Source code for mxnet.optimizer.nag

# coding: utf-8
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""NAG optimizer."""
from __future__ import absolute_import
import numpy
from ..ndarray import (zeros, clip)
from ..ndarray import (sgd_update, mp_sgd_update, nag_mom_update, mp_nag_mom_update)
from .optimizer import Optimizer, register

__all__ = ['NAG']


[docs]@register class NAG(Optimizer): """Nesterov accelerated gradient. This optimizer updates each weight by:: grad = clip(grad * rescale_grad, clip_gradient) + wd * weight state = momentum * state + lr * grad weight = weight - (momentum * state + lr * grad) Parameters ---------- learning_rate : float, default 0.1 The initial learning rate. If None, the optimization will use the learning rate from ``lr_scheduler``. If not None, it will overwrite the learning rate in ``lr_scheduler``. If None and ``lr_scheduler`` is also None, then it will be set to 0.01 by default. momentum : float, default 0.9 The momentum value. multi_precision: bool, default False Flag to control the internal precision of the optimizer. False: results in using the same precision as the weights (default), True: makes internal 32-bit copy of the weights and applies gradients in 32-bit precision even if actual weights used in the model have lower precision. Turning this on can improve convergence and accuracy when training with float16. use_fused_step : bool, default True Whether or not to use fused kernels for optimizer. When use_fused_step=False, step is called, otherwise, fused_step is called. """ def __init__(self, learning_rate=0.1, momentum=0.9, multi_precision=False, use_fused_step=True, **kwargs): super(NAG, self).__init__(learning_rate=learning_rate, multi_precision=multi_precision, use_fused_step=use_fused_step, **kwargs) self.momentum = momentum
[docs] def create_state(self, index, weight): momentum = None if self.momentum != 0.0: momentum = zeros(weight.shape, weight.context, dtype=weight.dtype) return momentum
[docs] def step(self, indices, weights, grads, states): """Perform an optimization step using gradients and states. Parameters ---------- indices : list of int List of unique indices of the parameters into the individual learning rates and weight decays. Learning rates and weight decay may be set via `set_lr_mult()` and `set_wd_mult()`, respectively. weights : list of NDArray List of parameters to be updated. grads : list of NDArray List of gradients of the objective with respect to this parameter. states : List of any obj List of state returned by `create_state()`. """ for index, weight, grad, state in zip(indices, weights, grads, states): self._update_count(index) lr = self._get_lr(index) wd = self._get_wd(index) # preprocess grad grad *= self.rescale_grad if self.clip_gradient is not None: grad = clip(grad, -self.clip_gradient, self.clip_gradient) grad += wd * weight # update mom mom = state if mom is not None: mom[:] *= self.momentum mom[:] -= lr * grad d = self.momentum * mom - lr * grad else: d = -lr * grad # update weight weight[:] += d
[docs] def fused_step(self, indices, weights, grads, states): """Perform a fused optimization step using gradients and states. Fused kernel is used for update. Parameters ---------- indices : list of int List of unique indices of the parameters into the individual learning rates and weight decays. Learning rates and weight decay may be set via `set_lr_mult()` and `set_wd_mult()`, respectively. weights : list of NDArray List of parameters to be updated. grads : list of NDArray List of gradients of the objective with respect to this parameter. states : List of any obj List of state returned by `create_state()`. """ for index, weight, grad, state in zip(indices, weights, grads, states): self._update_count(index) lr = self._get_lr(index) wd = self._get_wd(index) kwargs = {'rescale_grad': self.rescale_grad} if self.momentum > 0: kwargs['momentum'] = self.momentum if self.clip_gradient: kwargs['clip_gradient'] = self.clip_gradient multi_precision = self.multi_precision and weight.dtype == numpy.float16 if not multi_precision: mom = state if mom is not None: nag_mom_update(weight, grad, mom, out=weight, lr=lr, wd=wd, **kwargs) else: sgd_update(weight, grad, out=weight, lr=lr, wd=wd, **kwargs) else: weight32, mom = state if mom is not None: mp_nag_mom_update(weight, grad, mom, weight32, out=weight, lr=lr, wd=wd, **kwargs) else: mp_sgd_update(weight, grad, weight32, out=weight, lr=lr, wd=wd, **kwargs)
[docs] def update_multi_precision(self, indices, weights, grads, states): """Override update_multi_precision. """ if self.use_fused_step: self.update(indices, weights, grads, states) else: super(NAG, self).update_multi_precision(indices, weights, grads, states)