_size)
self._update(ignore_stale_grad)
def _update(self, ignore_stale_grad=False):
loss_scaler = getattr(self, '_amp_loss_scaler', None)
if loss_scaler is not None:
if loss_scaler.has_overflow(self._params):
return # skip on overflow
updates = [[] for _ in self._updaters]
for i, param in enumerate(self._params):
if param.grad_req == 'null':
continue
if not ignore_stale_grad:
for data in param._check_and_get(param._data, list):
if not data._fresh_grad:
raise UserWarning(
f"Gradient of Parameter `{param.name}` on device {str(data.device)} has not been updated "
"by backward since last `step`. This could mean a bug in your "
"model that made it only use a subset of the Parameters (Blocks) "
"for this iteration. If you are intentionally only using a subset, "
"call step with ignore_stale_grad=True to suppress this "
"warning and skip updating of Parameters with stale gradient")
if self._kvstore and self._update_on_kvstore:
continue
for upd, arr, grad in zip(updates, param.list_data(), param.list_grad()):
if not ignore_stale_grad or arr._fresh_grad:
upd.append((i, grad, arr))
arr._fresh_grad = False
if not (self._kvstore and self._update_on_kvstore):
for updater, upd in zip(self._updaters, updates):
if upd:
i, g, w = zip(*upd)
updater(i, g, w)
[docs] def save_states(self, fname):
"""Saves trainer states (e.g. optimizer, momentum) to a file.
Parameters
----------
fname : str
Path to output states file.
Note
----
`optimizer.param_dict`, which contains Parameter information (such as
`lr_mult` and `wd_mult`) will not be saved.
"""
assert self._optimizer is not None
if not self._kv_initialized:
self._init_kvstore()
if self._params_to_init:
self._init_params()
if self._update_on_kvstore:
assert not self._params_to_init, "Cannot save trainer states when some " \
"parameters are not yet initialized in kvstore."
self._kvstore.save_optimizer_states(fname, dump_optimizer=True)
else:
with open(fname, 'wb') as fout:
fout.write(self._updaters[0].get_states(dump_optimizer=True))
[docs] def load_states(self, fname):
"""Loads trainer states (e.g. optimizer, momentum) from a file.
Parameters
----------
fname : str
Path to input states file.
Note
----
`optimizer.param_dict`, which contains Parameter information (such as
`lr_mult` and `wd_mult`) will not be loaded from the file, but rather set
based on current Trainer's parameters.
"""
if not self._kv_initialized:
self._init_kvstore()
if self._params_to_init:
self._init_params()
if self._update_on_kvstore:
self._kvstore.load_optimizer_states(fname)
self._optimizer = self._kvstore._updater.optimizer
else:
with open(fname, 'rb') as f:
states = f.read()
for updater in self._updaters:
updater.set_states(states)
updater.optimizer = self._updaters[0].optimizer
self._optimizer = self._updaters[0].optimizer
param_dict = {i: param for i, param in enumerate(self._params)}
self._optimizer.param_dict = param_dict
Did this page help you?
Yes
No
Thanks for your feedback!